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Abstract. Abstract: We show that the set of quasiconformal (quasisymmetric, if n = 2)
maps h : Sn�1 ! Sn�1 which admit a quasi-isometric harmonic extension H : Hn

! Hn

is open in the set of quasiconformal (quasisymmetric, resp.) self-maps of Sn�1. The proof
involves �rst deforming a harmonic map by a quasi-isometry, and then using that deformed
map to set harmonic map Dirichlet problems on a compact exhaustion of Hn. The solutions
to these Dirichlet problems then converge to a harmonic map of bounded energy density
which is at �nite distance from the original deformed map.

x1. Introduction. The goal of this note is to prove

Theorem A. The set of quasiconformal (quasisymmetric, if n = 2) maps h : Sn�1 !
Sn�1 which admit a quasi-isometric harmonic extension H : Hn !Hn is open in the set
of quasiconformal (quasisymmetric, resp.) self-maps of Sn�1.

As the set contains the identity, it is obviously non-empty. It seems to be more diÆcult
to prove that this set is also closed; we hope to return to this in a later article.

There is a long history of research on the problem of �nding nice extensions to Hn of
quasiconformal (or quasisymmetric) homeomorphisms of Sn�1. Quasiconformal extensions
were �rst constructed by Beurling and Ahlfors [BA] in dimension n = 2; higher dimensional
extensions were given by Tukia and V�ais�al�a [TV], and Tukia [T] produced a version that
was compatible with the action of a group of Mobius transformations. Douady and Earle
[DE] constructed a conformally natural version in all dimensions, and this led H.L. Royden
(in 1985) to propose to the second author the problem of �nding a harmonic extension,
which might then also enjoy compatibility with Mobius transformations. These harmonic
extensions were �rst constructed by Li and Tam ([LT1], [LT2]) under some assumptions
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of smoothness of the boundary maps h : Sn�1 ! Sn�1 and a lower bound on its energy
density. (See also Akutagawa [A].) Non-uniqueness properties of these extensions were also
identi�ed by Li-Tam ([LT2], [LT3]), which showed that the group compatibility properties
would require some care; earlier, the second author had found similar non-uniqueness
phenomena for some in�nite energy harmonic maps of hyperbolic surfaces of �nite volume
[Wo]. Another approach for dimension n = 2 of studying the parametrization of harmonic
self-maps of H2 via their Hopf di�erentials has been undertaken by Wan [Wa] and Tam-
Wan [TW].

Theorem A is a partial result in the direction of the conjecture that all quasiconformal
maps are harmonically extendible, and we found this theorem several years ago. Last year,
Deane Yang independently obtained the same result, which he presents in [Y]. A case of
this theorem, valid for maps h near the identity map in dimension n = 2, was proved a
number of years ago by Earle and Fowler ([EF]) using implicit function theorem methods.

Our proof is rather straightforward. Given a biLipschitz harmonic map H0 : H
n !Hn,

which thus has bounded energy density and quasiconformal boundary values h0 : S
n�1 !

Sn�1, we obtain the desired neighborhood of h0 by considering maps h : Sn�1 ! Sn�1 of
the form h = g Æ h0 where g is a quasi-conformal map of the sphere of small dilation Æ.
Choosing �rst a suitable quasi-isometric extension G of g, obtained by modifying [BA],
[DE], or [TV], we then use the composition G ÆH0 :H

n !Hn to set a series of boundary
values G ÆH0

��
@Km

for a family of Dirichlet problems on compacta fKmg which exhaust

Hn. We estimate the distance from G ÆH0 to the unique harmonic map Hm : Km ! Hn

whose boundary values agree with G ÆH0

��
@Km

, and obtain a bound that is independent

of m large and Æ small. Uniform energy estimates then follow from Cheng's lemma [C],
and we obtain our required map as a limit with m!1.

Acknowledgments. We always bene�t from our conversations with Cli� Earle, and this
time was no exception.

x2. Background and Notation.

2.1. Harmonic Maps. Given a map u : (Mm; g) ! (Nn; k) between Riemannian
manifolds (M; g) and (N; k), the energy of u on a compact subset K of M is

1

2

Z

K

jruj2 d vol(g) ;

where, in local coordinates

jruj2 =
X

gij
@u�

@xi
@u�

@xj
k��;

d vol(g) = (det gij)
1=2dx :

The Euler-Lagrange equation for this energy functional is the condition for the vanishing
of the tension, which is, in local coordinates,

�(u) = �u
 + N�
��u
�
i u

�
j = 0 :
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Solutions of �(u) = 0 are called harmonic maps.
Eells-Sampson [ES] showed that every homotopy class of maps from a Riemannian

manifold M to a negatively curved target Riemannian manifold N contained a harmonic
map, and Hamilton [Ham] extended that result to manifolds with boundary in a complete
space.

2.2. The Riemannian Chain Rule and Distance in Hyperbolic Space. Let u :
(M; g)! (N; k) be a C2 map, not necessarily harmonic and f : N ! R be a function on
N . Then we compute that, relative to an orthonormal frame fe�g on M , we have

(2.1) �(f Æ u) = trfu�e�gHess f + hgrad f; �(u)iN :

Here, the �rst term on the right hand side is the trace with respect to the push-forward
frame fu�e�g of the Riemannian Hessian, and the second term is the inner product of the
gradient of f with the tension (vector) �eld �(u).

A natural function to study onHn is cosh d(�; �), as its Hessian has a particularly simple
form. (Here d(�; �) is the distance function on Hn.) Given two points p, q 2 Hn, there
is a unique geodesic 
pq between them; we consider a frame in Hn adapted to 
pq at p
(at q, resp.) with one vector Tanp 2 TpH

n tangent along 
pq (Tanq 2 TqH
n tangent

along 
pq) and normal vectors Np
1 ; : : : ; N

p
n�1 2 TpH

n (Nq
1 ; : : : ; N

q
n�1 2 TqH

n, resp.) With
respect to the basis (Tanp; 0), (N

p
1 ; 0); : : : ; (Nn�1; 0), (0;Tanq), (0; N

q
1 ); : : : ; (0; N

q
n�1) for

T(p;q)(H
n �Hn), we �nd that the Hessian

HessHn�Hn cosh d = (cosh d)I2n�2n + A

where A is a 2n� 2n matrix whose only non-zero entries are �1 at ((Ni; 0); (0; Ni)), and
a � cosh d at ((Tanp; 0); (0; Tanq) (and their symmetric places). Applying this to (2.1),
we easily conclude that if u : M ! Hn and w : M ! Hn are maps from a Riemannian
manifold to Hn, then the function

Q :Hn �Hn ! R; Q(x) = cosh d(u(x); w(x))� 1

satis�es

�Q(x) � cosh d
�
(


ru;Tanu(x)

�
�


rw;Tanw(x)

�
)2
�

+ (cosh d� 1)
n�1X
i=1

D
ru;N

u(x)
i

E2
+
D
rw;N

w(x)
i

E2

+ hgradQ; (�(u); �(w)i(u;w)(x)(2.2)

where


ru;Tanu(x)

�
refers to the projection of

Pn
i=1 du(ei) onto Tanu(x).

2.3. Cheng's lemma. S.-Y. Cheng proved a lemma [C] that allows us to estimate the
energy density of a harmonic map u : M ! N between complete Riemannian manifolds,
where N has non-positive sectional curvature and is simply connected, in terms of the
geometry of the image u(B) a ball B � M . His lemma is very 
exible, but we will only
need a special corollary (both of the statement and the proof).
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Lemma 2.1 [C]. Let M , N be simply connected Riemannian manifolds with N complete
and M �M 0 complete. Suppose all the sectional curvatures �M , �N are both non-positive.
Then at a point x0 2M which is at distance at least 1 from @M , we have the estimate

jruj2(x0) � C(�N ; R)

where R is chosen so that BR(u(x0)) � u(B1(x0)).

x3. Harmonic Extensions Near the Identity. In this section, we show that we can
extend quasiconformal maps h : Sn�1 ! Sn�1 with small dilatation, i.e., maps near the
identity. This is our model argument, and the proof of Theorem A is a close analogue.

Proposition 3.1. ([EF] for n = 2) There is a Æ > 0 so that if h : Sn�1 ! Sn�1 is a
quasiconformal map with dilatation less than Æ, then h is extendible to a harmonic map
H :Hn ! Hn.

Remark: We are grateful to Cli� Earle for informing us of this result of Fowler and
himself. Their proof is an implicit function theorem that does not appear to generalize as
easily as the proof below.

Proof: The method of proof is straightforward, as explained in the Introduction. First we
extend the map to a controlled but not necessarily harmonic map G : Hn ! Hn. We then
use G to set a family of Dirichlet problems for harmonic maps on a compact exhaustion
fKmg of H

n, obtaining a family of harmonic maps Hm : Km ! Hn. We uniformly bound
the distance between G

��
Km

and Hm, as well as the energy density of Hm. This is enough

to force Hm to subconverge to a harmonic map with the boundary values h.

3.1. We begin by observing that there are many ways presently known to extend a quasi-
conformal map h : Sn�1 ! Sn�1 with small dilatation to a quasi-isometry F : Hn ! Hn

with biLipschitz constant near unity: see for example, the papers of Beurling-Ahlfors
[BA], (for n = 2), Douady-Earle [DE; the relevant Theorem 5 is attributed to Tukia], or
Tukia-V�ais�al�a [TV].

Choose one such extension F : Hn ! Hn which satis�es, for any unit vector v 2 T 1Hn,
the inequalities

(3.1) j kdF [v]k � 1 j< �1

where �1 = �1(Æ)! 0 as Æ ! 0.
We want an extension that is also C2 with pointwise small tension. To obtain this, we

may, for example, divideHn into compact isometric n-dimensional blocks, as in a standard
dyadic decomposition of the upper half space model with totally geodesic faces. For any
one such block B we may, by (3.1), associate a hyperbolic isometry GB so that, for all
b 2 B,

(3.2) d(F (b); GB(b)) + k(dF )b � (dGB)bk < �2
4



where �2 = �2(Æ)! 0 as Æ ! 0. It follows that adjacent blocks have associated isometries
that are 2�2 close as in (3.2). On a �xed size � tubular neighborhood of the dyadic n� 1
skeleton one may locally smoothly interpolate between the isometries associated with the
blocks of the adjacent faces. More precisely, one �rst interpolates in a neighborhood of
each n � 1 cell, away from the n � 2 skeleton, between the 2 isometries associated with
the adjoining n cells. Here one may get the tension bounded by �3

�
where �3 = �3(Æ)! 0

as Æ ! 0. The mapping is now de�ned on the boundary of a tubular neighborhood of the
n � 2 skeleton. One then extends by interpolating to this tubular neighborhood of the
n� 2 skeleton, staying away from a neighborhood of the n� 3 skeleton. Continuing, one
eventually gets the smooth map G : Hn ! Hn satisfying

(3.3) k�(G)k < �4 = C�3=�
n

and, as before, for any unit v 2 T 1Hn, the inequalities

(3.4) j kdG[v]k � 1 j< �4

where �4 = �4(Æ) ! 0 as Æ ! 0. Also since the pointwise distance d(F;G) is bounded,
in fact o(1) as Æ ! 0, G has the same asymptotic boundary values as F and is again an
extension of h.

Next let Km be a compact exhaustion of Hn, for example by concentric balls of radius
about a given point; as in the choice of G, the precise nature of Km is unimportant. Let
Hm be the unique harmonic map Hm : Km ! Hn with Hm

��
@Km

= G
��
Km

: the existence

of the map Hm is guaranteed by the fundamental work of Hamilton [Ham], while the
uniqueness is due to Al'ber [Al] and Hartman [Har].

3.2. To obtain estimates on the harmonic maps Hm that are independent of m and Æ, we
consider the function Qm(x) = cosh dHn(Hm; G)� 1. We �nd, using (2.2), that

(3.5) �Qm � min
v2T 1

x
H
n

dG(v)?
x

�� dG(v) ��2 Qm �
D
�(G); grad d(�; Hm)

��
G(x)

E
G(x)q

sinh d(Hm; G)

where 
x is the geodesic joining G(x) to Hm(x) so that its initial tangent vector is
� grad d(�; Hm)

��
G(x)

and its terminal tangent vector is grad d(G(x); �)
��
Hm(x)

. For any

x 2 Km, for Æ suÆciently small, we deduce from (3.4) the estimate:

(3.6) min
dG(v)q2T 1

x
H
n

v?
x

jdG(v)j2 > 1� �4(Æ) :

As Hm

��
Km

= G
��
Km

, we �nd that if Hm does not coincide with G on Km, we must have

all maxima of Qm on the interior of Km. At any such maximum, we apply inequalities
(3.3) and (3.6), along with the obvious equality j grad d(�; Hm)j = 1, to (3.5) to �nd

0 � �Qm � (1� �4)Qm � �4(tanh d(Hm; G))(Qm + 1)

� (1� 2�4)Q� �4

so that at a maximum of Qm, hence at all points of Km, we have

(3.7) Qm � �4=(1� 2�4) = �:

We observe that (3.7) is independent of the domain Km.
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3.3. Next we bound the energy density of Hm, using the gradient estimate of Cheng [C],
which we described in section 2.3. This estimate of Cheng requires bounds on the diameter
of the image of balls of Hm. But, for instance, for a ball B1(x) of radius 1 about a point
x, we have

Hm(B1(x)) � N�G(B1(x))

by (3.7), and since G is a 1 + �4 quasi-isometry we see that

diam(Hm(B1(x))) � (1 + �)(1 + �4) = C0(Æ):

The estimate of Cheng (Lemma 2.1) then provides that

(3.8) jrHmj � C1(Æ):

3.4. Conclusion of the proof of Proposition 3.1: The bounds (3.7) and (3.8) suÆce to
allow us to invoke Ascoli-Arzela to �nd a subsequence of Hm which converges uniformly
on compacta to a harmonic map H : Hn ! Hn which is still at bounded distance � from
G. Thus, since d(H;G) < �, we see that H has the same asymptotic boundary values
h : Sn�1 ! Sn�1 as G, as desired. �

x4. Proof of Theorem A. Theorem A is a direct corollary of the proof of Proposition 3.1.
We observe that all we used about the identity map id : Hn ! Hn was that it was
harmonic and biLipschitz. In particular if H0 is a biLipschitz harmonic map, and G ÆH0

a composition of H0 with a quasi-isometry G = G(Æ) satisfying (3.3) and (3.4), then the
proof of (3.7) hinges on �nding Æ suÆciently small that

(4.1)
��� min

v2T 1

x

d(GÆH0)(v)?
x

d(G ÆH0)v
��� > �(G ÆH0):

However, the right-hand side goes to zero with Æ while the left-hand side is bounded below
by 1

2 jminv2T 1
x

d(H0)vj, for small �1. Thus, the analogue of (3.7) holds under the more
general hypothesis of Theorem A, and the rest of the argument is unchanged but for
constants. �

x5. Extensions of the Method.

5.1. Mobius Group Compatible Extensions. One of the motivations for studying
harmonic extensions of quasiconformal homeomorphisms h : Sn�1 ! Sn�1 is the compat-
ibility they have with Mobius group actions (see also [DE]).

As harmonic extensions of a given homeomorphism are not necessarily unique, (see [Wo;
Remark, p. 518] and, in the present context [LT3], we need to slightly restrict our family
of extensions. It is convenient to note that an application of formula (2.2) yields

Lemma 5.1. If H0, H1 :H
n !Hn are harmonic extensions of the same quasiconformal

(quasi-symmetric) boundary homeomorphism , and if d(H0(x); H1(x)) < C for every x 2
Hn, then H0 = H1.
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Proof: Formula (2.2) shows that cosh d(H0; H1) is a bounded subharmonic function on
Hn; an easy application of Yau's maximum principle shows that this is impossible unless
the right hand side of (2.2) vanishes identically. But this would require both H0 and H1

to map to the same geodesic in Hn, at a constant separation distance. Of course, this
contradicts the boundary map h : Sn�1 ! Sn�1 being a homeomorphism, with h(Sn�1)
being much larger than merely the two endpoints of a geodesic. �

With this observation, we observe that any harmonic map H : Hn ! Hn which is a
bounded distance away from our original extension F : Hn !Hn is uniquely determined.
In particular, if a Mobius transformation g : Sn�1 ! Sn�1 is compatible with h : Sn�1 !
Sn�1 (i.e., h Æ g = g Æ h), then upon extending g to be an isometry of Hn, and observing
that both g ÆH and H Æ g are harmonic, we see that

Proposition 5.2. Let � be a group of Mobius transformations. If h : Sn�1 ! Sn�1 is
�-compatible and F : Hn ! Hn an extension which is nearly �-compatible (in the sense
that there is a C > 0 for which d(gÆF; F Æg) < C for all g 2 �), then any unique harmonic
extension H : Hn ! Hn (with sup d(H;F ) <1) is also �-compatible.

Of course, we have shown that the set of these �-compatible harmonic extensions is
open, which is partial progress towards a problem of Tukia [T] on extending all such
�-compatible homeomorphisms h : Sn�1 ! Sn�1 to �-compatible quasi-isometries.

5.2.. Finally, we remark that the only place in our argument where we used that we
had constant negative sectional curvature was in the computation of the precise constants
in HessHn�Hn cosh d. This precision was not used in our proof, so the argument easily
covers the case of Hadamard manifolds, i.e. simply connected complete negatively curved
Riemannian manifold with �xed negative upper and lower bounds on sectional curvatures.
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