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Abstract. We find bounds for Weil-Petersson holomorphic sectional
curvature, and the Weil-Petersson curvature operator in several regimes,
that do not depend on the topology of the underlying surface. Among
other results, we show that the minimal (most negative) eigenvalue of
the curvature operator at any point in the Teichmüller space Teich(Sg)
of a closed surface Sg of genus g is uniformly bounded away from zero.
Restricting to a thick part of Teich(Sg), we show that the minimal eigen-
value is uniformly bounded below by an explicit constant which does not
depend on the topology of the surface but only on the given bound on
injectivity radius. We also show that the minimal Weil-Petersson holo-
morphic sectional curvature of a sufficiently thick hyperbolic surface is
comparable to −1.

1. Introduction

Let Sg be a closed surface of genus g where g > 1, and Teich(Sg) be the
Teichmüller space of Sg. Endowed with the Weil-Petersson metric, the Te-
ichmüller space Teich(Sg) is Kähler ([1]), incomplete ([7, 33]), geodesically
complete ([35]) and negatively curved ([30, 34]). Tromba [30] and Wolpert
[34] found a formula for the Weil-Petersson curvature tensor, which has been
applied to study a variety of curvature properties of Teich(Sg) over the past
several decades. (See also [13, 16, 28] for alternative proofs of the curva-
ture formula.) In their papers, they deduced from their formula that the
holomorphic sectional curvatures are bounded above by a negative number
which only depends on the genus of the surface, confirming a conjecture of
Royden.

We focus in this paper on bounds for Weil-Petersson curvatures that are
uniform across Teichmüller spaces, in the sense that the bounds do not
depend on the genus g of the surface Sg.

Naturally, there are a number of appealing notions of curvature of a Rie-
mannian manifold. In particular, while we focus on the holomorphic sec-
tional curvatures in the second part of the paper, in the first part of this
paper we study the Weil-Petersson curvature operator

Q̃ : ∧2TX Teich(Sg)→ ∧2TX Teich(Sg),

1991 Mathematics Subject Classification. 30F60, 53C21, 32G15.
Key words and phrases. Teichmüller space, Weil-Petersson metric, Curvature operator,

Holomorphic sectional curvature.

1



2 MICHAEL WOLF & YUNHUI WU

an endomorphism of the (3g−3)(6g−7)-dimensional exterior wedge product
space ∧2TX Teich(Sg) of the tangent space TX Teich(Sg) at X ∈ Teich(Sg).
Of course, one popular (and important) way to interpret the “curvature” of
a manifold is through its sectional curvatures: while these arise as diagonal

elements of the curvature operator Q̃, our interest in the first part of the

paper is on the full operator Q̃, at least in terms of estimating its spectrum.
In [40], by applying the Tromba-Wolpert Weil-Petersson curvature for-

mula, one of us characterized the zero level set of the curvature operator Q̃
and showed that the Riemannian curvature operator of the Weil-Petersson

metric is non-positive definite; in particular, some of the eigenvalues of Q̃ are
zero and some are negative. In the first part of this paper, we develop some
results for the negative eigenvalues, especially as the genus of the surfaces
represented in the moduli space becomes arbitrarily large. We survey these
in the next four subsections.

In the second part of the paper – described in more detail in the fifth
subsection of this introduction – we turn our attention to holomorphic sec-
tional curvatures. We find, for hyperbolic surfaces Xg of genus g of suffi-
ciently large injectivity radius, that we may exhibit holomorphic sections
whose curvatures are uniformly bounded away from zero; here the bound
does not depend on the genus of the surface but only on the lower bound
we have chosen for the injectivity radius.

1.1. Uniform lower bounds on the norm of the curvature operator.
There are recent suggestions that as the genus g of Sg grows large, some
regions in the Teichmüller space Teich(Sg) should become increasingly flat.
We show that, from the point of view of the full curvature operator, this is
not true: on any sequence of surfaces with genus tending to infinity, at least

one of the eigenvalues of Q̃ does not tend to zero. In particular, let λmin(X)

denote the minimal, i.e. the most negative, eigenvalue of Q̃ at X. Our first
result is

Theorem 1.1. For any X ∈ Teich(Sg) and let Sca(X) be the scalar curva-
ture at X, then

λmin(X) 6
−1

2π
< 0.

More precisely,

λmin(X) 6
2Sca(X)

9(g − 1)
.

Because this eigenvalue is the maximum of values of Q̃ applied to (unit)

elements of ∧2TX Teich(Sg), it is enough to estimate Q̃ on a carefully chosen
element of ∧2TX Teich(Sg) which yields the bound.

1.2. Uniform upper bounds on the norm of the curvature operator
on the thick locus. It is clear that λmin(X) is less than or equal to the
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sectional curvatures at X along arbitrary planes. However, it is well-known
that the sectional curvatures of Teich(Sg) along certain planes could be
arbitrarily negative. One specific example is the direction along which a
nontrivial simple closed curve of S is pinching to zero. Then that sectional
curvature, along the holomorphic plane defined by the pinching direction,
tends to negative infinity as the curve goes to zero. More precisely, we let α
be a nontrivial simple closed curve on S and lα(X) be the length of the closed

geodesic in X representing α. Consider the gradient λα := grad(l
1
2
α ) whose

magnitude approaches 1√
4π

as lα goes to zero. Wolpert in [39] proved that

the sectional curvatures along holomorphic planes spanned by λα behave as
−3
πlα

+O(lα), which goes to negative infinity as α pinches to zero. This refined

an earlier estimation of Huang [9]. For more details, one can see Corollary
16 in [39]. Thus, in general we do not have any uniform lower bounds for
λmin(X) over Teich(Sg).

On the other hand, the Mumford compactness theorem [20] implies that
the thick part of the moduli space is compact. Since the mapping class group

acts on Teich(Sg) by isometries, the Weil-Petersson curvature operator Q̃,
restricted to the thick part of Teich(Sg), is bounded. In particular the
minimal eigenvalue λmin(X) has a lower bound when X runs over the thick
part of Teich(Sg). Our next result implies that the lower bound may be
taken to be uniform, independent of the topology of the surface.

Theorem 1.2. Given an ε > 0, let Teich(Sg)
>ε be the ε-thick part of

Teich(Sg). Then, there exists a constant B(ε) > 0, depending only on ε,
such that

λmin(X) > −B(ε), ∀X ∈ Teich(Sg)
>ε.

The argument will present an explicit constant B(ε) whose asymptotics
as ε → 0,∞ we will exploit in later sections of the paper. In addition, a
direct corollary is that the sectional curvature of the Weil-Petersson metric,
restricted on the thick part of the moduli space, is uniformly bounded from
below, a result due originally to Huang [10].

1.3. Uniform pinched bounds on the norm of the curvature oper-
ator on sequences of increasingly thick surfaces. The subject of the
asymptotic geometry of Mg, the moduli space of Sg, as g tends to infinity, has
recently become quite active: see for example Mirzakhani [21, 22, 23, 24] and
Cavendish-Parlier [6] (results obtained by refining Brock’s [5] quasi-isometry
of Teich(Sg) to the pants graph). In terms of curvature bounds, by com-
bining the results in Wolpert [34] and Teo [29], we may see that, restricted
on the thick part of the moduli space, the scalar curvature is comparable
to −g as g goes to infinity. In the sixth section of this paper, we study

the asymptotic behaviors of certain eigenvalues of Q̃ as the genus goes to
infinity.
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We recall for context that Buser and Sarnak [4] proved that there exists a
family of closed hyperbolic surfaces Xk of genus gk with gk →∞ as k →∞
and inj(Xk) >

2 ln gk
3 . Now, we noted above that the constant B(ε) in Theo-

rem 1.2 may be explicitly stated. By examining the asymptotic property of
that constant B(ε) as ε → ∞, we prove that the minimal eigenvalue of the
Weil-Petersson curvature operator on a surface of large injectivity radius is
pinched by two explicit negative numbers. More precisely,

Theorem 1.3. Let {Xg} be a sequence of hyperbolic surfaces whose injec-
tivity radii satisfy limg→∞ inj(Xg) =∞. Then, for g large enough,

−25

π
6 λmin(Xg) 6

−1

2π
.

1.4. Bounds for small negative eigenvalues in the thick part of Mg

for large genus g. Thus far, we have focused exclusively on the minimal
eigenvalue λmin(Xg). In the latter portion of this part of the paper, we study
some other eigenvalues of the Weil-Petersson curvature operator and their
dependence on the genus g. In section 3, we restate Theorem 1.1 in [40]
in terms of the eigenvalues of the Weil-Petersson curvature operator. More
precisely,

Theorem 1.4. For any X ∈ Teich(Sg), the Weil-Petersson curvature op-

erator Q̃ at X has exactly (3g − 3)2 negative eigenvalues.

Thus, for any X ∈ Teich(Sg), one may list the set of all non-zero eigen-
values of the Weil-Petersson curvature operator at X as follows

λ(3g−3)2(X) 6 λ(3g−3)2−1(X) 6 · · ·λ2(X) 6 λ1(X) < 0.

The minimal eigenvalue λmin(X) = λ(3g−3)2(X) basically measures the norm

of the curvature operator Q̃ at X.
Fixing i ∈ {1, 2, · · · , (3g− 3)2}, the i-th eigenvalue λi(X) is a continuous

function on Teich(Sg) since the Weil-Petersson metric is smooth. Thus, the
Mumford compactness theorem implies that the function λi(X) achieves its
minima and maxima in the thick part Teich(Sg)

>ε for fixed ε > 0; we denote

those minima and maxima by λεi(g) and λ
ε
i(g) respectively. In this nota-

tion, focusing our attention now on the index i, Theorem 1.1 and Theorem
1.2 state that both λε(3g−3)2(g) and λ

ε
(3g−3)2(g) are pinched by two negative

numbers which are independent of the genus of the surface. In section 6
we show that, if that index i is not close to (3g − 3)2, then both λεi(g) and

λ
ε
i(g) could be arbitrarily close to zero, once we take g large enough. More

precisely,

Theorem 1.5. If the function f satisfies lim supg→∞
f(g)
9g2

= α < 1. Then,

for g sufficiently large, we have

−B(α, ε)

g
6 λεf(g)(g) 6 λ

ε
f(g)(g) < 0
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where B(α, ε) is a constant only depending on α and ε. In particular,

lim
g→∞

λεi(g) = λ
ε
i(g) = 0, for all 1 6 i 6 8g2.

A direct consequence is

Corollary 1.6. Fix ε0 > 0, then for any ε > 0, the probability

Prob{1 6 i 6 (3g − 3)2; |λε0i (g)| < ε} → 1 as g →∞.
Proof. Let p(g) := Prob{1 6 i 6 (3g − 3)2; |λε0i (g)| < ε}. Theorem 1.5
then says that, for any 0 6 α < 1,

α 6 lim inf
g→∞

p(g) 6 lim sup
g→∞

p(g) 6 1.

Since α is arbitrary in [0, 1), limg→∞ p(g) = 1. �

Mirzakhani (Theorem 4.2 in [24]) proved that for a small enough number
ε0 > 0, the volume of the ε0-thin part of the moduli space Mg is comparable
to ε20V ol(Mg) as g → ∞. Corollary 1.6 suggests that the moduli space Mg

tends to be flat as g goes to infinity in a probabilistic sense.

1.5. Existence of holomorphic lines on sufficiently thick surfaces
with uniformly pinched Weil-Petersson holomorphic sectional cur-
vatures. In [30, 34] it was shown that the sectional curvature of the Weil-
Petersson metric for Teich(Sg) is negative and the holomorphic sectional
curvature is bounded above by a negative number comparable to −1

g . The

dependence of this bound on g begs the question as to whether there are
bounds on the sectional curvature that are independent of the topology of
the surface, even if one allows an additional restriction to a thick part of
moduli space. However, Teo in [29] showed that, restricted to any thick part
of the moduli space, the Ricci curvature is uniformly bounded from below.
As the Ricci curvature is a trace over 6g − 7 curvatures, we then see that
some sectional curvatures go to zero along any sequence of surfaces Xg in
the thick part of Teich(Sg) as g → ∞. This aslo suggests the question1

whether,

Question 1. Restricted to any thick parts of the moduli spaces, do all of
the sectional curvatures tend to zero as the genus goes to infinity?

The goal of the second part of this paper is to show, for the portion of
the Teichmüller space composed of surfaces which are “sufficiently thick” – a
term we will define precisely in Definition 2.14 – the existence of holomorphic
lines whose holomorphic sectional curvatures are uniformly bounded away
from zero. This gives a negative answer to the question above.

In notational preparation for the more precise version of the result, we re-
call that a holomorphic section of the (complexified) tangent space TX Teich(Sg)

1We are told by Zheng Huang that Question 1 is originally raised by Maryam Mirza-
khani. We would like to thank both of them here.
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ofX ∈ Teich(Sg) in the Teichmüller space Teich(Sg) is defined by a harmonic
Beltrami differential µ.

Theorem 1.7. There is a constant ι0 so that if X ∈ Teich(Sg) is suffi-
ciently thick, i.e. inj(X) > ι0, then there exists a µX in the tangent space
TX Teich(Sg) so that the Weil-Petersson holomorphic sectional curvature
K(µX) along µX satisfies

K(µX) 6
−81C0

6400 · π2
< 0

where C0 = 2
3C(1)2·V olD(B(0;1))

.

The expressions C(1) refers to an explicit function C(inj(X)) of the in-
jectivity radius inj(X) which we shall display in Definition 2.8. In addition,
there is also a uniform lower bound for K(µX) which is due to Huang in [10]
(see also Theorem 1.2).

An almost immediate corollary of our method of proof refers to a sequence
of surfaces Xg of growing genus whose injectivity radii inj(Xg) → ∞ as
g →∞.

Corollary 1.8. Let {Xg} be a sequence of hyperbolic surfaces whose in-
jectivity radii satisfy limg→∞ inj(Xg) = ∞. Then, there exists a uniform
constant E > 0 such that for g large enough, the Weil-Petersson holomor-
phic sectional curvatures satisfy

− 2

π
6 min

σg⊂TXg Teich(Sg)
K(σg) 6 −E < 0

where the minimum runs over all the holomorphic lines in TXg Teich(Sg).

[We note that the above Theorem 1.7 also proves that the minimal (most
negative) eigenvalue of the Weil-Petersson curvature operator, restricted on
sufficiently thick hyperbolic surface, is uniformly bounded away from zero.
In that sense, this result then makes contact with, and is certainly consistent
with, Theorem 1.1, but the two results are distinct, since our example here is
restricted to hold on this special ‘sufficiently thick’ region (and, furthermore,
the asserted constants are different).]

1.6. A remark on choice of normalizations. Some of the uniformity
of the bounds that are independent of genus of course results from the
conventions of fixing the uniformized metrics on the Riemann surfaces to
all have curvature identically −1 (instead of, say, curvature identically −g),
forcing the areas of the surfaces to grow linearly with g in area. Other
conventions on representatives of the moduli space would translate into other
bounds, but the ones we choose are the ones that seem most prevalent in
the present literature.
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1.7. Discussion of the methods. The methods for the two parts of the
paper are distinct. In the first part, we begin with the formula of the Weil-

Petersson curvature operator Q̃ in [40]: see equation (3.4). That formula ex-

hibits< Q̃(A), A > as a sum of terms involving the operator−2(∆−2)−1 and
algebraic expressions in a holomorphic orthonormal basis of TX Teich(Sg).
By applying some fundamental properties of the operator −2(∆− 2)−1, we

give lower and upper bounds for < Q̃(A), A > in terms of, for our appli-
cations, quantities that only involve pointwise values of the holomorphic
basis. Here we briefly outline our proofs of Theorem 1.1, Theorem 1.2 and
Theorem 1.7.

For the proof of Theorem 1.1: By applying our upper bound for the cur-
vature operator formula to the most symmetric element A ∈ ∧2TX Teich(Sg)

we show that (up to a positive constant) < Q̃(A), A > is bounded above by
the scalar curvature of the Weil-Petersson metric at X, scaled by a factor
of 1

g . Then we apply Wolpert’s upper bound of the scalar curvature which

involves a factor of g to finish the proof.
For the proof of Theorem 1.2: Choose an arbitrary element B of unit

length in ∧2TX Teich(Sg). Our lower bound of < Q̃(B), B > involves only
terms that are products of our holomorphic basis, weighted by the coeffi-
cients of the element B in that basis. Well-known bounds on terms like these
then yield a bound in terms of those coefficients and an explicit function of
the injectivity radius. The condition that B is of unit norm then yields an
expression that is independent of genus.

For the proof of Theorem 1.7: We choose a holomorphic line that corre-
sponds to the image of a constant function on the disk under the Θ-operator
to the hyperbolic surface Xg, here thought of as the quotient of H2 under
the action of a Fuchsian group Γg. The resulting Poincaré series has a term
corresponding to the identity element of Γg and a series of other ‘error’
terms. We adapt a method of Ahlfors [2] to show that outside a large ball,
the contribution of the error terms is bounded by a subharmonic function.
Taking the ball large enough, we can show that the contribution of the er-
ror terms, now estimated by its value on the boundary of the large ball –
in its role as the boundary of the region of subharmonicity – can be made
arbitrarily small. Thus only the term corresponding to the identity element
of Γg cannot be made arbitrarily small, and estimates of that term yield the
desired bound.

1.8. Plan of the paper. Section 2 provides some necessary background
and the basic properties of the Weil-Petersson geometry of Teichmüller space
that we will need. After that preparatory section, the paper splits into two
parts, each of which may be read independently of the other. The first
part treats our results on the Weil-Petersson curvature operator, while the
second part discusses the curvature of some holomorphic sections of the
tangent bundle over very thick parts of Teichmüller space.
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Part I begins with section 3 in which we estimate the formula of the Weil-
Petersson curvature operator and restate the non-positivity of the Weil-
Petersson curvature operator in terms of eigenvalues. Section 4 provides
the upper bound Theorem 1.1 for the minimal eigenvalue. In section 5 we
establish Theorem 1.2, the lower bound for the minimal eigenvalue in the
thick part. We prove Theorem 1.3 and Theorem 1.5 in section 6.

Part II spans two sections. We begin in section 7 with some estimates on
harmonic Beltrami differentials, and then apply those estimates in section 8
to prove Theorem 1.7 and Corollary 1.8.

Acknowledgement. The authors would like to thank Maryam Mirzakhani,
Hugo Parlier and Kasra Rafi for useful conversations. They also would like
to thank Scott Wolpert for useful conversations and suggestions on part (2)
of this article. They deeply thank Zheng (Zeno) Huang for bringing Question
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ematical Sciences Center of Tsinghua university. Both authors acknowl-
edge support from U.S. National Science Foundation grants DMS 1107452,
1107263, 1107367 “RNMS: Geometric structures And Representation vari-
eties”(the GEAR Network).

2. Notations and Preliminaries

2.1. Notation and Background on Weil-Petersson curvatures. In
this section, we set our notations and quickly review the relevant back-
ground material on the Weil-Petersson metric and curvatures. We have two
principal goals. For use in Part I, we prove Proposition 2.5, which shows
that the scalar curvatures are comparable to the L2 norms of a pointwise
Bergman sum of harmonic Beltrami differentials. For use in Part II, we
prove Proposition 2.11, which shows that the holomorphic sectional curva-
ture along a harmonic Beltrami differential µ is estimated in terms of powers
of its normalized L∞ norm.

To begin, recall that we denoted by Sg a closed oriented surface of genus
g > 2. We may equip Sg with a hyperbolic metric σ(z)|dz|2, here written
in a local conformal coordinate z induced by the metric. Again, Teich(Sg)
is the Teichmüller space of surfaces of genus g, which we may construe as
equivalence classes under the action of the group Diff0 of diffeomorphisms
isotopic to the identity of the space of hyperbolic surfaces X = (Sg, σ|dz|2).
The tangent space TX Teich(Sg) at a point X = (Sg, σ|dz|2) is identified
with the space of harmonic Beltrami differentials on X, i.e. forms on X

expressible as µ = ψ
σ where ψ ∈ H0(X,K2) is a holomorphic quadratic

differential on X. Let z = x + iy and dA = σ(z)dxdy be the volume form.
The Weil-Petersson metric is the Hermitian metric on Teich(Sg) arising
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from the the Petersson scalar product

< ϕ,ψ >=

∫
S

ϕ · ψ
σ2

dA

via duality. We will concern ourselves primarily with its Riemannian part
gWP . Throughout this paper we denote the Teichmüller space endowed with
the Weil-Petersson metric by Teich(Sg).

Set D = −2(∆ − 2)−1 where ∆ is the Beltrami-Laplace operator on
X = (S, σ|dz|2). The operator D is positive and self-adjoint. The following
inequality follows from the maximum principle; see Lemma 5.1 in [32] for
details.

Lemma 2.1 ([32]). For any harmonic Beltrami differential µ on X, we have

D(|µ|2) >
|µ|2

3
.

The following property is well-known to experts – see for example Lemma 4.3
in [16]. For completeness, we include the proof.

Lemma 2.2. Let D be the operator above. Then, for any complex-valued
function f ∈ C∞(X),

0 6
∫
X

(D(f)f)dA 6
∫
X
|f |2dA.

Proof. Let g = D(f), so that f = −1
2 (∆ − 2)g. The left inequality follows

directly by integrating by parts.
For the right inequality, begin by assuming that f is real-valued. In that

case decompose f =
∑∞

i=0 φi as a linear combination of eigenfunctions of the
Laplacian: here φi satisfies

∫
X(φiφj)dA = 0 for all i 6= j and ∆φi = µiφi,

where µi < 0 is the i-th eigenvalue of the Beltrami-Laplace operator ∆.
Since

∫
X(φiφj)dA = 0 for all i 6= j, we have∫

X
(D(f)f)dA =

∫
X

(
∞∑
i=0

2φi
2− µi

)(
∞∑
i=0

φi)dA

=

∫
X

∞∑
i=0

2

2− µi
|φi|2dA

6
∫
X

∞∑
i=0

|φi|2dA

=

∫
X
f2dA.

If f is complex-valued, one applies the same method to the real and imagi-
nary parts of f separately, along with a standard use of the self-adjointness
of D. �
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We conclude this discussion of the operator D = −2(∆−2)−1 by recording
some elementary properties of its Green’s function.

Proposition 2.3. Let D be the operator D = −2(∆ − 2)−1. Then there
exists a Green function G(w, z) for D satisfying:
(1). D(f)(z) =

∫
w∈X G(z, w)f(w)dA(w) for any f ∈ C∞((X,σ|dz|2),C).

(2). G(w, z) is positive.
(3). G(w, z) is symmetric, i.e, G(w, z) = G(z, w).

Proof. See for example [26] and [34]. �

2.2. The Riemannian tensor of the Weil-Petersson metric. The cur-
vature tensor of the Weil-Petersson metric is given as follows. As described
in the opening paragraph of section 2.1, let µi, µj be two elements in the
tangent space TX Teich(Sg) at X, so that the metric tensor might be written
in local coordinates as

gij =

∫
X
µi · µjdA.

For the inverse of (gij), we use the convention

gijgkj = δik.

Then the curvature tensor is given by

Rijkl =
∂2

∂tk∂tl
gij − g

st ∂

∂tk
git

∂

∂tl
gsj .

The following curvature formula was established in [30, 34]. One can
also see [13] for a derivation from a third perspective. It has been applied
to study various curvature properties of the Weil-Petersson metric. In [27]
Schumacher showed that Teich(Sg) has strongly negative curvature in the
sense of Siu. Huang in his thesis [9] showed that the sectional curvatures of
Teich(Sg) can not be bounded away from zero. Liu-Sun-Yau in [15] showed
that Teich(Sg) has dual Nakano negative curvature, which says that the
complex curvature operator on the dual tangent bundle is positive in some
sense. Motivated by the method in [15], the second author in [40] showed
that the Teich(Sg) has negative semi-definite Riemannian curvature opera-
tor. One can also see [16, 17, 18, 29, 37, 39] for other aspects of the curvature
of Teich(Sg).

Theorem 2.4 (Tromba, Wolpert). The curvature tensor satisfies

Rijkl =

∫
X
D(µiµj) · (µkµl)dA+

∫
X
D(µiµl) · (µkµj)dA.
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2.2.1. Weil-Petersson Scalar Curvature. Let {µi}3g−3
i=1 be a holomorphic or-

thonormal basis representing the tangent space TX Teich(Sg) at X. Then
the Ricci curvature of Teich(Sg) at X in the direction µi is given by

Ric(µi) = −
3g−3∑
j=1

Rijji

= −
3g−3∑
j=1

(

∫
X
D(µiµj) · (µjµi)dA+

∫
X
D(|µi|2) · (|µj |2)dA).

Since the scalar curvature Sca(X) at X is the trace of the Ricci tensor,
we find we may express the scalar curvature as

(2.1) Sca(X) = −
3g−3∑
i=1

3g−3∑
j=1

(

∫
X
D(µiµj)·(µjµi)dA+

∫
X
D(|µi|2)·(|µj |2)dA).

From this expression for the scalar curvature, we may apply our estimates
for the operator D in section 2.1 to obtain estimates for the scalar curvature
from above and below in terms of pointwise-defined quantities.

Proposition 2.5. For any X ∈ Teich(Sg), the scalar curvature Sca(X) at
X satisfies

−2

∫
X

(

3g−3∑
i=1

|µi|2)2dA 6 Sca(X) 6 −1

3

∫
X

(

3g−3∑
i=1

|µi|2)2dA

where {µi}3g−3
i=1 is any holomorphic orthonormal basis of the tangent space

at X.

Proof. We begin with the right-hand-side inequality. By Lemma 2.1, the
first term in the expression (2.1) has a sign, so that we can then apply
Lemma 2.2 to find

−Sca(X) =

3g−3∑
i=1

3g−3∑
j=1

(

∫
X
D(µiµj) · (µjµi)dA+

∫
X
D(|µi|2) · (|µj |2)dA)

>
3g−3∑
i=1

3g−3∑
j=1

∫
X
D(|µi|2) · (|µj |2)dA

>
1

3

∫
X

(

3g−3∑
i=1

|µi|2)2dA.

For the left hand side inequality, we use the right side of the estimate in
Lemma 2.2 twice, with the preliminary step of bringing the sum into the
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integrands. We compute

−Sca(X) =

3g−3∑
i=1

3g−3∑
j=1

(

∫
X
D(µiµj) · (µjµi)dA+

∫
X
D(|µi|2) · (|µj |2)dA)

=

3g−3∑
i=1

3g−3∑
j=1

∫
X
D(µiµj) · (µjµi)dA+

∫
X

3g−3∑
i=1

3g−3∑
j=1

D(|µi|2) · (|µj |2)dA

6
3g−3∑
i=1

3g−3∑
j=1

∫
X

(µiµj) · (µjµi)dA+

∫
X
D(

3g−3∑
i=1

|µi|2) · (
3g−3∑
j=1

|µj |2)dA

=

3g−3∑
i=1

3g−3∑
j=1

∫
X
|µi|2|µj |2dA+

∫
X
D(

3g−3∑
i=1

|µi|2) · (
3g−3∑
i=1

|µi|2)dA

6 2

∫
X

(

3g−3∑
i=1

|µi|2)2dA.

�

Remark 2.6. The Cauchy-Schwarz inequality applied to the right hand side
estimate in Proposition 2.5 leads to a numerical lower bound for −Sca(X)
in the following way:

−Sca(X) >

∫
X (

∑3g−3
i=1 |µi|2)2dA

3

>
(
∫
X (

∑3g−3
i=1 |µi|2)dA)2

3Area(S)
=

3(g − 1)

4π
.

Now, without using Lemma 2.1, Wolpert in [34] proved a better lower bound

as −Sca(X) > 3(3g−2)
4π by expanding

∑3g−3
i=1 |µi|2 (and D(

∑3g−3
i=1 |µi|2)) in

the definition (2.1) in terms of eigenfunctions of ∆ at X. On the other
hand, our goal in Proposition 2.5 is to estimate −Sca(X) is estimated by

the integral
∫
X (

∑3g−3
i=1 |µi|2)2dA, an expression we will apply later, so we

content ourselves with the bound above.

2.2.2. Weil-Petersson holomorphic sectional curvatures. Recall the holomor-
phic sectional curvature is a sectional curvature along a holomorphic line.
Let µ ∈ TX Teich(Sg). Then Theorem 2.4 tells that the holomorphic sec-
tional curvature K(µ) along the holomorphic line spanned by µ is

K(µ) =
−2 ·

∫
X D(|µ|2) · (|µ|2)dA

||µ||4WP

.

From Lemma 2.1, Lemma 2.2 and the equation above we have
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Proposition 2.7. For any µ ∈ TX Teich(Sg), the holomorphic sectional
curvature K(µ) satisfies

−
2 ·

∫
X |µ|

4dA

||µ||4WP

6 K(µ) 6 −
2 ·

∫
X |µ|

4dA

3||µ||4WP

.

We will refer several times to the a constant C(inj) depending on the
injectivity radius, which we pause now to define.

Definition 2.8. Set C(inj(X)) = (4π
3 (1− ( 4einj(X)

(1+einj(X))2
)3))−1.

Remark 2.9. We note here that as the injectivity radius inj(X) tends to
zero, the constant C(inj(X)) = 1

π inj(X)2
+ o( 1

inj(X)2
). And C(inj(X)) tends

to 3
4π as inj(X) goes to infinity.

Next we recall the following proposition which is implicitly proved in
[10, 29, 39]. For the sake of keeping the exposition self-contained, we give
the outline of the proof which follows the identical argument as that of
Proposition 3.1 in [29].

Proposition 2.10. Let (X,σ|dz|2) be a closed hyperbolic surface and µ ∈
TX Teich(Sg) be a harmonic Beltrami differential of X. Then, for any q ∈ X
we have

|µ(q)|2 6 C(r)

∫
B(q;r)

|µ(z)|2dA(z) ∀ 0 < r 6 inj(q).

Where inj(q) is the injectivity radius of q in X and the explicit constant C(r)
is given in Definition 2.8.

Proof. Let µ ∈ TX Teich(Sg); we denote its lift into the hyperbolic disk by
ν. For any point q ∈ X, we may conjugate the lift by a linear fractional
transformation so that

ν(0) = µ(q).

For any r ∈ (0, inj(q)], elementary hyperbolic geometry gives that the hy-
perbolic disk of radius r centered at 0 is

B(0; r) = {z ∈ D; |z| 6 er − 1

er + 1
}.

Since ν is a harmonic Beltrami differential on the disk, there exists a holo-
morphic function f such that

ν(z) =
f(z)

4
(1−|z|2)2

=
f(z)(1− |z|2)2

4
.

Of course, since f is holomorphic, we may expand it as

f(z) =

∞∑
n=0

anz
n
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where an are complex numbers. In particular we have

|µ(q)| = |ν(0)| = |a0|
4
.

Therefore, for any r ∈ (0, inj(q)], we have∫
B(q;r)

|µ(z)|2dA(z) =

∫
B(0;r)

|ν(z)|2dA(z)

=

∫
B(0;r)

|f(z)|2 (1− |z|2)2

4
|dz|2

=

∫ er−1
er+1

0

∫ 2π

0
|
∞∑
n=0

anu
neinθ|2 (1− u2)2

4
ududθ

=
π

2

∫ er−1
er+1

0

∞∑
n=0

|an|2u2n(1− u2)2udu

>
π

2
|a0|2

∫ er−1
er+1

0
(1− u2)2udu

=
4π

3
(1− (

4er

(1 + er)2
)3)|µ(q)|2.

The conclusion follows by dividing the constant on both sides. �

We combine these last two propositions to obtain the following proposition
which is crucial in the proof of Theorem 1.7 (which produces a holomorphic
section whose curvature is pinched): this proposition traps the holomorphic
sectional curvature between powers of L∞ bounds on (normalized) holomor-
phic Beltrami differentials.

Proposition 2.11. Let X ∈ Teich(Sg) with inj(X) > 1. Then for any
µ ∈ TX Teich(Sg), there exists a constant C0 > 0, independent of the genus,
such that the holomorphic sectional curvature K(µ) satisfies

−2 · supz∈X |µ(z)|2

||µ||2WP

6 K(µ) 6 −C0 · supz∈X |µ(z)|4

||µ||4WP

.

Proof. We begin with the left hand side. By Proposition 2.7 we have

−K(µ) 6
2 · supz∈X |µ(z)|2 ·

∫
X |µ|

2dA

||µ||4WP

=
2 · supz∈X |µ(z)|2

||µ||2WP

.

For the right hand side, since X is compact, we let p ∈ X such that
|µ(p)| = supz∈X |µ(z)|. Let B(p; 1) be the closed ball of hyperbolic radius 1
centered at p. Use the Cauchy-Schwarz inequality to obtain∫

X
|µ|4dA >

∫
B(p;1)

(|µ|4)dA >
(
∫
B(p;1) |µ|

2dA)2

V ol(B(p; 1))
.
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Applying Proposition 2.10 to the last term, we find∫
X
|µ|4dA > |µ(p)|4

C(1)2 · V ol(B(p; 1))
=

supz∈X |µ(z)|4

C(1)2 · V ol(B(p; 1))
.

Finally, by choosing C0 = 2
3C(1)2·V ol(B(p;1))

(where C(1) is the explicit

constant from Definition 2.8), the conclusion follows from Proposition 2.7.
�

Remark 2.12. Combining Proposition 2.10 and Proposition 2.11, one may
conclude that the holomorphic sectional curvatures of the ε0-thick part of
the moduli space are uniformly bounded below by a constant only depending
on ε0, which was proved in [10].

Remark 2.13. If one would like to search for harmonic Beltrami differen-
tials with uniformly negative holomorphic sectional curvatures as the genus
goes to infinity, Proposition 2.11 tells that it suffices to find such differen-
tials with Weil-Petersson L2 norms bounded above and Weil-Petersson L∞

norms bounded below. We develop this theme in the second part of this
paper.

2.3. Sufficiently thick surfaces. Often in Teichmüller theory, one studies
problems in the setting where some curve α on the surface S has hyperbolic
X-length `X(α) small, say `X(α) 6 ε0. Alternatively, also often studies
issues where the surface has injectivity radius inj(X) bounded away from
zero, say inj(X) > ε1. In this paper, a number of our results are in the
region where the hyperbolic surface X has a large injectivity radius, where
’large’ here means large enough for some a priori bounds to apply.

Definition 2.14. For a given large constant C > 0, a surface X is C-
sufficiently thick or sufficiently thick (if the constant C is clear from the
context) if inj(X) ≥ C.

We remark that there often is a non-empty subspace M≥C of sufficiently
thick surfaces of the moduli space M. It is well-known that there exist se-
quences of hyperbolic surfaces whose injectivity radii grow without bounds.
For example, the fundamental group of a closed hyperbolic surface X is
residually finite (one can see [8] for details). After taking finite normal cov-
ers to remove simple closed curves of bounded lengths in X, we can find a
sequence of hyperbolic surfaces Xgk with injectivity radii inj(Xgk) → ∞ as
gk →∞. Moreover, Buser and Sarnak [4] proved that there exists a family of

closed surfaces Xk of genus gk with gk →∞ as k →∞ and inj(Xk) >
2 ln gk

3 .

Part 1. Bounds on the Weil-Petersson curvature operator

3. The Weil-Petersson curvature operator at X and its
eigenvalues

In this section, we begin our study of the Weil-Petersson curvature op-

erator Q̃, establishing some preliminary upper and lower bounds for <
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Q̃(A), A > in Proposition 3.6. Those estimates rely on a formula for <

Q̃(A), A > displayed in Proposition 3.5 which is particularly well-adapted
for estimations. The first subsection provides notation and context.

Before we study the curvature operator on Teich(Sg), we set some no-
tation. Let U ⊂ Teich(Sg) be a neighborhood of X in Teichmüller space,
and let (t1, t2, · · · , t3g−3) be a system of local holomorphic coordinates on
U such that {ti(X) = µi}16i63g−3 is holomorphic orthonormal at X with
ti = xi+ iyi (1 6 i 6 3g−3). Then (x1, x2, · · · , x3g−3, y1, y2, · · · , y3g−3) are
real smooth coordinates in U which relate to the complex coordinates as

∂

∂xi
=

∂

∂ti
+

∂

∂ti
,

∂

∂yi
= i(

∂

∂ti
− ∂

∂ti
).

Let T Teich(Sg) be the real tangent bundle of Teich(Sg) and ∧2T Teich(Sg)
be the exterior wedge product of T Teich(Sg) with itself. For any X ∈ U ,
we have

TX Teich(Sg) = Span{ ∂
∂xi

(X),
∂

∂yj
(X)}16i,j63g−3.

and

∧2T Teich(Sg) = Span{ ∂
∂xi
∧ ∂

∂xj
,
∂

∂xk
∧ ∂

∂yl
,
∂

∂ym
∧ ∂

∂yn
}.

The space ∧2T Teich(Sg) has (real) dimension (3g− 3)(6g− 7). Let <,>
refer to the pairing of vectors with respect to the Weil-Petersson metric. The
natural inner product on ∧2T Teich(Sg), associated to the Weil-Petersson
metric, is given by

(3.1) < V1∧V2, V3∧V4 >eu:=< V1, V3 >< V2, V4 > − < V1, V4 >< V2, V3 >

and extended linearly, where Vi are real vectors. One may refer to ([11], p.
238) for more details.

In terms of these real coordinates, the Weil-Petersson curvature operator

Q̃ may be described in the following way. Let X ∈ Teich(Sg), let R be the

Riemannian curvature tensor of the Weil-Petersson metric, and let {ei}6g−6
i=1

be an orthonormal basis of TX Teich(Sg). Set

Rijkl :=< R(ei, ej)ek, el > .

It is clear that

∧2TX Teich(Sg) = Span{ei ∧ ej}16i<j6(6g−6).

Then the operator Q̃ : ∧2TX Teich(Sg) → ∧2TX Teich(Sg) may be written
in this notation as

Q̃(
∑

16i<j6(6g−6)

aijei ∧ ej) :=
∑

16i<j6(6g−6)

∑
16k<l6(6g−6)

aijRijklek ∧ el,

where the coefficients aij are set to be real.
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From equation (3.1) it is easy to see that {ei ∧ ej}16i<j6(6g−6) is an or-

thonormal basis of ∧2TX Teich(Sg). Then,

< Q̃(
∑

16i<j6(6g−6)

aijei ∧ ej),
∑

16i<j6(6g−6)

bijei ∧ ej >eu

=
∑

16i<j6(6g−6)

∑
16k<l6(6g−6)

aijbklRijkl,

where here again the coefficients bij are real.
We define the associated (bilinear, symmetric) curvature form to be the bi-

linear formQ on ∧2T Teich(Sg) given byQ(V1∧V2, V3∧V4) = R(V1, V2, V3, V4)
and extended linearly, where the Vi are real vectors. It is easy to see that Q
is a bilinear symmetric form (one can see more details in [14]).

In this notation, we see that we may write Q(A,A) as Q(A,A) =<

Q̃(A), A >eu for all A ∈ ∧2T Teich(Sg). By the symmetry of the Riemannian
curvature tensor and the definition of the scalar curvature, we then find

Lemma 3.1. (1). Q̃ is self-adjoint.

(2). The trace Tr(Q̃)(X) of Q at X satisfies Tr(Q̃)(X) = Sca(X).

For more details on the Riemannian curvature operator, one can see sec-
tion 2.2 in [25].

3.1. The eigenvalues of the Weil-Petersson curvature operator. The
action of the almost complex structure J on TX Teich(Sg) extends to a nat-
ural action of J on ∧2TX Teich(Sg), defined as follows on a basis

J ◦ ∂
∂xi
∧ ∂
∂xj

:= ∂
∂yi
∧ ∂
∂yj

,

J ◦ ∂
∂xi
∧ ∂
∂yj

:= − ∂
∂yi
∧ ∂
∂xj

= ∂
∂xj
∧ ∂
∂yi
,

J ◦ ∂
∂yi
∧ ∂
∂yj

:= ∂
∂xi
∧ ∂
∂xj

,

and then extended linearly. It is easy to see that, as an operator on ∧2TX Teich(Sg),
we have J ◦ J = id.

Part of the second author’s thesis shows that for any X ∈ Teich(Sg), the

curvature operator Q̃ at X is negative semi-definite. More precisely,

Theorem 3.2 ([40]). Let S = Sg be a closed surface of genus g > 1 and
Teich(Sg) be the Teichmüller space of S endowed with the Weil-Petersson
metric. And let J be the almost complex structure on Teich(Sg) and Q be
the associated curvature form on Teich(Sg). Then, for any X ∈ Teich(Sg),
we have
(1). Q̃ is negative semi-definite, i.e., < Q̃(A), A >eu= Q(A,A) 6 0 for all
A ∈ ∧2TX Teich(Sg).
(2). Q(A,A) = 0 if and only if there exists an element B in ∧2TX Teich(Sg)
such that A = B − J ◦B.

Recall that λ is called an eigenvalue of Q̃ if there exists an element A ∈
∧2TX Teich(Sg) such that Q̃(A) = λ ·A. In that case, the element A is called
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the eigenvector associated to λ. Since Q̃ is self-adjoint, all of the eigenvalues

of Q̃ are real. Since dim(Teich(Sg)) = 6g− 6, we see from Theorem 3.2 that

there exist (3g − 3)(6g − 7) non-positive eigenvalues {νi}(3g−3)(6g−7)
i=1 of Q̃

where we set νi+1 6 νi 6 0 for all 0 6 i 6 ((3g − 3)(6g − 7)− 1). Since the
Weil-Petersson sectional curvature is negative (see [34]), not all {νi} vanish.
Our focus is on the non-zero eigenvalues. Refining the analysis of Theorem
3.2, we prove that the number of non-zero eigenvalues of the Weil-Petersson

curvature operator Q̃ on Teichmüller space Teich(Sg) is constant.

Theorem 3.3. For any X ∈ Teich(Sg), the Weil-Petersson curvature op-

erator Q̃ at X has exactly (3g − 3)2 negative eigenvalues.

To prepare for the proof of Theorem 3.3, we note the following standard
lemma.

Lemma 3.4. For any B ∈ ∧2TX Teich(Sg), the element A defined by A =

B − J ◦B is a 0-eigenvector, i.e. Q̃(A) = 0.

Proof. Of course, by part (2) of Theorem 3.2 we have Q(A,A) = 0. Now let
C ∈ ∧2TX Teich(Sg). By part (1) of Theorem 3.2, for all t ∈ R, we have

0 > Q(C + tA,C + tA) =< Q(C + tA), C + tA >eu

= < Q̃(C), C >eu +2t < Q̃(A), C >eu .

Since t is arbitrary, we see that we could choose t to make the expression

< Q̃(C), C >eu +2 < Q̃(A), C >eu t above positive unless < Q̃(A), C >eu=

0. The conclusion then follows by choosing C = Q̃(A) so that we have

0 =< Q̃(A), C >eu=< Q̃(A), Q̃(A) >eu, yielding Q̃(A) = 0. �

Proof of Theorem 3.3. It suffices to show that the dimension of the space

of zero-eigenvectors of Q̃ is equal to (3g − 3)(3g − 4). First, it is clear
that the elements in { ∂

∂xi
∧ ∂
∂xj
− ∂

∂yi
∧ ∂
∂yj
}16i<j6(3g−3), { ∂

∂xi
∧ ∂
∂yj
− ∂

∂xj
∧

∂
∂yi
}16i<j6(3g−3) are linearly independent in ∧2TX Teich(Sg). By Lemma

3.4, we see that Span{{ ∂
∂xi
∧ ∂
∂xj
− ∂

∂yi
∧ ∂
∂yj
}16i<j6(3g−3), { ∂

∂xi
∧ ∂
∂yj
− ∂

∂xj
∧

∂
∂yi
}16i<j6(3g−3)} is contained in the space of zero-eigenvectors of Q̃. Thus,

dim{A ∈ ∧2TX Teich(Sg); Q̃(A) = 0} > 2·(3g−3)(3g−4)/2 = (3g−3)(3g−4).

On the other hand, let A =
∑

ij(aij
∂
∂xi
∧ ∂
∂xj

+ bij
∂
∂xi
∧ ∂
∂yj

+ cij
∂
∂yi
∧ ∂
∂yj

) ∈
∧2TX Teich(Sg) with Q̃(A) = 0. By part (2) of Theorem 3.2, we know
that A = B − J ◦ B for some B ∈ ∧2TX Teich(Sg). Then we have, for all
1 6 i, j 6 (3g − 3),

aij + cij = aji + cji, bij + bji = 0.

We rewrite it as

aij − aji = −(cij − cji), bij = −bji.
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Thus,

A =
∑
i<j

(aij−aji)(
∂

∂xi
∧ ∂

∂xj
− ∂

∂yi
∧ ∂

∂yj
) +

∑
i<j

bij(
∂

∂xi
∧ ∂

∂yj
− ∂

∂xj
∧ ∂

∂yi
).

In particular A ∈ Span{{ ∂
∂xi
∧ ∂
∂xj
− ∂
∂yi
∧ ∂
∂yj
}16i<j6(3g−3), { ∂

∂xi
∧ ∂
∂yj
− ∂
∂xj
∧

∂
∂yi
}16i<j6(3g−3)}. Since A is arbitrary with Q̃(A) = 0,

dim{A ∈ ∧2TX Teich(Sg); Q̃(A) = 0} 6 2·(3g−3)(3g−4)/2 = (3g−3)(3g−4).

Therefore,

dim{A ∈ ∧2TX Teich(Sg); Q̃(A) = 0} = (3g − 3)(3g − 4).

�

From Theorem 3.2 and Theorem 3.3, we know that for any X ∈ Teich(Sg),

the Weil-Petersson curvature operator Q̃ at X has (3g− 3)2 negative eigen-
values. We denote them by

λ(3g−3)2(X) 6 λ(3g−3)2−1(X) 6 λ(3g−3)2−2(X) 6 · · ·λ2(X) 6 λ1(X) < 0

We close this subsection by rewriting the smallest eigenvalue λ(3g−3)2(X) as
follows

λmin(X) := λ(3g−3)2(X) = min
A∈∧2TX Teich(Sg),||A||eu=1

Q(A,A).(3.2)

3.2. The Weil-Petersson curvature operator formula. In this section,
we recall a formula from [40] for the curvature operator applied to an element
A ∈ ∧2TX Teich(Sg) of ∧2TX Teich(Sg). This formula is particularly well-
suited to estimating the associated curvature form Q(A,A), and so from the
formula we derive some estimates that we will need in the later sections.

To begin, we express an arbitrary element A ∈ ∧2TX Teich(Sg) in coordi-
nates as

(3.3) A =
∑
ij

(aij
∂

∂xi
∧ ∂

∂xj
+bij

∂

∂xi
∧ ∂

∂yj
+cij

∂

∂yi
∧ ∂

∂yj
) ∈ ∧2TX Teich(Sg)

where aij , bij , cij are real numbers. The following formula is crucial not only
for our analysis in this section, but indeed for much of our work in this part
of the paper.

Proposition 3.5. With A defined as above, we may write Q(A,A) as

Q(A,A) = −4

∫
X

D(Im{F (z, z) + iH(z, z)}) · (Im{F (z, z) + iH(z, z)})dA(z)

(3.4)

− 2

∫
X×X

G(z, w)|F (z, w) + iH(z, w))|2dA(w)dA(z)

+ 2 Re{
∫
X×X

G(z, w)(F (z, w) + iH(z, w))(F (w, z) + iH(w, z))dA(w)dA(z)}
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where G(z, w) is the Green’s function for the operator D, the expression F (z, w)

is set to be F (z, w) =
∑3g−3

i,j=1 (aij + cij)µi(w) · µj(z) and H(z, w) is defined as

H(z, w) =
∑3g−3

i,j=1 bijµi(w) · µj(z).

Proof. The conclusion directly follows from Proposition 4.1 and Proposition
4.3 in [40]. �

Using this decomposition of Q(A,A), we estimate its value in the following
proposition. The proof uses a similar idea as in the proof of Theorem 4.4 in
[40].

Proposition 3.6. Under the same conditions as in Proposition 3.5, we have
(1). −Q(A,A) > 4

∫
X D(Im{F (z, z) + iH(z, z)}) · (Im{F (z, z) + iH(z, z)})dA(z)

(2). −Q(A,A) 6 16 · (
∫
X |F (z, z)|2dA(z) +

∫
X |H(z, z)|2dA(z)).

Proof. We begin with the third term in equation (3.4). By the Cauchy-
Schwarz inequality, we may write

|
∫
X×X

G(z, w)(F (z, w) + iH(z, w))(F (w, z) + iH(w, z))dA(w)dA(z)|(3.5)

6
∫
X×X

G(z, w)|(F (z, w) + iH(z, w))(F (w, z) + iH(w, z))|dA(w)dA(z)

6

√∫
X×X

G(z, w)|(F (z, w) + iH(z, w))|2dA(w)dA(z)

×

√∫
X×X

G(z, w)|(F (w, z) + iH(w, z))|2dA(w)dA(z)

=

∫
X×X

G(z, w)|(F (z, w) + iH(z, w))|2dA(w)dA(z).

The last equality follows from the symmetry G(z, w) = G(w, z).
It directly follows from inequality (3.5) that

Re

∫
X×X

G(z, w)(F (z, w) + iH(z, w))(F (w, z) + iH(w, z))dA(w)dA(z)(3.6)

6
∫
X×X

G(z, w)|(F (z, w) + iH(z, w))|2dA(w)dA(z).

Recall that Q is negative semi-definite. Part (1) of the conclusion follows
from the inequality above: the right hand side estimate above for the third
term in equation (3.4) cancels with the second term in equation (3.4).



UNIFORM BOUNDS 21

For part (2), beginning from the triangle inequality, we find

|Q(A,A)| 6 4

∫
X

D(Im{F (z, z) + iH(z, z)}) · (Im{F (z, z) + iH(z, z)})dA(z)

(3.7)

+ 2

∫
X×X

G(z, w)|F (z, w) + iH(z, w))|2dA(w)dA(z)

+ 2|Re

∫
X×X

G(z, w)(F (z, w) + iH(z, w))(F (w, z) + iH(w, z))dA(w)dA(z)|

6 4

∫
X

D(Im{F (z, z) + iH(z, z)}) · (Im{F (z, z) + iH(z, z)})dA(z)

+ 4

∫
X×X

G(z, w)|F (z, w) + iH(z, w))|2dA(w)dA(z) (by applying (3.6))

6 4

∫
X

(Im{F (z, z) + iH(z, z)})2dA(z)

+ 4

∫
X×X

G(z, w)|F (z, w) + iH(z, w))|2dA(w)dA(z) (by Lemma 2.2)

6 4

∫
X

|F (z, z) + iH(z, z)|2dA(z)

+ 4

∫
X

D(|F (z, z) + iH(z, z))|2)dA(z)

where we apply part (1) of Proposition 2.3 for the last step.
Since D is self-adjoint and D(1) = 1, we see that we may rewrite the final

term of (3.7),∫
X
D(|F (z, z) + iH(z, z))|2)dA(z) =

∫
X
|F (z, z) + iH(z, z))|2 ·D(1)dA(z)

=

∫
X
|F (z, z) + iH(z, z))|2dA(z).

This last equality allows us to combine the two terms on the right-hand side
of the final inequality of (3.7) to obtain

|Q(A,A)| 6 8

∫
X

(|F (z, z) + iH(z, z)|2dA(z)

6 16 · (
∫
X
|F (z, z)|2dA(z) +

∫
X
|H(z, z)|2dA(z)),

with the last inequality following from the elementary inequality

|z1 + iz2|2 6 2(|z1|2 + |z2|2), ∀z1, z2 ∈ C.

�

We use the first part of this proposition to prove Theorem 1.1 in the next
section, and the second part of the proposition to prove Theorem 1.2 in
Section 5.



22 MICHAEL WOLF & YUNHUI WU

4. A Uniform upper bound for λmin(X)

From the definition of the curvature operator we know that

(3g−3)2∑
i=1

λi(X) = Sca(X).

Thus a trivial upper bound for λ(3g−3)2(X) is λ(3g−3)2(X) ≤ Sca(X)
(3g−3)2

. By

Remark 2.6 in section 2, this upper bound is less than or equal to −1
12π(g−1) ,

which approaches zero as g goes to infinity. The goal of this section is
to prove Theorem 1.1 which estimates λ(3g−3)2(X) by a negative number
independent of genus.

The proof is actually quite straightforward: because λmin(X) will mea-

sure the L∞-norm of Q̃, we simply exhibit an (unit normed) element A0

in ∧2TX Teich(Sg) with L∞ norm bounded away from zero. After a few

preparatory remarks on how one estimates the norm of Q̃, we display our

element A0 and verify the claims as to its Q̃-norm.
There are three terms in the formula of the Weil-Petersson curvature

operator presented in Proposition 3.5. The first term is non-positive, and
the sum of the second and third terms is also non-positive by the argument
in the proof of Proposition 3.6. Of course, since λ(3g−3)2(X) is the minimum
eigenvalue, the Rayleigh-Ritz formulation implies that for any element A,

we have that λ(3g−3)2(X) ≤ Q(A,A)
‖A‖2eu

. Now we are ready to describe the proof

of Theorem 1.1 in detail.

Proof of Theorem 1.1. Let {µi}3g−3
i=1 be a holomorphic orthonormal basis

TX Teich(Sg) and let { ∂
∂ti
}3g−3
i=1 be the vector field on Teich(Sg) near X such

that ∂
∂ti
|X = µi. Let ti = xi+iyi and letA0 = 1√

3g−3
(
∑3g−3

i=1
∂
∂xi

(X)∧ ∂
∂yi

(X))

be our special element of ∧2TX Teich(Sg).
We begin with some preliminary computations on our special two-form

A0: we show that ‖A0‖eu = 1, and find the associated functions F and H
used in the formula (3.4) for the associated form Q(A0, A0) for this element.

Since {µi}3g−3
i=1 is a holomorphic orthonormal basis TX Teich(Sg), we have

<
∂

∂xi
(X),

∂

∂xj
(X) > = Re{< ∂

∂xi
(X) + iJ ◦ ∂

∂xi
(X),

∂

∂xj
(X) + iJ ◦ ∂

∂xj
(X) >}

= Re{< µi, µj >} = δij .

Similarly, we have

<
∂

∂yi
(X),

∂

∂yj
(X) > = Re{< ∂

∂yi
(X) + iJ ◦ ∂

∂yi
(X),

∂

∂yj
(X) + iJ ◦ ∂

∂yj
(X) >}

= Re{< −iµi,−iµj >} = Re{< µi, µj >} = δij

and
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<
∂

∂xi
(X),

∂

∂yj
(X) > = Re{< ∂

∂xi
(X) + iJ ◦ ∂

∂xi
(X),

∂

∂yj
(X) + iJ ◦ ∂

∂yj
(X) >}

= Re{< µi,−iµj >} = − Im{< µi, µj >}
= − Im{δij} = 0.

Thus, equation (3.1) gives that

<
∂

∂xi
(X) ∧ ∂

∂yi
(X),

∂

∂xj
(X) ∧ ∂

∂yj
(X) >eu

= <
∂

∂xi
(X),

∂

∂xj
(X) ><

∂

∂yi
(X),

∂

∂yj
(X) >

− <
∂

∂xi
(X),

∂

∂yj
(X) ><

∂

∂yi
(X),

∂

∂xj
(X) >

= δ2
ij − 0 = δij .

Therefore, the norm of A0 satisfies
(4.1)

||A0||2eu =
1

3g − 3
<

3g−3∑
i=1

∂

∂xi
(X) ∧ ∂

∂yi
(X),

3g−3∑
i=1

∂

∂xi
(X) ∧ ∂

∂yi
(X) >eu= 1.

As we plan to apply Proposition 3.6, we need to compute F (z, z) and
H(z, z) for this element A0. Of course,

F (z, z) =

3g−3∑
i,j=1

(aij + cij)µi(z) · µj(z) = 0

as from our definition of A0 and the coefficients aij , cij in (3.3), we see we
have set all of the aij = cij = 0 in the definition of F (z, z) in Proposition 3.5.
Similarly,

H(z, w) =

3g−3∑
i,j=1

bijµi(w) · µj(z) =

3g−3∑
i=1

1√
3g − 3

µi(w) · µi(z)

by our definition of H in Proposition 3.5.
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From part (1) of Proposition 3.6,

Q(A0, A0) 6 −4

∫
X
D(Im{iH(z, z)}) · (Im{iH(z, z)})dA(z)

= −4

∫
X
D(

1√
3g − 3

3g−3∑
i=1

|µi|2)(
1√

3g − 3

3g−3∑
i=1

|µi|2)dA

6 −4

3

∫
X

(
1√

3g − 3

3g−3∑
i=1

|µi|2)2dA (by Lemma 2.1)

= − 4

9(g − 1)

∫
X

(

3g−3∑
i=1

|µi|2)2dA

6
2

9(g − 1)
Sca(X),

with the last inequality follows from Proposition 2.5.
Combining equation (3.2), equation (4.1) and the inequality above, we

have

λmin(X) 6
Q(A0, A0)

||A0||2eu
6

2Sca(X)

9(g − 1)
.

By Lemma 4.6 in [34], Wolpert’s upper bound for scalar curvature, we
have

λmin(X) 6
2Sca(X)

9(g − 1)
6

2

9(g − 1)
· −3(3g − 2)

4π
<
−1

2π
.

�

5. A Uniform lower bound for λmin(X) in the thick-part

The goal of this section is to prove Theorem 1.2 that was stated in the
introduction. In contrast to the argument in the last section where we
bounded from above the norm of a particular element A0 ∈ ∧2TX Teich(Sg),
here we need to bound from below the norm of an arbitrary element A ∈
∧2TX Teich(Sg). The proof rests on the (other) bound in Proposition 3.5,
where here we inherit uniform bounds on all of the terms in the the norm
Q(A,A) from the uniform thickness of a surface in the thick part of the
surface.

Recall the systole, denoted by systole(X), of a compact hyperbolic surface
X is the length of the shortest nontrivial simple closed curve in X. So
systole(X) = 2 inj(X) where inj(X) is the injectivity radius of X. The
ε-thick part Teich(Sg)

>ε of Teich(Sg) is defined by

Teich(Sg)
>ε := {Y ∈ Teich(Sg); systole(Y ) > ε}.

Let Mod(S) be the mapping class group of S. Then the quotient space
M(S)>ε := Teich(Sg)

>ε/Mod(S) is called the ε-thick part of the moduli
space. By Mumford compactness, we have (see e.g. [12]) that M(S)>ε is
compact for all ε > 0. In particular there is a lower bound for λ(3g−3)2(X)
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where X runs over the thick part of Teich(Sg). A natural question is whether
this lower bound depends on the topology of the surface. Theorem 1.2
answers this question negatively; specifically, we provide a lower bound that
only depends on the thickness ε but not on genus of the surface.

We begin the proof of Theorem 1.2 with some preliminary estimates on
norms of sums of harmonic Beltrami differentials. Let {µi}3g−3

i=1 be a holo-
morphic orthonormal basis of TX Teich(Sg); thus, in particular, we have that∫
X µi(z)µj(z)dA = δij . Now, the expression of the Weil-Petersson curvature

operator – presented in Proposition 3.5 –involved expressions F (z, w) and

H(z, w) both of the same form, say K(z, w) =
∑3g−3

i,j=1 dijµi(w) · µj(z) (where

the coefficients dij were real). We separate the proof of Theorem 1.2 into
lemmas that estimate norms of such expressions K(z, w). The following
lemma is a direct consequence of Proposition 2.10.

Lemma 5.1. Fix z ∈ X, we have

sup
w∈X
|K(z, w)|2 6 C(inj(X)) · (

∑
16i,j,l63g−3

dijdilµj(z)µl(z))

where C(inj(X)) is the same as in Proposition 2.10.

Proof. Rewrite K(z, w) as

K(z, w) =

3g−3∑
i=1

(

3g−3∑
j=1

dijµj(z)) · µi(w).

Thus, if we fix z ∈ X, the form K(z, w) is a harmonic Beltrami differential
on X in the coordinate w. From Proposition 2.10, we have

sup
w∈X
|K(z, w)|2 6 C(inj(X)) ·

∫
X
K(z, w)K(z, w)dA(w)

= C(inj(X)) ·
∫
X

(

3g−3∑
i,j=1

dijµi(w) · µj(z))(
3g−3∑
k,l=1

dklµk(w) · µl(z))dA(w)

= C(inj(X)) · (
∑

16i,j,k,l63g−3

dijdklµj(z)µl(z)) ·
∫
X
µi(w)µk(w)dA(w))

= C(inj(X)) · (
∑

16i,j,l63g−3

dijdilµj(z)µl(z)),

where the last equality uses the fact that the basis {µi} is orthonormal. �

Specializing to an L2 bound for K(z, z), we find

Lemma 5.2.
∫
X |K(z, z)|2dA(z) 6 C(inj(X)) · (

∑
16i,j6(3g−3) d

2
ij).

Proof. First, Lemma 5.1 gives that, for any z ∈ X,

|K(z, z)|2 6 sup
w∈X
|K(z, w)|2 6 C(inj(X)) · (

∑
16i,j,l63g−3

dijdilµj(z)µl(z)).
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Thus, we have ∫
X
|K(z, z)|2dA(z)

6 C(inj(X)) ·
∫
X

∑
16i,j,l63g−3

dijdilµj(z)µl(z)dA(z)

= C(inj(X)) · (
∑

16i,j6(3g−3)

d2
ij)

where the last equality follows from the assumption that {µi} is orthonormal.
�

Now we are ready to prove Theorem 1.2.

Proof of Theorem 1.2. Let A ∈ ∧2TX Teich(Sg) be expressed as

A = (
∑

16i<j6(3g−3)

aij
∂

∂xi
∧ ∂

∂xj
+

∑
16i,j6(3g−3)

bij
∂

∂xi
∧ ∂

∂yj
+

∑
16i<j6(3g−3)

cij
∂

∂yi
∧ ∂

∂yj
)

where aij , bij , cij are real. In terms of the coefficients of the basic forms, we
may compute the norm ‖A‖eu of A as

(5.1) ‖A‖2eu =
∑

16i<j6(3g−3)

a2
ij +

∑
16i,j6(3g−3)

b2ij +
∑

16i<j6(3g−3)

c2
ij .

From part (2) of Proposition 3.6, we have

Q(A,A) > −16 · (
∫
X
|F (z, z)|2dA(z) +

∫
X
|H(z, z)|2dA(z))

where F (z, z) =
∑

16i<j6(3g−3) (aij + cij)µi(z) · µj(z) andH(z, z) =
∑3g−3

i,j=1 bijµi(z) · µj(z).
By Lemma 5.2, we have∫

X
|F (z, z)|2dA(z) 6 C(inj(X)) · (

∑
16i<j6(3g−3)

(aij + cij)
2)

where we have set {dij = aij + cij} for i < j and dij = 0 otherwise.
Similarly, by Lemma 5.2, we also have∫

X
|H(z, z)|2dA(z) 6 C(inj(X)) · (

∑
16i,j6(3g−3)

(bij)
2)

by setting {dij = bij}.
Combine these two inequalities above, we find

Q(A,A) > −16C(inj(X)) · (
∑

16i<j6(3g−3)

(aij + cij)
2 +

∑
16i,j6(3g−3)

b2ij)

> −32C(inj(X)) · (
∑

16i<j6(3g−3)

(a2
ij + c2

ij) +
∑

16i,j6(3g−3)

b2ij)

= −32C(inj(X))‖A‖2eu by (5.1) .
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The theorem then follows from the Rayleigh-Ritz characterization of the
lowest eigenvalue and by choosing B(ε) = 32C( ε2). �

Remark 5.3. Theorem 1.2 shows the Weil-Petersson curvature operators,
restricted to the thick part of the moduli space, are uniformly bounded by
a constant that depends only on the bound on prescribed thickness (the
lower bound in injectivity radius) of the surfaces in the given thick part, but
not on the topology of the underlying surface. It is worth noting that the
constant B(ε) � 1

ε2
tends to infinity as ε → 0. Of course, it is known that

sectional curvatures (the diagonal elements for the curvature operator Q̃)
decay at worst with order O(−1

ε ). (One can see [9] and [39] for details.) We

do not know if this bound of O(−1
ε ), sharp in the case of sectional curvatures,

also extends to the broader setting of the curvature operator. On the other
hand, as ε→∞, the constant B(ε)→ 24

π > 1
2π , which is consistent with the

bound we found for a special element of ∧2TX Teich(Sg) in Theorem 1.1.

Let R be the Riemannian curvature tensor of the Weil-Petersson metric.
Let X ∈ Teich(Sg) and {ei}6g−6

i=1 be an orthonormal basis of TX Teich(Sg).
Recall that Rijkl :=< R(ei, ej)ek, el >. Define the norm ||R||X of the curva-
ture tensor R on X by

||R||X = sup max
16i,j,k,l6(6g−6)

|Rijkl|

where the supremum runs over all the orthonormal bases of TX Teich(Sg).
A simple application of Theorem 1.2 is

Corollary 5.4. Let X ∈ Teich(Sg) and R be the Riemannian curvature
tensor of the Weil-Petersson metric. Then,

||R||X 6 B̂(inj(X))

where inj(X) is the injectivity radius of X and B̂(inj(X)) is a function of
inj(X).

Proof. Set ||Q(X)|| := supA∈∧2TX Teich(Sg),‖A‖eu=1 | < Q̃(A), A > |. Theo-

rem 1.2 gives that ||Q(X)|| 6 B(2 inj(X)). Let {ei}6g−6
i=1 be an orthonormal

basis of TX Teich(Sg). Then the Cauchy Schwarz inequality leads to

|Rijkl| = | < Q̃(ei ∧ ej), ek ∧ el > |
6 |Q̃(ei ∧ ej)| · |ek ∧ el| 6 ||Q(X)|| 6 B(2 inj(X)).

Since the indices {i, j, k, l} are arbitrary, the conclusion follows by choosing

B̂(inj(X)) = B(2 inj(X)). �

Remark 5.5. For the case that {i = k, j = l}, Rijij is the sectional cur-
vature (using the orthonormality of the coordinate system). Huang in [10]
proved the the sectional curvature, restricted on the thick part of the moduli
space, is uniformly bounded from below by using harmonic maps.
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The Weil-Petersson metric is not complete (see [7, 33]). We let Teich(Sg)

be the metric completion of Teich(Sg) and ∂Teich(Sg) be the frontier of

Teich(Sg): this frontier is composed of products of lower dimensional Te-
ichmüller spaces (one can see [19, 36, 38] for more details). For any X ∈
Teich(Sg), the following quantitative version of estimation on the distance

between X and ∂Teich(Sg) is provided by Wolpert.

Theorem 5.6 ([37]). dist(X, ∂Teich(Sg)) 6
√

4π · inj(X).

The following consequence is motivated by Proposition 4.22 in [3].

Corollary 5.7. There exists a constant C > 0, which is independent of the
topology of the surface, such that the norm ||R||X of the curvature tensor R
on X satisfies

||R||X 6 max{C, C

dist(X, ∂Teich(Sg))4
}.

Proof. We observed after stating Proposition 2.10 that as ε → 0, the con-
stant C(ε) is asymptotic to 1

πε2
. Fix ε0 > 0 such that C(ε) 6 2

πε2
for all

ε ∈ (0, ε0]. Then for any X ∈ Teich(Sg), there are two possibilities:
Case 1: If the injectivity radius inj(X) > ε0, the inequality ||R||X 6

B̂(ε0) = B(2ε0) follows from Corollary 5.4.
Case 2: If the injectivity radius inj(X) 6 ε0, then from Corollary 5.4 we

find,

||R||X 6 32C(inj(X)) 6
64

π · inj(X)2
6

1024π

dist(X, ∂Teich(Sg))4
,

where we apply Theorem 5.6 for the last inequality. The conclusion follows
by choosing C = max{B(2ε0), 1024π}. �

Remark 5.8. We emphasize here that the constant C is independent not
only of the genus g, but also of any choice of neighborhood of ∂Teich(Sg).

6. Eigenvalues of the Weil-Petersson curvature operators on
thick surfaces

Our goal in this final section of this part of the paper is to prove the
remaining results, Theorem 1.3 and Theorem 1.5, on the Weil-Petersson
curvature operator. The proofs are reasonably straightforward consequences
of the results and tools we have already developed.

We first prove Theorem 1.3 which bounds the smallest eigenvalue λmin of
the Weil-Petersson curvature operator on surfaces of sufficiently large genus
whose injectivity radii are increasing without bound.

Proof of Theorem 1.3. First, one computes that the constant B(ε) in Theo-
rem 1.2 satisfies

lim
ε→∞

B(ε) =
24

π
.
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The conclusion then follows from Theorem 1.1, Theorem 1.2 and the limit
above. �

Next, fix ε > 0; then the Mumford compactness theorem implies the ε-
thick part M≥ε of the moduli space of a closed surface is compact. Thus the
following functions are well-defined:

λεi(g) := min
X∈Teich(Sg)>ε

λi(X), ∀1 6 i 6 (3g − 3)2

and
λ
ε
i(g) := max

X∈Teich(Sg)>ε
λi(X), ∀1 6 i 6 (3g − 3)2.

Of course
λεi(g) 6 λ

ε
i(g),

and Theorems 1.1 and 1.2 imply

−B(ε) 6 λε(3g−3)2(g) 6 λ
ε
(3g−3)2(g) 6

−1

2π
.

Our focus for the rest of this section then turns from the smallest eigen-
value λ(3g−3)2 = λmin to the asymptotic properties for λεi(g) and λ

ε
i(g) as g

goes to infinity where the index i is not maximal but instead small.
Let

f : {1, 2, · · · , (3g − 3)2} → {1, 2, · · · , (3g − 3)2}
be a function. Recall that Theorem 1.5 states that if the index i is not close
to the maximal value (3g−3)2 in the limit sense, then the bound λεi(g) tends
to zero as g goes to infinity.

Proof of Theorem 1.5. Since 1 6 f(g) 6 (3g − 3)2, It follows from Theo-

rem 3.3 that λ
ε
f(g)(g) < 0. For the lower bound, let X ∈ Teich(Sg)

>ε and

recall that {λi(X)}(3g−3)2

i=1 is the set of the non-zero eigenvalues of the Weil-
Petersson curvature operator at X with λi+1(X) 6 λi(X). Proposition 3.3
in [29] tells us that

−6(g − 1)C(
ε

2
) 6 Sca(X) =

(3g−3)2∑
i=1

λi(X),

where C( ε2) is defined in Proposition 2.10. Since λi(X) < 0, we have that

−6(g − 1)C(
ε

2
) 6

(3g−3)2∑
i=f(g)

λi(X) 6 ((3g − 3)2 − f(g) + 1)λf(g)(X).

We rewrite this last inequality as

−6C( ε2)

g
· g(g − 1)

(3g − 3)2 − f(g) + 1
6 λf(g)(X).

Then, since lim supg→∞
g(g−1)

(3g−3)2−f(g)+1
= 1

9(1−α) > 0 and X ∈ Teich(Sg)
>ε is

arbitrary, the conclusion follows by choosing B(α, ε) =
4C( ε

2
)

3(1−α) . �
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Remark 6.1. (1). Recall that as ε→ 0, the constant C(ε) behaves like

lim
ε→0

C(ε)
1
πε2

= 1.

The proof of Theorem 1.5 then yields the following more general statement.

Theorem 6.2. If the function f satisfies lim supg→∞
f(g)
9g2

= α < 1. Let

Xg be a sequence of Riemannian surfaces whose injectivity radii satisfy
limg→∞

1
g·inj(Xg)2

= 0. Then,

lim
g→∞

λf(g)(Xg) = 0.

This theorem tells us that as the genus goes to infinity, even in certain
portions of the thin parts of the moduli spaces, we could still have

lim
g→∞

λ
ε(g)
i (g) = lim

g→∞
λ
ε(g)
i (g) = 0, for all 1 6 i 6 8g2

provided that limg→∞
1

g·ε(g)2 = 0.

(2). We do not know any asymptotic properties of λεi(g) and λ
ε
i(g) as g

goes to infinity when i is close to (3g − 3)2; for example λε(3g−3)2−g(g) and

λ
ε
(3g−3)2−g(g). It is interesting to study them.

Part 2. Bounds on the Weil-Petersson holomorphic sectional
curvatures

7. Uniform estimates on harmonic Beltrami differentials.

Recall from section 2.3 that a surface is C-sufficiently thick if inj(X) ≥ C,
and that there are non-trivial subspaces of the Teichmüller spaces Teich(Sg)
composed of sufficiently thick surfaces, once the genus g is chosen sufficiently
large. In this section will construct holomorphic lines in the tangent spaces
of sufficiently thick surfaces (of course, necessarily of large genera and injec-
tivity radii) such that those sections have uniformly pinched negative holo-
morphic sectional curvatures. The pinching constants will be independent
of the genus.

To begin, we pick up the thread on which we ended section 2.2.2, that
related holomorphic sectional curvatures to powers of normalized L∞ norms
of harmonic Beltrami differentials. In particular, we will directly apply
Proposition 2.11 to a specific choice of harmonic Beltrami differential µg,
whose construction we begin immediately below. As we noted at the end
of section 2.2.2, our (main) goal is to bound the L2 norm of µg from above
and the L∞ norm of µg from below.
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7.1. Poincaré series. Let Xg ∈ Teich(Sg) and let Γg ⊂ Aut(D) be a rep-
resentation of π1(Xg) into the (Mobius) group Aut(D) of automorphisms
of the hyperbolic disk D where π : D → Xg is the universal covering map.
Let H(D) denote the set of holomorphic functions on the unit disk D and
H0(Xg,K

2) be the space of holomorphic quadratic differentials on Xg.
Recall the Theta-operator Θ is defined as

Θ : H(D) → H0(Xg,K
2)

f(z) 7→
∑
γ∈Γg

f(γ(z)) · γ′(z)2.

It is well-known that Θ(f)(z) is well-defined if f is integrable on D, and
this operator is surjective on its domain. (See Theorem 7.2 in [12] for de-
tails.)

Fix the constant function f(z) ≡ 1 be on D. Then

Θ(f(z)) = Θ(1)(z) =
∑
γ∈Γg

γ′(z)2

whose corresponding harmonic Beltrami differential is

(7.1) µg(z) :=
Θ(1)(z)

ρ(z)
=

∑
γ∈Γg

γ′(z)2

ρ(z)

where ρ(z) = 4
(1−|z|2)2

is the hyperbolic metric on the disk.

Ahlfors in [2] showed that |µg| is bounded above by a constant depending
on Γg. In this section we will observe that |µg| is uniformly bounded above
if we assume that the injectivity radius inj(Xg)→∞ as g →∞.

Let us close this subsection by recalling Ahlfors’ method in [2], a technique
which we will adapt for the heart of our argument.

Ahlfors’ Method: From the triangle inequality we know that

(7.2) |µg(z)| 6
∑
γ∈Γg

|γ′(z)|2

ρ(z)
.

Then since ρ(γ(z))|γ′(z)2| = ρ(z) for any γ ∈ Γg, and ρ(ζ) = 4(1− |ζ|2)−2,
we have

(7.3)
∑
γ∈Γg

|γ′(z)|2

ρ(z)
=

1

4

∑
γ∈Γg

(1− |γ(z)|2)2.

Combining the above inequalities yields

(7.4) |µg(z)| 6
1

4

∑
γ∈Γg

(1− |γ(z)|2)2.

Let ∆ be the (Euclidean) Laplace operator on the (Euclidean) disk. Then
a direct computation shows
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∆(
∑
γ∈Γg

(1− |γ(z)|2)2) = 8 ·
∑
γ∈Γg

(2|γ(z)|2 − 1)|γ′(z)|2.

Note that the terms on the right side are non-negative when |γ(z)|2 ≥ 1
2 .

With that in mind, let B(0, 1√
2
) := {z ∈ D; |z| 6 1√

2
} be the ball of

Euclidean radius 1√
2

and let V := ∪γ∈Γgγ
−1 ◦ B(0, 1√

2
) be the pullbacks of

this ball B by the group Γg. The equation above gives that
∑

γ∈Γg
(1 −

|γ(z)|2)2 is subharmonic in D − V . Since both
∑

γ∈Γg
(1 − |γ(z)|2)2 and V

are Γg-invariant, and Γg is cocompact, we find

(7.5)

sup
z∈D

∑
γ∈Γg

(1− |γ(z)|2)2 = sup
z∈V

∑
γ∈Γg

(1− |γ(z)|2)2 = sup
z∈B(0, 1√

2
)

∑
γ∈Γg

(1− |γ(z)|2)2

which in particular is bounded above by a constant depending on Γg: we
display a version of the argument that the last term on the right is bounded
in the next subsection: see especially equations (7.7) - (7.9).

7.2. Uniform upper bound for µg. Recall the relation between the Eu-
clidean distance and the hyperbolic distance is

distD(0, z) = ln
1 + |z|
1− |z|

.

For the rest of this section, we consider a surface Xg which is sufficiently
thick – we retain the index g as a reminder that such surfaces have large
genus g and we are computing curvatures of the Teichmüller space Teich(Sg)
with all of the normalizations that accompany that choice. (This will also
be useful for a remark at the end of this section.) Therefore we may assume
that we may find a ball B(0, 1√

2
+ 1

10) ⊂ Fg where Fg ⊂ D is the (Dirichlet)

fundamental domain, centered at the origin, of Xg. Applying the triangle
inequality to equation (7.5), we have

(7.6) sup
z∈D

∑
γ∈Γg

(1− |γ(z)|2)2 6 1 + sup
z∈B(0, 1√

2
)

∑
γ 6=e

(1− |γ(z)|2)2.

As in Ahlfors’ method, by applying the Laplace operator, we obtain

(7.7) ∆(
∑
γ 6=e

(1− |γ(z)|2)2) = 8 ·
∑
γ 6=e

(2|γ(z)|2 − 1)|γ′(z)|2.

Because of our assumption on the large injectivity radius of Xg, we see
that B(0, 1√

2
+ 1

10) ⊂ Fg. Thus for z ∈ B(0, 1√
2
), we see that γ(z) /∈ B(0, 1√

2
)

when γ 6= e: in particular, for such γ, we have |γ(z)|2 ≥ 1
2 . This implies

that for z ∈ B(0, 1√
2

+ 1
10) we have
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(7.8) ∆(
∑
γ 6=e

(1− |γ(z)|2)2) > 0.

Let ζ = ξ+ iη. Thus, by the mean-value inequality, for any z ∈ B(0, 1√
2
),

we have

∑
γ 6=e

(1− |γ(z)|2)2 6
1

B(z, 1
10)

∫
B(z, 1

10
)

∑
γ 6=e

(1− |γ(ζ)|2)2dξdη

=
100

π

∫
B(z, 1

10
)

∑
γ 6=e

|γ′(ζ)|2

ρ(ζ)
dξdη by equation (7.3)

6
25

π

∫
B(z, 1

10
)

∑
γ 6=e
|γ′(ζ)|2dξdη since ρ(z) = 4(1− |z|2)−2 ≥ 4

=
25

π

∫
∪γ 6=eγ◦B(z, 1

10
)
dξdη after unfolding the sum

6
25

π

∫
D−Fg

dξdη

=
25

π
(π −Area(Fg)).

Since z ∈ B(0, 1√
2
) is arbitrary,

sup
z∈B(0, 1√

2
)

∑
γ 6=e, γ∈Γg

(1− |γ(z)|2)2 6
25

π
(π −Area(Fg)).(7.9)

Finally, we invoke the hypothesis that the surface Xg is sufficiently thick.
Assuming that thickness, we may assume that the Euclidean area Area(Fg)
of the fundamental domain Fg is as close to π as we wish, so the quantitative
version of sufficiently thick that we will invoke will force

(7.10)
25

π
(π −Area(Fg)) <

1

4
.

Then, this last equation, together with (7.9), provides

(7.11) sup
z∈B(0, 1√

2
)

∑
γ 6=e, γ∈Γg

(1− |γ(z)|2)2 <
1

4
.

Remark 7.1. For the estimate (7.10) to hold, we need the ball, centered

at the origin, to have Euclidean radius
√

99
100 , so that the surface is at least

ln 10+
√

99
10−
√

99
-thick.

The following two propositions follow easily from the equations above.
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Proposition 7.2. Let Xg be sufficiently thick. Then

sup
z∈D
|µg(z)| <

5

16
.

Proof. We compute

|µg(z)| 6
∑
γ∈Γg

|γ′(z)2|
ρ(z)

by (7.1)

=
1

4

∑
γ∈Γg

(1− |γ(z)|2)2 by (7.3)

6
1

4
sup
z∈D

∑
γ∈Γg

(1− |γ(z)|2)2

=
1

4
sup

z∈B(0, 1√
2

)

∑
γ∈Γg

(1− |γ(z)|2)2 by (7.5)

6
1

4
+

1

4
sup

z∈B(0, 1√
2

)

∑
γ 6=e,γ∈Γg

(1− |γ(z)|2)2

<
5

16
by (7.11).

The conclusion follows by taking a supremum. �

Proposition 7.3. Let Xg be sufficiently thick as above. Then

|µg(0)| > 3

16
.

Proof. By the triangle inequality we have

|µg(0)| > 1

4
−

∑
γ 6=e∈Γg

|γ′(0)|2

ρ(0)

=
1

4
− 1

4

∑
γ 6=e∈Γg

(1− |γ(0)|2)2

>
3

16
by (7.11).

�

Remark 7.4. We have chosen our setting to be one of a single sufficiently
thick surface. However, we could also consider a sequence {Xg} of surfaces,
say indexed by genus, whose injectivity radii inj(Xg) is growing (without
bound) with the genus g. In that case, the estimate (7.9) becomes

sup
z∈B(0, 1√

2
)

∑
γ 6=e, γ∈Γg

(1− |γ(z)|2)2 6
25

π
(π −Area(Fg)) = og(1)
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so that the conclusions of the proofs of Propositions 1.1 and 7.3 become

|µg(z)| 6
1

4
+ og(1)

and

|µg(0)| ≥ 1

4
− og(1)

respectively. We hope to take up the thread of the agreement of these
asymptotic bounds in a subsequent work.

8. Holomorphic lines with uniform negatively pinched
Weil-Petersson holomorphic sectional curvatures.

We are now ready to prove Theorem 1.7, which we restate here in the
present terminology for convenience.

Theorem 8.1. Let Xg be a sufficiently thick surface as in section 7, and let
µg ∈ TXg Teich(Sg) be defined as in equation (7.1). Then the holomorphic
sectional curvature K(µg) satisfies

K(µg) 6
−81C0

6400 · π2
< 0

where C0 = 2
3C(1)2·V olD(B(0;1))

.

Proof of Theorem 1.7. Recall z = x + iy. Our plan is to bound ||µg||2WP
from above, supz∈Xg |µg(z)| from below and then apply Proposition 2.11 to
bound the holomorphic sectional curvature. First,

||µg||2WP =

∫
Fg

µg · µgρ(z)dxdy

(8.1)

6 sup
z∈Fg
|µg(z)| ·

∫
Fg

|µg|ρ(z)dxdy

6
5

16

∫
Fg

|µg|ρ(z)dxdy by Proposition 7.2, since Xg is sufficiently thick

6
5

16

∫
Fg

∑
γ∈Γg

|γ′(z)|2dxdy by (7.1)

≤ 5

16

∫
D
dxdy

=
5

16
π.

Second, by Proposition 7.3, again using that Xg is sufficiently thick,

sup
z∈Xg

|µg(z)| = sup
z∈Fg
|µg(z)| > |µg(0)| > 3

16
.
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Finally, we recall from Proposition 2.11 the bound

(8.2) K(µg) 6 −
C0 · supz∈X |µg(z)|4

||µg||4WP

.

Thus substituting (8.1) and (8.2) into the right hand side of (8.2), we find

K(µg) 6
−81C0

6400 · π2
,

as desired. �

Our final task is to prove Corollary 1.8.

Proof of Corollary 1.8. We begin with the left hand side. For any σg ∈
TXg Teich(Sg), Proposition 2.10 asserts that the normalized L∞ norm of the
Beltrami differential σg satisfies

supz∈Xg |σg(z)|)
2∫

Xg
|σg(z)|2dA(z)

≤ C(inj(Xg))

where C(inj(Xg)) is the constant defined in (2.8). We then substitute this
estimate into the bound in Proposition 2.11 to obtain the required lower
bound. If, as we did at the end of section 7, we considered the setting of
a sequence Xg of surfaces whose injectivity radii grow without bound, we
could let inj(Xg)→∞ so that C(inj(Xg))→ 3

4π : we would then obtain the
lower bound

− 2

π
6 K(σg).

Since σg is arbitrary in TXg Teich(Sg), the conclusion follows.
The upper bound is a direct consequence of the statement of the upper

bound in Theorem 1.7, as that theorem only required sufficiently large thick-
ness, which is immediately satisfied on our sequence Xg, once g is sufficiently
large. �

Remark 8.2. Fix two positive numbers a and b. Let H(D) denote the
holomorphic functions on the disk D, and set

Hb
a(D) = {f(z) ∈ H(D); sup

z∈D
|f(z)| 6 b and |f(0)| > a}.

Let f(z) ∈ Hb
a(D) and consider the image of the Theta-operator Θ(f)(z) ∈

H0(Xg,K
2). Using the same argument in the proof of Theorem 1.7, we find

Theorem 8.3. Let Xg be a sequence of hyperbolic surfaces with inj(Xg)→
∞ as g → ∞. Then there exists a uniform negative constant B(a, b) such
that for g large enough, the Weil-Petersson holomorphic sectional curvature
satisfies

−2

π
6 K(µg(f)(z)) 6 B(a, b) < 0

where µg(f)(z) = Θ(f)(z)
ρ(z) and f is arbitrary in Hb

a(D).
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Remark 8.4. While our focus in this part of the paper was on the Beltrami
differential µg defined in terms of the Θ-operator applied to the constant
function f ≡ 1, we might equally well have applied the Θ-operator to the
functions fn(z) = (1 − zn) (n > 1) and obtained similar estimates since
fn(z) ∈ H2

1 (D) for all n > 1. It is clear that the convex hull of {fn(z)}n>1

is still contained in H2
1 (D), It is then of interest to know the Weil-Petersson

geometry of the image of this convex hull under the Θ-operator.
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