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There exists a properly embedded minimal surface of genus one
with a single end asymptotic to the end of the helicoid. This
genus-one helicoid is constructed as the limit of a continuous
one-parameter family of screw-motion invariant minimal surfaces,
also asymptotic to the helicoid, that have genus equal to one in the
quotient.
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Complete Embedded Minimal Surfaces of Finite Topology
and Infinite Total Curvature

We prove the existence of a properly embedded minimal
surface in R3 with finite topology and infinite total

curvature.¶ In refs. 1 and 2, an immersed surface with these
properties was proved to exist, and strong mathematical and
graphical evidence was given to show that the constructed
surface was embedded (i.e., free of self intersections). However,
a proof of embeddedness was not found, even though this earlier
existence result has a considerable influence of the subsequent
development of the global theory of minimal surfaces. We give
a full theoretical proof of the existence of an embedded example
with finite topology and infinite total curvature. Such a surface
has not been reported since 1776, when Meusnier (3) showed
that the helicoid was a minimal surface. Our surface has genus
one and is asymptotic to the helicoid.

We exhibit this minimal surface as a geometric limit of
periodic embedded minimal surfaces. The periodic surfaces, Hk,
indexed by a real number k � 1, are invariant under a cyclic
group of screw motions generated by �k: rotation by 2�k about
the vertical axis, followed by a vertical translation by 2�k. Thus,
for fixed k, the quotient surface has two topological ends and
genus one. The limit is taken as k3 �; a compact set in the limit
surface He1 is arbitrarily well-approximated (for k sufficiently
large) by corresponding pieces of fundamental domains of Hk��k
(see Fig. 1).

The requirement to prove embeddedness was the main mo-
tivation of our work. We prove that embeddedness is inherited
from the embeddedness of the approximating simpler (periodic)
surfaces, using that in this particular minimal surface setting, the
condition of being embedded is both open and closed on
families. This method of proving embeddedness for surfaces
defined using the Weierstrass representation contrasts with
previous methods: here, the characteristic of being embedded
follows naturally from the property holding for simpler surfaces,
whereas previously one proved embeddedness by ad hoc meth-
ods, for instance by cutting the surface into graphs.

A second important feature is that we approximate a surface
of finite topology (and finite symmetry group) by surfaces of
infinite topology (and infinite symmetry group). We are unaware
of this method being previously applied to produce a nonclassical
example.

The third feature is that we construct the Weierstrass data of
these approximating minimal surfaces in terms of flat singular
structures on the tori corresponding to the quotients. The salient
feature to note is that the defining flat structures have singu-
larities corresponding to the two ends� with cone angles of �2�k.
Thus, as the size of the twist tends to infinity, the cone angles also
tend to infinity, with the limit surface, our genus-one helicoid,
represented in terms of flat cone metrics with an infinite cone

angle. The flat geometry of this end corresponds to the Weier-
strass data for a helicoid, whose Gauss map has an essential
singularity at the end. Establishing this correspondence required
the development of a theory of singular flat structures that
admits infinite cone angles.

Recently, Meeks and Rosenberg (4) showed that the helicoid
is the unique simply connected, properly embedded (nonplanar)
minimal surface R3 with one end. The method of proof uses in
an essential manner the work of Colding and Minicozzi (5–8)
concerning curvature estimates for embedded minimal disks and
geometric limits of those disks. [Colding and Minicozzi recently
showed that a complete and embedded minimal surface with
finite topology in R3 must be proper (9).] These results together
with the work we describe here (M. Weber, D.H., and M. Wolf,
unpublished results) and numerical work of Traizet (M. Traizet,
unpublished data) and Bobenko (10) suggest that there may be
a substantial theory of complete embedded minimal surfaces
with one end, infinite total curvature and finite topology (see
also ref. 11). For complete embedded surfaces of finite total
curvature, the theory is surveyed in ref. 1.

He1, an Embedded Genus-One Helicoid
In 1993, Hoffman, Karcher, and Wei (12) constructed a surface,
He1 � R3, which they called the genus-one helicoid.

It has the following properties:

(i) He1 is a properly immersed minimal surface;
(ii) He1 has genus one and one end asymptotic to the helicoid;

(iii) He1 contains a single vertical line (the axis) and a single
horizontal line. Condition 1

Note that Condition 1.ii implies that any He1 has finite topology
and infinite total curvature.**

We will refer to any surface with the properties in Condition
1 as a genus-one helicoid and denote such a surface by He1. It
is known that any He1 must be embedded outside of a compact
set (12, 13). However, as mentioned above, even though com-
puter simulations and computational estimates strongly sug-
gested that this He1 was embedded, an independent proof has
been elusive.

We prove the following.

Theorem 1. There exists an embedded He1.
We believe that the surface we have found is the same one

constructed by Hoffman, Karcher, and Wei (12). In fact, we
believe
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¶A surface is said to have ‘‘finite topology’’ if it is homeomorphic to a compact surface with
a finite number of points removed.

�There is an additional cone point (with cone angle 6�) in these structures at a vertical point.

**The helicoid, a surface swept out by a horizontal line rotating at a constant rate as it
moves up a vertical axis at a constant rate, is clearly properly embedded and has finite
topology (in fact it is simply connected). Because it is singly periodic and evidently not
flat, it has infinite total curvature. Any periodic surface asymptotic to the helicoid must
also have infinite total curvature.
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Conjecture 1. There is a unique embedded He1.
Note that Conjecture 1 does not assert that there is a unique

He1 and that it is an embedded surface.

He1 As the Limit of a Family of Screw-Motion-Invariant,
Embedded Minimal Surfaces
The starting point of our investigation is the embedded singly
periodic genus-one helicoid.

Theorem 2 (2, 14). There exists a unique†† properly embedded, singly
periodic minimal surface H1, whose quotient by vertical translations
has the following conditions:

(i) has genus one and two ends;
(ii) has ends asymptotic to a full 2�-turn of a helicoid;

(iii) contains a vertical axis and two horizontal parallel lines.
Condition 2

Hoffman and Wei (16) conducted a numerical investigation
indicating that H1 could be also be deformed in a manner
suggested by the symmetries of the helicoid.‡‡

The helicoid is not only invariant under a vertical translation
by 2�; it is also invariant under vertical screw motions �k. For k �
1, imagine a periodic minimal surface, Hk, invariant under a
vertical screw motion �k and satisfying the following conditions.

The quotient of Hk by �k

(i) has genus one and two ends;
(ii) is asymptotic to a portion of the helicoid that has twisted

through an angle of 2�k;
(iii) contains a vertical axis and two parallel horizontal lines.

Condition 3

The geometric limit, as k 3 �, of the singly periodic covers
of these surfaces (once a vertical point is required to stay on
the x-axis) should be an He1. Moreover, if the family also
depended continuously on k, then the embeddedness of H1

would be inherited by the Hk. With some additional control on
the limiting behavior, embeddedness could be shown to pass to
the limit He1.

We carry out this program completely.

Theorem 3. For every k � 1, there exists a complete, �k-invariant,
properly embedded minimal surface, Hk, whose quotient by �k satisfies
Condition 3. As k3 �, a limit surface exists and is an embedded He1,
i.e., a properly embedded minimal surface satisfying Condition 1.

The Ideas Behind the Proof of Theorem 3
The procedure of constructing a minimal surface by prescribing
Weierstrass data, a Riemann surface, S, with a meromorphic
function, g, and one form, dh, requires the demonstration that
the two period conditions

�
�

gdh � �
�

1
g

dh

(the horizontal period condition) and Re �� dh � 0 (the vertical
period condition) be satisfied for all cycles � � S. Weber (17)
realized that the Weierstrass data for H1 of Theorem 2 defined
one-forms gdh and (1�g)dh that differed by a scale factor and a
translation, and this condition specified the underlying torus S and
(up to one free variable) the one forms gdh and (1�g)dh. Moreover,
the flat geometric structure defined by gdh can be realized by a
simple geometric model. See Fig. 2 and note that for H1, i.e., k �
1, there is no inserted cone angle. This definition automatically
solves the first period condition. The free parameter is used to
satisfy the second period condition as follows. First, we realize that
the flat structure of dh can be understood qualitatively (see Fig. 3
Left) as a planar domain. Then, for the parameter values at their
limits (see Fig. 3 Center and Right), we are able to determine it
explicitly, which allows us to apply the intermediate value theorem.

By sewing in a cone of angle 2�(k � 1), we are able to modify
the flat geometric structure of gdh for H1 to produce candidate
flat structures for Hk (see Fig. 2). The position of the vertex of
the cone gives a real parameter d � 0. (For k � 1 we do not sew
in a cone, but the choice of d is our free parameter, correspond-
ing to the placement of a point corresponding to an end.)

For each (k, d) � [1, �) � [0, �), the construction gives a
candidate structure; on each of these sturctures, the one-form dh
is determined up to a scale factor, and the horizontal period
problem is solved. Thus, we are left to find, for each k � 1, a

††Uniqueness follows from an observation of Karcher, using the proof of ref. 14 and a
uniqueness result in ref. 15.

‡‡An animation of the genus-one helicoid is available from the authors upon request.

Fig. 1. Approximate surfaces Hk and the genus-one helicoid He1. The two
images at Left and Center are (a pair of) fundamental domains of elements in
the sequence Hk of �k-invariant periodic surfaces whose geometric limit is the
image (Right) of He1, the genus-one helicoid. This minimal surface is embed-
ded and has genus one with a single end asymptotic to the standard helicoid.

Fig. 2. The gdh structures for Hk. The points e1 and e2 correspond to the ends
of the surface and are cone points of cone angles �2�k and 2�k, respectively;
the point V2 is one of the two points where the tangent plane is horizontal and
here has a cone angle of 6�. This development of the one-form gdh (and an
analogous development of the form 1

g
dh) permits an easy verification of the

horizontal period condition. [This last comment uses the elementary fact that
if we develop a form � by the rule w � �z�, then in the developed image, the
form takes the form � � dw with periods ��� � �w(�)dw. These periods are
usually easy to compute because they are the difference of the endpoints of
w(�).] The parameters of the development are k and the Euclidean distance d
between v2 and e2.
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parameter d � (0, �) for which the vertical period problem is also
solved; here this solution value d should depend continuously on
the screw-motion parameter k.

To find such a family of d � d(k), we show that the period of
the height function over a given cycle naturally defines a real
analytic function, h � h(k, d), and the desired d(k) would then
satisfy h(k, d(k)) � 0. If h � 0 for some (k, d), then the
corresponding (k, d)-f lat geometric structure defines a properly
immersed minimal surface Hk satisfying Condition 3. We show
that the zero set of h contains a piecewise-smooth curve C that
begins at the point (1, d1) corresponding to H1, and crosses each
vertical line {k � const.} in the (k, d) rectangle. Each point, (k,
d), on this curve defines a properly immersed minimal surface
satisfying the Condition 3.

To find this curve C, we first compactify the ‘‘moduli space’’
of (k, d)-structures, adding degenerate structures for the loci k �
�, d � 0, and d � � in a manner compatible with the topology
of [1, �] � [0, �]. Then, we show that the height function h is
continuous on the full compact rectangle [1, �] � [0, �] (i.e., h
extends continuously to d � 0, � and k � �). This method of
compactifying has the crucial advantage that the signs of h on the
degenerate surfaces (k, 0) and (k, �) are evident and opposite,
and so the intermediate-value theorem provides for a solution
(k0, d) � C for each choice of k0 � (1, �). More precisely, there
must be a curve C on which h � 0 because this curve separates
the neighborhoods of the boundary components {d � 0} and
{d � �} on which h has opposite signs. Finally, a maximum-
principle argument then shows that the embeddedness of H1
implies that all of the Hk, k � 1, on this curve C are embedded.

For k � �, the (k, d)-structures are defined by sewing in a cone
with an infinite cone angle (see below.) Thus, any structure (�,
d) corresponds to a potential He1, which will exist provided h(�,
d) � 0; the endpoint of C on the locus {k � �} is then such a
point. Thus, we obtain a limit f lat structure that defines an He1,
and we argue that, as a limit of a family {Hk} of embedded
surfaces, the surface He1 is also embedded.

Existence and Uniqueness of Cone Metrics
with Infinite Cone Angles
The approximating minimal surfaces Hk��k each have mero-
morphic Weierstrass data, whereas the limit surface He1 has
Weierstrass data with an essential singularity at its end. This
phenomenon of meromorphic data limiting on transcendental
data corresponds on the level of the developed flat structures to
taking limits of cone metrics whose cone angles grow without
bound: the limit cone metric has a cone point with infinite cone
angle. To accommodate the taking of limits of metrics with cone
points of arbitrarily large cone angles, we introduce the defini-
tion of a cone point of simple exponential type and the idea of
asymptotic isometry. In particular, an exponential cone of simple
type is a cone isometric to the disk D with the metric

�e1/w
dw
w2�

(the origin is the cone point), and two such cones with repre-
sentations

�e1/w
dw
w2� and � e1/z

dz
z2 �

are asymptotically isometric provided dw
dz

(0) � 1.
We show that cone metrics are essentially determined by their

cone points, with a natural Gauss–Bonnet-type restriction being
the only obstruction to existence. These results extend the work
of Troyanov (18) on cone metrics with positive and finite cone
angles to the cases where the cone angles may be negative, zero,
positive, or of simple exponential type.
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Fig. 3. The dh structure. The vertical period condition is satisfied when V1

and V2 lie in a single vertical line. The images in Right and Center depict the
dh structure for k fixed, but d near zero (Center) and d very large (Right).
Notice that in Center, V1 lies to left of V2, while in Right, V1 lies to the right of
V2. The argument that for each fixed k there exists a d � d(k) satisfying the
vertical period condition is by the intermediate-value theorem, because as d
increases, the point V1 must pass from being on the left of V2 to being on the
right of V2.
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