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Abstract We describe the space of measured foliations induced on a compact Rie-
mann surface bymeromorphic quadratic differentials.We prove that any such foliation
is realized by a unique such differential q if we prescribe, in addition, the principal
parts of

√
q at the poles. This generalizes a theorem of Hubbard and Masur for holo-

morphic quadratic differentials. The proof analyzes infinite-energy harmonic maps
from the Riemann surface to R-trees of infinite co-diameter, with prescribed behavior
at the poles.

1 Introduction

Let S be a smooth compact oriented surface of genus g ≥ 2, and let � denote a
Riemann surface structure on S. Holomorphic 1-forms on� are holomorphic sections
of the canonical line bundle K on �. It is a consequence of classical Hodge theory
that the space of such differentials can be identified with the first cohomology of the
surface with real coefficents:

H0(�, K ) ∼= H1(S, R)∗ = H1(S, R)

where the identification is via the imaginary parts of periods, namely, ω �→ � ∫
γi

ω

where γi varies over a basis of homology.
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The analogue of this identification for holomorphic quadratic differentials, is the
seminal theorem of Hubbard and Masur [13]. Instead of first cohomology, they con-
sider the spaceMF of smooth objects calledmeasured foliations on S, characterized,
up to a topological equivalence, by the induced transverse measures of simple closed
curves. Any holomorphic quadratic differential induces a measured foliation where
the measure of a transverse loop γ is

∫
γ
|�√

q|: these transverse measures can thus be
thought of as encoding periods of the differential.

Their theorem asserts that this is in fact a bijective correspondence:

Theorem (Hubbard-Masur) Fix a compact Riemann surface � of genus g ≥ 2. Then
any measured foliation F ∈ MF is realized by a unique holomorphic quadratic dif-
ferential q on�, or equivalently, its induced measured foliation is measure-equivalent
to F, that is, they induce identical measures on any simple closed curve.

This theorem bridges the complex-analytic and topological perspectives on Teich-
müller theory. In this paper we generalize the Hubbard-Masur theorem to the case of
meromorphic quadratic differentials with higher order poles. Together with our work
in [12] for differentials with second order poles, and in [11] for differentials with
higher order poles having a “half-plane” structure, this completes the treatment of
meromorphic quadratic differentials.

A meromorphic quadratic differential q with poles of higher orders (greater than
two) has an induced measured foliation with “pole-singularities”, discussed in Sect.
2.3. In Sect. 3, the space MF(n1, n2, . . . nk) of such measured foliations on S, with
k singularities of the given pole orders ni ≥ 3, up to bounded isotopy and Whitehead
moves, is shown to be homeomorphic to R

χ where χ = 6g − 6 + ∑
i (ni + 1), where

a pole of order ni ≥ 3 has (ni −2) local parameters determined by the foliation around
it, together with the transverse measure of a loop around the pole.

On the complex-analytical side, given a choice of a coordinate chartU ∼= D around
any pole, we can obtain the principal part P(q), which comprises the terms with
negative powers of z in the expression for the meromorphic 1-form

√
q in these

coordinates. Moreover, we say that a principal part P is compatible with a foliation
F if the real part of its residue agrees with that determined by the local parameters
of the foliation at each pole (this condition concerns only poles of even order as the
residue of an odd order pole vanishes—see Definition 6 for details).

In this article we shall prove:

Theorem 1 Let (�,P) be a closed Riemann surface with a non-empty set of marked
points P = {p1, p2, . . . pk} such that χ(�\P) < 0. For each 1 ≤ i ≤ k, fix local
coordinates around pi and let ni ≥ 3.

Then given

• a measured foliation F ∈ MF(n1, n2, . . . nk) and
• compatible principal parts Pi at each pi with respect to the chosen local coordi-
nates,
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Meromorphic quadratic differentials and measured foliations 75

there exists a unique meromorphic quadratic differential on � with a pole of order ni
at pi with a principal part Pi , and an induced foliation that is measure-equivalent to
F.

Remark (i) We shall see in Lemma 7 that the space Comp(F) of principal parts com-
patible with any fixed foliation F is homeomorphic to

∏k
i=1(R

ni−2 × S1). On varying
the foliation in MF(n1, n2, . . . nk) which is parametrized by 6g − 6 + ∑

i (ni + 1)
real parameters, we have a total of 6g− 6+ 2

∑
i ni real numbers as local parameters

for the total space of the quadratic differentials under consideration. This matches the
dimension of the space of meromorphic quadratic differentials with a poles of orders
n1, n2, . . . nk .

(ii) One of the features of the main theorem is that it identifies the parameters
responsible for the non-uniqueness of meromorphic quadratic differentials realizing
a given measured foliation in terms of analytical data at the poles, namely, the coef-
ficients of the principal parts (of a choice of square roots in neighborhoods of the
poles). A parallel of this for meromorphic 1-forms is the classical theorem that given
a Riemann surface, such a differential is uniquely specified if one specifies the periods
and the principal parts satisfying a zero-sum condition on the residues. The trans-
verse measure of a closed curve for the induced measured foliation is the analogue
of a “period” of a quadratic differential [see (1)]. Thus, our main theorem can be
considered a geometric analogue of the classical fact, for meromorphic quadratic dif-
ferentials.

(iii) As noted above, the case of poles of order two is dealt with in a separate paper
[12]; the methods of the two papers imply that the statement of Theorem 1 holds when
some ni = 2 and some ni > 2.

In our previous work in [11], we also proved Theorem 1 for a special foliation
F0 ∈ MFk which has a “half-plane” structure. There, instead of specifying the
coefficients of the principal parts, we considered parameters determined by the induced
singular-flat metric structure around each pole. For the general case we treat in this
paper, the induced singular-flat geometry on the Riemann surface comprises more
than just half-planes; it may include infinite strips and spiral domains as well. In fact,
the transverse measures across the strips to the poles contribute to parameters for the
measured foliations with pole-singularities (see Sect. 3).

In the final section (Sect. 5), we discuss the relation with singular flat geometry. We
consider the total bundle of meromorphic quadratic differentials with the given poles
over the Teichmüller space of the punctured surface, and observe that the subspace
realizing a fixed generic foliation is locally parametrized by shearing along the strips
(see Proposition 41). Such a generic case was considered in the work of Bridgeland-
Smith in [3], who relate the singular-flat geometry to stability conditions in certain
abelian categories.

The strategy of the proof of Theorem 1 is to consider a compact exhaustion of the
punctured surface X = �\P , and construct a sequence of harmonic maps from their
universal covers to the real tree that is the leaf space of the lift of the desired measured
foliation. The main analytic work is to show that there is a convergent subsequence
that yields a harmonic map whose Hopf differential is then the required meromorphic
quadratic differential.
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This strategy follows that of our previous paper [11], where the specific measured
foliation we considered had a leaf-space that was a k-pronged tree, and we considered
harmonic maps from the compact exhaustion to such a tree. One key difference is
that now we pass to the universal cover, and aim to obtain infinite-energy equivariant
harmonic maps to a more general R-tree. The basic analytic difficulties derive partly
from the target being singular, but more significantly from the target having infinite
co-diameter and the maps having infinite energy.

Also, asmentioned before, the singular-flat structure around the poles induced by an
arbitrary meromorphic quadratic differential might comprise not only half-planes, but
also horizontal strips. This features in the construction of the real trees—in particular,
the leaf-spaces of the foliations at the poles could now have finite-length edges dual
to the strips, in addition to the infinite prongs that are dual to the half-planes; these lift
to an equivariant collection of such edges in the real tree.

An insight we employ is that in the local coordinates at the pole in which the
differential has Strebel’s normal form, the restriction of the collapsing maps to the
leaf-space has enough “symmetry” to be then regarded as branched covers of harmonic
functions (see Lemma 22 for a precise description of the symmetry). We then adapt
and streamline some key analytical results from our previous work (included in the
present discussion for the convenience of the reader) to show the sub-convergence of
the sequence of harmonic maps as desired.

2 Background

2.1 Quadratic differentials

For this section, we shall fix a compact Riemann surface � of genus g ≥ 2.
A holomorphic quadratic differential on � is a holomorphic section of the sym-

metric square K⊗2 of the canonical line bundle on �, that is, a tensor locally of the
form q(z)dz2 for some holomorphic function q(z), where z is a complex coordinate
on �.

A meromorphic quadratic differential, correspondingly, is a meromorphic section
of K⊗2; the function q(z) in the local expression may have poles of finite order.

Meromorphic quadratic differentials with poles at points p1, p2, . . . pk ∈ � of
orders bounded above by n1, n2, . . . nk ∈ Z+ form a vector space overC, and it follows
from the classical Riemann-Roch theorem that its dimension overC is 3g−3+∑

i ni .
Meromorphic quadratic differentials with poles of order at most one arise in clas-

sical Teichmüller theory as the cotangent vectors to Teichmüller spaces of punctured
surfaces. Poles of order two also often arise as limits of “pinching” deformations in
which case one obtains noded Riemann surfaces (see, for example, [26]).

In this article we shall be interested in the case of higher order poles, namely those
with poles of order greater than two. (Poles of order two were treated in [12].) Such
differentials have also been considered more recently, as arising in more general limits
of degenerations of Riemann surfaces, for example of singular-flat surfaces along a
Teichmüller ray (see, for example [10]). See also the recent work in [2] for the related
case of compactification of strata of abelian differentials.
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Meromorphic quadratic differentials and measured foliations 77

2.2 Measured foliations

A holomorphic quadratic differential q always admits canonical local charts where
the local expression of the differential away from the zeroes of q may be written as
dw2; in terms of the original local expression q(z)dz2, this change of coordinates is
given by z �→ w = ± ∫ √

q(z)dz.
The new charts have transition functions z �→ ±z + c on their overlaps, and in

particular induce:

(A) A singular-flatmetric pulled back from theEuclideanmetric on thew-plane.Here
the singularities are at the zeroes of q, where the above change-of-coordinate map
is a branched covering.
In particular, at a zero of order (n−2), the quadratic differential zn−2dz2 induces
a branched cover z �→ zn/2 = w on a canonical local chart so that the induced
metric has cone-singularity of angle nπ and the horizontal foliation has an n-
pronged singularity (see Fig. 1, left, for the case of n = 3).

(B) A horizontal foliation given by the horizontal lines in the local charts to the w-
plane. Such a foliation is equipped with a transverse measure μ: namely, an arc
τ transverse to the horizontal measured foliation is assigned a measure by the
local expression

μ(τ) =
∫

τ

∣
∣�√

qdz
∣
∣ =

∫

τ

|�dw| (1)

which is well-defined since the transition maps are half-translations.

A measured foliation can also be also defined for meromorphic quadratic differen-
tials (which are holomorphic away from the poles) in a manner identical to (B) above;
in addition to the singularities at the zeroes, there are “pole-singularities” we shall
describe in the next section (Sect. 2.3).

Remark We emphasize that the measured foliation F is a purely topological object;
it can be defined on any smooth surface without reference to a complex structure or
quadratic differential: namely, F is a smooth one-dimensional foliation with singulari-
ties of specific local forms (namely, induced by the kernel of �(zn/2dz) at the zeroes),
and equipped with a measure on transverse arcs that is invariant under transverse
homotopy.

Fig. 1 The foliations induced by zdz2 (left), 1z dz
2 (middle), and c

z2
dz2 (right) for a typical c
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Spaces of foliations For a closed surface, consider the space of equivalence classes
of measured foliations as above (smooth with finitely many n-pronged singularities)
on a closed surface, where two foliations are equivalent if they determine the identical
transverse measures on every simple closed curve (that is invariant under transverse
homotopy, that is, one that preserves the transversality of the curves to the foliation).

The spaceMF of such measured foliations on a compact oriented surface of genus
g ≥ 2) is in fact determined by the transverse measures of a suitable finite collection
of arcs or curves, and MF ∼= R

6g−6 (see [8]).
Moreover, it is known (see Theorem 6.13 of [8]) that equivalent measured foliations

differ by isotopy of leaves and Whitehead moves (which contract or expand leaves
between singularities corresponding to zeroes).

In Sect. 3 we shall parametrize the corresponding space of measured foliations
with “pole-singularities” (see the next subsection for more on the local structure of
the foliation at the poles).

Leaf spaces asR-treesAlternatively, an equivalence class of a measured foliation is
specified by an R-tree with a π1(S) action by isometries that is small, that is, stabilizer
of any arc is a subgroup that does not contain any free group of rank greater than
one.

Here, an R-tree is a geodesic metric space (T, d) such that every arc in the space
is isometric to an interval in R—we refer to [4,27] for details and background.

Consider a measured foliation F induced by a holomorphic quadratic differential
on a compact Riemann surface X of genus g ≥ 2. Lifting to the universal cover
X̃ , one obtains a one-dimensional smooth foliation F̃ of the hyperbolic plane (with
singularities) such that each leaf separates. In particular, each point of its leaf-space
T is a cut-point, and when equipped with a metric d induced from the transverse
measures, is in fact an R-tree in the sense defined above.

A collapsing map shall be the map from X̃ to this metric space (T, d) that maps
each leaf of the induced foliation to the corresponding point in the leaf-space T . This
map intertwines the action of π1(S) as deck transformations of X̃ with its action on
the tree by isometries so that the resulting action on (T, d) is a small action.

Note that by considering a measured foliation as a small π1(S) action on an R-
tree (T, d), we automatically take care of the measure equivalence relation: neither
an isotopy of the surface nor a Whitehead move affects the metric tree (T, d) or the
isometric action by π1(S).

2.3 Structure at the poles of a quadratic differential

We shall eventually wish to extend the discussion above frommeasured foliations with
m-pronged singularities—corresponding to neighborhoods of zeroes of holomorphic
quadratic differentials—to measured foliations with singularities that correspond to
poles of meromorphic quadratic differentials. Before jumping into that description, we
first review the pertinent theory of meromorphic quadratic differentials, culled from
[23].

Normal formsAt a pole of order 1, when the expression of the quadratic differential
is 1

z dz
2, the change of coordinates z �→ w = √

z that converts the differential to a
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Meromorphic quadratic differentials and measured foliations 79

constant multiple of dw2 is a double cover branched at a point; the 1-prong singularity
is thus a local “fold” of the singular-flat structure in the regular case (see Fig. 1, center).

For poles of higher order, by a result of Strebel (see Sect. 6 of [23]) themeromorphic
quadratic differential with a pole of order n ≥ 2 at the origin has the following “normal
form” with respect to some coordinate z:

1

zn
dz2 when n is odd (2)

and (
1

zn/2 + a

z

)2

dz2 when n is even. (3)

where ±a ∈ C is the residue that we just defined.
We shall use the normal forms (2) and (3) to define a “symmetric exhaustion” near

the pole in Sect. 4.2.
Thus for all poles of higher order, the area of the induced singular-flat metric is

infinite, and the pole is at an infinite distance from any point on the surface. For
example, the singular flat metric induced near a pole of order two is isometric to a
half-infinite Euclidean cylinder; the foliation comprises (typically spiralling) leaves
along the cylinder towards the pole (see Fig. 1, right).

Finally, in a neighborhood of a pole of higher order, that is, of order greater than
two, that is the subject of this paper, we have the following two kinds of foliated
sub-domains induced by the differential:

• (Half-planes) Isometric to {z ∈ C|Im(z) > 0}
• (Horizontal strips) Isometric to S(a) = {z ∈ C| − a < Im(z) < a} for a ∈ R+,

both in the standard Euclidean metric, with the induced horizontal foliation being the
horizontal lines {�z = constant}.
Definition 2 (Pole-singularities) At a pole of order n ≥ 3, it follows from examining
the normal forms mentioned above that there is a sink neighborhood of the pole with
the property that any horizontal leaf entering it continues to the pole in at least one
direction. Moreover, any sufficiently small neighborhood of the pole contained in the
sink neighborhood does not contain any m-pronged singularities (corresponding to
the zeroes of the differential). The local structure of the induced metric and horizontal
foliation in such a neighborhood is an arrangement of half-planes and horizontal strips
around the pole; in particular, there are exactly n − 2 half-planes (that we also call
sectors) arranged in a cyclic order around the pole p (see Fig. 2).

We shall also need the following notion: for any choice of any smooth disk U
centered at a pole of order n and contained in such a neighborhood, that is “suffi-
ciently transverse” to the foliation, there are exactly n−2 distinguished points on ∂U ,
determined by points of tangency of the foliation in each sector, with the boundary
of the disk. (The transverse measures of the arcs between the distinguished points are
parameters of the measured foliation, as will be defined in Definition 3.)
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Fig. 2 The foliation in a
neighborhood of a pole of order
5 as in Definition 2. The
distinguished points on the
boundary ∂U are where the
half-planes (shown shaded)
touch; in between them are the
horizontal strips incident at the
pole

Fig. 3 The measured foliation
induced by a quadratic
differential (z2 − a)dz2 on C

has a horizontal strip and four
half-planes

Examples

The quadratic differential zdz2 on C ∪ {∞} which has a pole of order five at infinity,
expressed as 1

w5 dw2 in coordinates obtained by the inversion z �→ w = 1/z. The
restriction of the foliation to the disk U = {|w| < 1} is shown in Fig. 2; it can be
calculated that the distinguished points on the boundary have equal angles between
them, namely, they are at {−1,±eiπ/3}. This restriction of the foliation has three
foliated half-planes around the singularity, with horizontal strips with one end incident
at the singularity, between each.

An example where the presence of a horizontal strip is more apparent, is the
quadratic differential (z2 − a)dz2 on C, for some a ∈ C

∗, induces a singular-flat
metric with four half-planes and a horizontal strip (see Fig. 3). In this case, the pole

of order six at infinity has the expression
(

1
w6 + a

w4

)
dw2. (This pole has non-zero

residue, which is introduced in the subsequent discussion.)
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Measured foliations with pole singularitiesWith the background on measured foli-
ations with pronged singularities and meromorphic differentials behind us, we can
now define our main object of interest: measured foliations with pole singularities.

Definition 3 (Measured foliations with pole singularities) The space of measured
foliations with pole-singularities, denoted MF(n1, n2, . . . nk), shall be the space of
equivalence classes of measured foliations on a surface of genus g ≥ 1 with k points
where it has singularities of the type of a pole of orders n1, n2, . . . nk , each greater
than two. (See Definition 2).

In this case, the equivalence relation is more refined, and is given relative to a
choice of disk neighborhoods U1,U2, . . .Uk of the poles p1, p2, . . . pk , respectively.
(Wemoreover assume that these disks are contained in the “sink neighborhoods” of the
poles, and sufficiently transverse to the foliation—see Definition 2). Two such mea-
sured foliations with pole-singularities on S are equivalent if the transverse measures
agree for the homotopy classes of

• all simple closed curves,
• loops around each pole,
• simple arcs on the surface-with-boundary S\U1 ∪ U2 ∪ · · · ∪ Uk with endpoints
on the boundary components, including, for each i = 1, . . . k, the (ni − 2) arcs
between the distinguished points on the boundary ∂Ui (see Definition 2 for the
definition of these points).

The (ni − 2) parameters that are the transverse measures of the arcs between distin-
guished points on a suitable disk Ui about the pole pi shall be referred to as the local
parameters at the pole.

Remark As mentioned at the end of Sect. 2.2, an equivalence class of a measured
foliation on a closed surface is captured by the (metrized) leaf-space in the universal
cover, that is anR-tree with a small action of π1(S). Similarly, for a measured foliation
with pole-singularities, the (metrized) leaf-space in the universal cover determines
an R-tree that uniquely determines the equivalence class of the measured foliation.
This time, the leaf-space of the foliated half-planes around the poles determine an
equivariant collection of infinite rays (or “prongs”), and the horizontal strips, when
present, add finite-length edges between them. The structure of the leaf-space in a
neighborhood of the poles is described in detail in Sect. 3.

Residue We now turn to some of the analytical data one can define at the pole:

Definition 4 The residue of the quadratic differential q at a pole is the integral of
±√

q along a simple loop around the pole. Note that this is defined up to an ambiguity
of sign, which we prefer to keep. This residue is a coordinate-independent complex
number, and vanishes for odd order poles [cf. the normal forms (2) and (3)].

Principal part Given a meromorphic quadratic differential q with a pole of order
n at p, for an arbitrary choice (i.e. a choice not a priori adapted to the differential) of
coordinate z around p, we have the following notion of a principal part for

√
q (up

to a choice of sign) at the pole:
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The differential
√
q has the expression:

1

zn/2

(
P(z) + z

n
2 g(z)

)
dz (4)

when n is even, where g(z) is a non-vanishing holomorphic function, and P(z) is a
polynomial of degree n−2

2 , and

1

zn/2

(
P(z) + z

n−1
2 g(z)

)
dz (5)

whenn is odd,where g(z) is a holomorphic function as before, and P(z) is a polynomial
of degree n−3

2 .
In either case, the polynomial P(z) shall be the principal part of

√
q; note that this

is determined by the n
2 (resp. n−1

2 ) complex parameters (namely the coefficients), for
n even (resp. odd), where the constant term is also possibly non-zero. Note also that
the ambiguity of sign means that principal part formed by taking the negative of all
parameters is considered the same.

Compatibility We now note that the real part of the residue at a pole of even order
is determined by the parameters of the induced horizontal foliation at the pole. [At an
odd order pole, the residue is zero, as can be seen by using (2)].

It can be checked from the expression (3) of the normal form at an even-order
pole that the disk U = {|z| < |a|−1} is a sink neighborhood as in Definition 2. In
particular, the (n−2) points at equal angles on ∂U , including one at eiπ/(n−2), are the
“distinguished points” where the leaves of the horizontal foliation are tangent to the
boundary ∂U .

Recall from Definition 3 that the transverse measures of the arcs γ1, γ2, . . . γn−2
between these distinguished points are the “local parameters” of the induced horizontal
measured foliations.

Lemma 5 In the setting above, the real part of the residue at the pole of even order
n ≥ 4 is the alternating sum of the transverse measures of the distinguished arcs, that
is, we have

n−2∑

j=1

(−1) jμ(γ j ) = 2π�(a). (6)

(Note that the left hand side also has an ambiguity of sign, since it depends on the
distinguished arc that one starts with.)

Proof By (3), the quadratic differential is locally the square of a holomorphic one-form
± ω at the pole. We fix a sign for ω.

Let γ be a simple closed loop linking the pole. Note that γ is a concatenation of
the distinguished arcs γ1, . . . γn−2, which are circular arcs of angle 2π/(n − 2) as
described above.

An easy computation shows that the signs of the integrals
∫
γ j

�√
q , and indeed, the

integrands�ω(γ j (t))γ ′
j (t) (for, say, an arclength parametrization of γ j ), alternates for
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j = 1, 2, . . . , n − 2. By (1), the transverse measure of the arc γ j is then the absolute
value of such an integral.

Hence we have:

∫

γ

�√
q =

n−2∑

j=1

(−1) j
∫

γ j

�√
q =

n−2∑

j=1

(−1) jμ(γ j ) (7)

However from the expression (4) we can calculate:
∫

γ

�√
q = �

∫

γ

a

z
dz = 2π�(±a) (8)

and we obtain the desired identity. ��
Remark The fact that the pole has even order was crucial in the above lemma since
we used (3) to determine a “square-root” of the quadratic differential. For poles of odd
order, such an alternating sum of transverse measures carries no geometric meaning;
indeed, the residue, defined by integrating an expression of the form (5) which has no
z−1 term, would necessarily vanish.

As mentioned in the “Introduction”, we can now define:

Definition 6 A meromorphic quadratic differential on surface of genus g ≥ 2 has
principal parts compatible with a given measured foliation (with singularities corre-
sponding to poles) if at each pole of even order, the equality in (6) holds, that is, the
real part of the residue agrees with that determined by the “local parameters” of the
horizontal foliation around the pole (cf. Definition 3).

As noted in Definition 4, at any pole of odd order, the residue vanishes, and there
is no additional requirement for compatibility.

Let Comp(F) be the space of principal parts compatible with a fixed foliation
F ∈ MF(n1, n2, . . . nk). Then we have:

Lemma 7 The space of compatible principal parts Comp(F) is homeomorphic to∏k
i=1(R

ni−2 × S1).

Proof It suffices to prove the case of a single pole of order n, namely when k = 1,
as the general case is obtained as a k-fold cartesian product of the spaces defined in
this simple case. For n even, the principal part P(z) as in (4) is determined by n/2
complex coefficients—each contributes two real parameters except the (non-zero) top
coefficient which contributes an R × S1 as it is non-zero. Moreover, the coefficient
of z−1, contributes only an R in order to match the given real residue. For n odd, the
residue is automatically zero; however there are (n − 1)/2 terms in the principal part,
and we obtain the same parameter space as above. ��

Our main theorem (Theorem 1) asserts that these compatible principal parts can
be arbitrarily prescribed for a meromorphic quadratic differential realizing a given
measured foliation.
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2.4 Harmonic maps to R-trees

We recall the initial discussion of R-trees from Sect. 2.2, together with the collapsing
map from the universal cover X̃ along the leaves of a measured foliation to a metric
tree (T, d).

A useful observation (see [27], see also [6]) is that the collapsing map is harmonic
in a sense clarified below; note that locally, away from the singularities, the map is
z → �(z), which is a harmonic function.

A harmonic map h from Riemann surface X to an R-tree is a critical point of the
energy-functional

E( f ) = 1

2

∫

X

‖d f ‖2dzdz̄

on the space of all Lipschitz-continuous maps to the tree. (Note that the energy den-
sity in the integrand is defined almost-everywhere for such maps). For equivariant
harmonic maps from the universal cover X̃ , we consider the equivariant energy,
namely the above integral over a fundamental domain. Moreover, when the funda-
mental domain is non-compact and the energy is infinite, as is the case in this paper,
we emphasize that one restricts to compactly supported variations in characterizing a
map that is critical for energy.

For more on theory of harmonic maps to NPC metric spaces, we refer to
Korevaar-Schoen [16]. For R-tree targets we could alternatively use an equivalent
characterization (see Sect. 3.4 of [9] and Theorem 3.8 of [6]), namely that an equiv-
ariant map from the universal cover X̃ to T is harmonic if locally, germs of convex
functions pullback to germs of subharmonic functions.

Hopf differential

We have described above how to obtain a measured foliation from a holomorphic
quadratic differential, how to obtain a tree from a measured foliation, and how to
obtain a harmonic map from the data of a map from a Riemann surface to a tree: we
next complete this circle of relationships by describing how to obtain a holomorphic
quadratic differential from a harmonic map.

In passing from holomorphic quadratic differential to measured foliation to tree
to harmonic map, the original holomorphic quadratic differential can be recovered
(up to a fixed real scalar multiple) by taking the Hopf differential of the (collapsing)
harmonic map h, which is locally defined to be

Hopf(h) = −4

(
∂h

∂z

)2

dz2

Remark The constant in the definition above is chosen such that the Hopf-differential
of the map z �→ �z is dz2, This sign convention differs from the one used in, say [28],
and in other places in the harmonic maps literature. In this convention, the geometric
interpretation of the Hopf differential is that the horizontal foliation are integral curves
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of the directions of minimal stretch of the differential dh of the harmonic map h. (See
e.g. [25] for the computations justifying this).

Thus,when theharmonicmaph is a projection to a tree, theminimal stretchdirection
lies along the kernel of the differential map dh, and thus the horizontal leaves are the
level sets of points in the tree. Away from the isolated zeroes of the Hopf differential,
the harmonic map takes disks to geodesic segments in the R-tree T .

Using this analytical technique, the second author re-proved the Hubbard-Masur
Theorem in [28]. As discussed in the Introduction, the strategy of this paper is to
construct meromorphic quadratic differentials by considering Hopf differentials of
infinite-energy harmonic maps to R-trees that are dual to measured foliations with
pole-singularities.

We conclude this section with twowell-known facts about harmonicmaps that shall
be useful later. References for these lemmas include [15] and [17] (eg. p. 633) and
[18]; see also the discussion in [28].

Lemma 8 Let T be a metric R-tree. Then an equivariant harmonic map h : X̃ → T
post-composed with the distance function from a fixed point q ∈ T is subharmonic.

Lemma 9 A sequence of harmonic maps hi : X̃ → T equivariant with respect to a
fixed isometric action of π1X on T , having a uniform bound on energy on compact
subsets, forms an equicontinuous family.

Sketch of the proof This follows from the Courant-Lebesgue Lemma, that provides a
modulus of continuity for a harmonic map of bounded energy, when the domain is
two-dimensional.We recount the argument briefly: from the bound on total energy, the
energy of the maps restricted to a small annulus is uniformly bounded. Considering
the diameter of images of circles in that annulus, a rewriting of the total energy in the
annulus as an integral over concentric circles then forces one of the circles C0 in the
annulus to have small diameter. Because the tree is an NPC space, the domain interior
to the chosen circle have maps within the convex hull of h(C0), in this case a subtree
of T . This proves equicontinuity for the sequence of maps on this subdomain. ��

Remark In several of our constructions, we will need to find a harmonic map to an
R-tree as a limit of a sequence of maps whose energies are tending to an infimum.
Lemma9 abovewill provide equicontinuity for that family. TheArzelà-Ascoli theorem
then provides for the subconvergence of the family of maps, say ui , to a harmonic map
u if we also know that the images ui (p) of each point p in the domain lie in a compact
set. This is a particular challengewhen the target is anR-tree, as such trees are typically
not locally compact, so even a bound on the diameter of {ui (p)} does not suffice to
guarantee the compactness of the convex hull of that set. In general, powerful results of
Korevaar-Schoen [17] and [18] are useful for proving existence of energy-minimizing
maps in non-locally compact settings, but in the context of infinite-energy harmonic
maps as in this paper, the exact statements we needed were not available in those
references, and we develop some ad hoc methods (that work in the narrow context of
R-tree targets) in Sect. 4 (see, for example, the proof of Proposition 34).
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3 Space of measured foliations with poles

In this section we shall parametrize MF(n), the space of measured foliations on S
(up to measure-equivalence) with one pole-singularity defining (n − 2)-sectors at a
point p, where n ≥ 3. (For the terminology and definitions, see Sect. 2.2.) This is
done in Proposition 19. The arguments in this section extend to the case of more than
one pole of higher order, which we omit for the sake of clarity. The main result that
the extension yields is:

Proposition 10 Let S be a closed surface of genus g ≥ 2, and let ni ≥ 3 for i =
1, 2, . . . k. Then the space of foliations MF(n1, n2, . . . nk) is homeomorphic to R

χ ,
where χ = 6g − 6 + ∑

i (ni + 1).

The idea of the proof is to determine parameters for the restrictions of a foliation
inMF(n) to a neighborhood U ∼= D of the pole, and to its complement S\U , and to
relate them. The number of real parameters for the former is n−1 (see Proposition 17)
and the latter is 6g−6+3 (Proposition 11), and there is one parameter (the transverse
measure of ∂U ) that should agree for the two foliations to yield a measured foliation
on the surface S. Conversely, given 6g − 6 + n + 1 real parameters, we shall detail a
construction that recovers a unique foliation inMF(n).

To determine these parameters we consider the R-trees that are the leaf-spaces of
themeasured foliations when lifted to the universal cover.We recall that one advantage
of considering these dual trees is that the trees ignore the ambiguities associated to
Whitehead moves and so reflect only the equivalence classes of the foliations. Another
advantage, and one we will exploit in this section, is that one can use standard results
parametrizing the spaces of such metric trees (see Theorem 14 of §3.2). To build such
anR-tree from the data of the parameters, the leaf space T for the lift of the restriction to
S\U and the leaf-space TU for the lift of the foliation onU are equivariantly identified
along the the lifts of ∂U .

In the next section (Sect. 3.1), we recall a parametrization of themeasured foliations
on a surface-with-boundary culled from [1]; in our case we shall apply it to S\U . In
Sect. 3.2 we describe the local models and dual trees for the foliation on a disk-
neighborhood U of the puncture, and provide a parametrization. Finally, in Sect. 3.3,
we describe the “identification” of the trees mentioned above and complete the proof
of Proposition 19, the single pole version of Proposition 10. As noted, that proof
generalizes to the case of multiple poles stated in Proposition 10.

3.1 Surface with boundary

Recall that for a closed surface, the space of measured foliations MF can be given
coordinates by Dehn-Thurston parameters, that are the transverse measures (“lengths”
and “twists”) about a system of pants curves. (For details see [24].) When the sur-
face is compact with non-empty boundary, one can reduce it to the closed case by
doubling across the boundaries, and taking a system of pants curves that includes
the closed curves obtained from the doubled boundaries. This yields the following
parametrization—see [1] for a description, and Proposition 3.9 of that paper for the
proof. We provide a sketch of the argument for the reader’s convenience.
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Proposition 11 The space ofmeasured foliations (without poles)MF g,b on a surface

of genus g with b boundary components is homeomorphic to R
6g−6+3b.

Sketch of proof For simplicity, consider the case of a foliation F with transverse mea-
sure μ, on a surface with a single boundary component. By an isotopy of the foliation
relative to the boundary, one can assume that the leaves of F are either all parallel, or
all orthogonal, to the boundary. By doubling across the boundary, one obtains a mea-
sured foliation F̂ on a compact surface with an involutive symmetry. Such measured
foliations can be parametrized by Dehn-Thurston parameters (transverse measures
and twists) with respect to a symmetric pants decomposition that includes the curve
representing the (doubled) boundary. Other than this doubled boundary, there are then
a total of 6g−4 “interior” pants curves. Each “interior” pants curveC contributes two
parameters: the transverse measureμ(C) ∈ R≥0 and the “twist” coordinate θ(C) ∈ R

(see Dylan Thurston’s unpulished article [24] for details). This gives a parameter space
(μ(C), θ(C)) ∈ R≥0 × R, and together with the identification (0, t) ∼ (0,−t), this
gives a parameter space R≥0 × R/ ∼ that is homeomorphic to R

2.
Taking into account the involutive symmetry, exactly 3g − 2 interior pants curves

contribute independent pairs of parameters.
For the curve B corresponding to the doubled boundary, the “twist” coordinate

vanishes. Either the curve B has positive transverse measure i(B) = μ(B), or F̂
contains a foliated cylinder of closed leaves parallel to B, and we can define i(B) =
−L where L is the transverse measure across the cylinder. This yields a parameter
i(B) ∈ R.

With two real parameters from each of the 3g − 2 interior pants curves, and one
from the boundary curve, we obtain the parameter space described in the statement.

��

3.2 Foliations around a pole

Consider a coordinate disk U centered at the pole singularity p of order n ≥ 3. First,
we define a space of “model” measured foliations on U :

Definition 12 (Model foliations) The space Pn of measured foliations on U ∼= D

comprises equivalence classes of measured foliations with a pole-singularity at the
origin with (n − 2) sectors as in Definition 2, equipped with a cyclic ordering, such
that any leaf has at least one endpoint at the origin. In the terminology of Definition 2,
the disk U is contained in the sink neighborhood of the pole. Here, two measured
foliations in Pn are equivalent if they differ by Whitehead moves or an isotopy of
leaves relative to the boundary ∂U .

Remark In the definition above we do not assume that U is free of any m-pronged
singularities; ameasured foliation inPn , could have foliated half-planes and horizontal
strips arranged with such singularities on their boundary interfaces. In particular,
the horizontal strips could be bi-infinite in the induced singular flat metric on U\p
(running from the pole to itself, and contained in U ), or half-infinite (one end goes to
the puncture, the other gets truncated at the boundary ∂U . This gives rise to different
combinatorial possibilities, which are involved in the parametrization that follows.
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Fig. 4 The space Met0(2) of rooted metric trees is parametrized by the real number as shown above (c.f.
Theorem 16)

Heuristically, the parameters for these measured foliations on U are the transverse
measures of the (n−2) strips, together with the total transverse measure of the bound-
ary. In what follows, we shall work with the tree that is the leaf-space of the lift of the
foliation to the universal cover; the transverse measures then provide the metric on the
tree. Each strip then corresponds to a finite-length edge in the metric tree, and each
foliated half-plane corresponds to an infinite-length edge. The different combinatorial
possibilities of arrangements of the half-planes and strips are then reflected in the
combinatorial structure of the tree (see Fig. 4).

This metric tree shall form part of the real tree that determines the equivalence
class of a measured foliation with a pole-singularity on the surface S (see the remark
following Definition 3).

We first recall a definition and a result from [20]:

Definition 13 A metric expansion of a tree T with a single vertex v with V ≥ 4
labelled infinite-length edges emanating from it, is obtained by replacing the vertex
with a metric tree (see Fig. 5).

Note that the labelling provides a cyclic ordering to the infinite-edges around the
point at infinity where the edges are incident.

Theorem 14 (Theorem 3.3 of [20]) The space Met(V) of metric expansions of a
metric tree G at a vertex v of valence V ≥ 4 is homeomorphic to R

V−3.

Remark A metric tree obtained by a generic metric expansion at a vertex of valence
V has V − 3 edges of finite length. For each fixed isomorphism type of a generic
graph, these edge-lengths then form a parameter space homeomorphic to R

V−3+ since
the edge-lengths are positive reals. This forms a cell in the final parameter space; as
an edge-length tends to zero, we move to a boundary point of such a cell, that is also
a boundary point of an adjacent cell for different tree obtained by a Whitehead move.
The cells corresponding to different isomorphism types of such metric trees obtained
by Whitehead moves on the finite-length edges fit together to form an R

V−3.

A proof of Theorem 14 is obtained by interpreting the metric tree as the dual graph
of a triangulation of a polygonwithV labelled vertices: such a triangulation is obtained
projecting the convex hull of the graph of a function defined on the vertices, and the
space of such functions,when quotiented by the space of affinemapsAff(R2, R) ∼= R

3,
is precisely R

V−3.

123



Meromorphic quadratic differentials and measured foliations 89

Fig. 5 The two rooted metric trees above, having the edge adjacent to the root collapsed, can be thought
of as metric expansions of a tree with an additional (phantom) labelled edge (shown dotted)

A variant of this proof also yields a parametrization of the space of the following
objects:

Definition 15 A rooted metric tree T of valence V ≥ 2 is a metric tree with a
distinguished vertex v0 (the root), and V infinite-length edges with a labelling by
{0, 1, . . . ,V − 1} that determines their cyclic order at infinity.

Theorem 16 The space of rooted metric trees of valence V ≥ 2, denoted byMet0(V),
is homeomorphic to R

V−1.

Sketch of the proof We can decompose Met0(V) into V half-spaces M0, M1, . . .

MV−1, each homeomorphic toR
V−2×R≥0, that fit together to formR

V−1, as follows.
A half-space Mi (where i ∈ {0, . . . ,V−1}) in the above decomposition is obtained

by the subset of Met0(V) comprising rooted metric trees with the fixed labelling
{i, i + 1, . . . ,V, 1, 2, . . . , i − 1} of the infinite-length edges. (The arithmetic here is
assumed to be modulo V : note that a cyclic permutation of the labels corresponds to
the the other half-spaces.)

The set of such metric trees with a fixed labelling is a half-space because any such
tree has a unique edge adjacent to the root, and the rest of the tree can be interpreted as
obtained from a metric expansion inMet(V+1) (see Fig. 5 for the case when V = 3).

The length of the edge adjacent to the root provides the R≥0 factor, and the metric
expansions are parametrized by R

V−2 by Theorem 14.
Finally, the union of the V half-spaces yield R

V−1 because the half-spaces are
arranged in a cyclic manner, with adjacent half-spaces intersecting along a (sub)half-
spaceR

V−3×R≥0 contained in the boundaryR
V−2. The (sub)half-spaceR

V−3×R≥0
corresponding to the intersection of Mi , Mi+1 is the subset of metric trees where the
edges labelled i and i − 1 are both directly incident on the root vertex v0. ��
Proposition 17 The space of model foliations Pn is homeomorphic to R

n−3 × R≥0.

Proof For a foliation in Pn consider its restriction to the punctured disk U\p, where
p is the pole singularity.
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Fig. 6 The fundamental domain of the Z-invariant leaf-space of the foliation in Pn when lifted to Ũ\p
can be obtained for the metric expansion of a valence n vertex when ∂U has positive tranverse measure.
The labelling in cyclic order comes from the surface orientation

In the universal cover of the punctured disk U\p, the lift of this foliation thus
has a leaf-space that is a metric tree Y with a Z-action by isometries (here Z ∼=
π1(U\p)). Each edge dual to the lift of a horizontal strip acquires a finite length that
is the transverse measure, or Euclidean width, of the strip. Note that the Z-action
preserves each connected component of the lift of ∂U , and if such a component is a
bi-infinite path (and embedded R), the restriction of the action to the component is by
translations.

It suffices to parametrize the space of metric trees that may arise as a fundamental
domain for such an action by Z (see Fig. 6).

Case I. The boundary ∂U has positive transverse measure.
Note that the Z-action on the tree is by translation along an infinite axis that is a

concatenation of finite-length edges. Any fundamental domain D has (n − 2) infi-
nite rays with a labelling based on a cyclic ordering acquired from the orientation
of the surface, and in the generic case, D has (n − 1) finite-length edges; this is
one more than the number of edges in the leaf-space on U\p because of a choice
of basepoint q on ∂U that bounds the fundamental domain and, generically, sepa-
rates an edge between two infinite rays (see Fig. 4 for the case when n = 5). We
choose the basepoint q on an edge dual to a non-degenerate strip; note that the
assumption of positive transverse measure implies that not all strips are degener-
ate.

The two extreme points of this axial segment in D are then q− and q+ respectively,
where the latter point is the image under translation of the former one, and we include
only one of them in D.

The length of the path between q− and q+ is then the translation distance that is
the transverse measure of the boundary.

The space of such metric trees can be obtained from metric expansions of a single
tree, as we now describe.

Namely, let TU be a metric tree with a single vertex of valence n, and edges are
labelled {0, 1, . . . n − 1} in a cyclic order (see Fig. 7).

Any metric tree that can be a fundamental domain D then arises by considering
an expansion of graph, and assigning an additional edge lengths a0 and an−1 to the
edges labelled 0 and n − 1, that are adjacent to the endpoints q− and q+ respectively,
such that a0 + an−1 > 0. Here, the non-negative edge-lengths a0 and an−1 cannot
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both be zero as we had chosen the basepoint q to lie in the interior of an edge dual to
a non-degenerate strip.

Since q− and q+ are identified in the quotient, it is this sum that is the length of the
corresponding edge, and the real parameter of interest.

The metric expansions contribute (n − 3) real parameters, by Theorem 14, and the
additional edge length a0 + an−1 contributes one more parameter. Together, the space
of possible measured foliations with positive transverse measure is then homeomor-
phic to R

n−3 × R+ where we consider the last parameter to be the total transverse
measure (or translation length).

Case II. The boundary ∂U has zero transverse measure.
In this case the Z-action on the leaf-space has zero translation distance, and

fixes a distinguished point q. The fundamental domain D is then a planar metric
tree, with (n − 2) infinite prongs that acquire a cyclic labelling from the orienta-
tion of the surface, together with the distinguished vertex q that is a “root” of the
tree.

Then we are in the setting of Theorem 16, and we obtained a space of rooted metric
trees homeomorphic to R

n−3.
Observe that Cases I and II fit together continuously to give a total parameter space

that is thenR
n−3×R≥0: the second factor here is the transverse measure of the bound-

ary. For each fixed positive transverse measure τ > 0, the possible lengths of edges
between q± sum up to τ , and hence form a simplex in the space of metric graphs, that
shrinks to a point as τ → 0. ��

For the identification of the foliated diskU with S\U along the boundary ∂U , there
is an additional S1 parameter of gluing in the case when the boundary has positive
transversemeasure. It is convenient to record this by keeping a point p on the boundary
circle ∂U as part of the data of the foliated measured foliation on U , and we denote
by P̂n the resulting space of pointed measured foliations, namely

P̂n = {(F, p) where F ∈ Pn and p ∈ ∂U }.

A consequence of the preceding parametrization is:

Corollary 18 The space of pointed measured foliations P̂n is homeomorphic toR
n−1.

Proof As explained above, the non-negative real factorR≥0 in the parametrization for
Pn can be thought of as the (non-negative) transverse measure. The positive measure
τ and the choice of the additional point on ∂U ∼= S1 determines a point in a parameter
space (τ, θ) ∈ R+×S1, which can be thought of as polar coordinates for the punctured
plane. The case of zero transverse measure contributes an additional point to the
parameter space that fills the puncture. Thus, P̂n is homeomorphic to R

n−3 × R
2 =

R
n−1. ��
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3.3 Parametrizing MF(n)

We now combine the results of the preceding sections and prove the following para-
materization. In course of the proof, we give a careful description of the R-tree, dual
to the lift of a measured foliation with pole-singularities to the universal cover, that
shall be the non-positively curved (NPC) target of the harmonic map we construct in
Sect. 4.

Proposition 19 The space MF(n) is homeomorphic to R
6g−6+n+1.

Proof Fix a diskU about the singularity. We shall now combine a measured foliation
on S\U and a foliation FU ∈ P̂n (cf. Corollary 18) to produce a measured foliation in
MF(n).

The process of combining the foliation F ∈ MF g,b on S\U and themodel foliation
FU on U can be described as an equivariant identification of their dual R-trees (in
their lifts to the universal cover). We now describe this in detail.

For the surface with boundary S\U , let T0 be the R-tree that is the leaf-space of
the lifted foliation F̃ on S̃\U , and let

π : S̃\U → T0

be the projection map that takes each leaf of the lifted foliation F̃ to a unique point in
T0, which is equivariant with respect to an action of π1(S\U ).

In particular, the circle ∂U lifts to an equivariant collection of real lines Lα (for
α in some index set I ) in the universal cover S̃\U . Each Lα maps into the tree T0
injectively as an embedded axis that we denote by lα in the case when ∂U has positive
transverse measure, and to a point that we denote by qα when ∂U has zero transverse
measure.

By the equivariance of the above projection map π , in the case when the trans-
verse measure is positive, the infinite cyclic group generated by the boundary circle
〈∂U 〉 < π1(S\U ) acts on each such line lα by a translation with non-trivial translation
distance equal to the transverse measure. In the case when the transverse measure of
the boundary is zero, the action of this Z-subgroup fixes the vertex qα .

We may restrict the pointed foliation FU ∈ P̂n onU to the punctured diskU\p. On
the universal cover Ũ\p of U\p, the lifted foliation has a leaf space that is a metric
tree TU , and there is a projection πU : Ũ\p → TU which is equivariant under the
action of π1(U\p) = Z. This time the boundary ∂U lifts to a single line L in Ũ\p.
In the case the boundary has positive transverse measure, this embeds in the tree TU
as a bi-infinite axis lU , and the equivariance provides a Z-action corresponding to the
infinite cyclic subgroup generated by 〈∂U 〉 = π1(U\p) that acts by translation along
lU . In the case the boundary has zero transverse measure, the image of L is a single
vertex p ∈ TU , which is fixed by the Z-action (see Fig. 7).

We now describe the procedure of building a composite R-tree by identifying the
metric trees T0 and TU along the axes (or points) that correspond the lifts of ∂U (or
more accurately, the images of these lifts under the projection maps to the leaf-space
of the foliation).
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Fig. 7 The leaf-space TU in the case when ∂U has positive transverse measure (figure on left), and in the
case when ∂U has zero transverse measure (figure on right). In the former case theZ-action is by translation
along a bi-infinite axis l, and in the latter case, the Z-action fixes the point q

This identification can only be done when the transverse measures of ∂U for the
measured foliations on S\U and U are identical.

In the case of positive translation measure, each bi-infinite axis lα in T0 is identified
with the axis l in a copy of TU . Note that the action of Z restricts to an action by
translations, with identical translation length, on the axes lα and l. Thus, the action
agrees on the axes being identified, and the resulting space also acquires an action by
Z.

Typically there is a circle’sworth of ambiguity in this identification; this iswhere the
fact that the foliation FU is pointed is helpful; in particular, it provides a distinguished
point q on the circle ∂U .

Consider the orbit {q j,α| j ∈ Z} of the action on each lα ⊂ T0 that are lifts of this
point q ∈ ∂U = ∂(S\U ). Similarly, there is an orbit {q j | j ∈ Z} on l ⊂ TU .

We identify the real segment [q j,α, q j+1,α] on lα with the segment [q j , q j+1] on l,
for each j and α.

In the case the translation distance is zero, for each α, the point qα in T0, fixed by
the Z-action, is identified with the point q in TU . In this case there are infinitely many
copies of the fundamental domain of the Z-action on TU , indexed by j ∈ Z, attached
to the vertex q (as in Fig. 7).

We obtain a real tree T as the result of the identifications: indeed, removing a point
from any axis or point being identified disconnects each of the corresponding trees
they belong to, and hence the same holds for the space T .

Note that the action ofZ extends to the resulting T : in the case of positive transverse
measure the translations match along the identified axes, and in the case of zero
transverse measure, the generator ofZ acts on the attached copy of TU by theZ-action
that fixes the vertex q, and takes the j-th copy of the fundamental domain to the
( j + 1)-th copy, for each j ∈ Z.

In either case, the tree T admits an isometric action of π1(S\U ) = π1(S\p); and
is the leaf space of a measured foliation F̃ on S̃\p that descends to a foliation F on S
with a pole-singularity at p.

This foliation F can be thought of as obtained by identifying the foliations on S\U
and U along their common boundary ∂U . (Note that the leaves of either foliation
can be assumed to be either all orthogonal to ∂U or all parallel to it, in the case
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the boundary has zero transverse measure). Since the transverse measures of arcs are
determined by the metric tree, the equivalence class of such a measured foliation is
uniquely determined (see the remark following Definition 3).

Conversely, given a suitable choice of disk U , any foliation in MF(n) is isotopic
to one such that it restricts both to a model foliation in Pn on U , and to a measured
foliation on the surface-with-boundary S\U .

Let us now identify the parameter space arising from the constructions of these foli-
ations. By Proposition 11 the space of measured foliations on S\U is homeomorphic
to R

6g−6+3, and by Corollary 18 the space of possible pointed measured foliations on
U is homeomorphic to R

n−1. Recall that one parameter, namely the transverse mea-
sure of ∂U , must be identical for both measured foliations, and hence the combined
parameter space is R

6g−6+n+1, as required. ��
Example A special class of foliations are those of half-plane differentials defined in
[11]; such a foliation has a connected critical graph that forms a spine of the punctured
surface, and whose complement comprises foliated half-planes. Since any essential
simple closed curve is homotopic to the critical spine, their transverse measures all
vanish; so do the “local parameters” as in Definition 3 since there are no strips.

4 Proof of Theorem 1

We shall use the technique of harmonic maps to R-trees as introduced in Sect. 2.4. For
ease of notation, we shall deal with the case of a single pole p, that is, the cardinality
of the set P of marked points on the closed Riemann surface � is one; the arguments
extend mutatis mutandis to the case of several poles.

Let X̃ denote the universal cover of X = �\p, and let F̃ be the lift of the measured
foliation [F] ∈ MF(n) to this universal cover. Let T be the R-tree that is the leaf-
space of F̃ .

The collapsing map of the foliation F̃ defines an equivariant map from X̃ to T that
is harmonic. Conversely, given such an equivariant harmonicmap, its Hopf differential
(see Sect. 2.4) descends to a holomorphic quadratic differential on X .

The strategy of proof shall be to prove existence and uniqueness statements for
such maps, with prescribed asymptotic behaviour at the pole.

Uniqueness

Proposition 20 Let q1 and q2 be meromorphic quadratic differentials on � with a
pole of order n at p. If they induce the same measured foliation [F] ∈ MF(n),
and have identical principal parts with respect to the (already) chosen coordinate U
around p, then q1 = q2.

Proof In the universal cover, these two quadratic differentials determine two harmonic
collapsing maps h1 and h2 from X̃ to the same R-tree T . Recall that distances in the
tree correspond to transverse measures of arcs by (1). Pick a point x ∈ X̃ . Then we
can choose a basepoint x0 such that the paths γi in X̃ from basepoint x0 to x , are
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transverse to the horizontal foliation F̃i for qi , and their projection to the leaf-space T
are not disconnected by the projection of x0.

Then

dT (h1(x), h2(x)) =
∣
∣
∣
∣
∣
∣

∫

γ1

∣
∣�(

√
q1

∣
∣ −

∫

γ2

∣
∣�√

q2)
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∣

∣
∣
∣
∣
∣
∣

(9)

(Choosing the basepoint so that the projection of the paths lie on one side of its
projection ensures that the right hand side involves a difference of terms, and not a
sum.)

If the principal parts for q1 and q2 coincide, then examining the expressions in (4)
and (5) we can conclude that in a neighborhood of the pole, we have:

√
q1 − √

q2 =
{
g1(z) − g2(z) if n is even
z−1/2(g1(z) − g2(z)) if n is odd

where g1 and g2 are bounded holomorphic functions in such a neighborhood.
There are two consequences of these expressions. First, note that there is a neigh-

borhoodU of the pole so that, for x ∈ U , we may find a common arc γ that runs from
a point on ∂U to x ∈ U that is simultaneously transverse to the horizontal foliation
F̃1 for q1 and to the horizontal foliation F̃2 for q2. Thus choosing γ1 and γ2 to contain
such a common vertical arc γ (x) in the neighborhood U , and the basepoint x0 to lie
outside U , we may write

dT (h1(x), h2(x)) =
∣
∣
∣
∣
∣
∣

∫

γ1

∣
∣�(

√
q1)

∣
∣ −

∫

γ2

∣
∣�(

√
q2)

∣
∣

∣
∣
∣
∣
∣
∣

= C0 +

∣
∣
∣
∣
∣
∣
∣

∫

γ (x)

∣
∣�(

√
q1)

∣
∣ −

∫

γ (x)

∣
∣�(

√
q2)

∣
∣

∣
∣
∣
∣
∣
∣
∣

= C0 +
∫

γ (x)

∣
∣�(

√
q1 − √

q2)
∣
∣ (10)

where C0 bounds the expressions from (9) from the portion of the curves γ1 and γ2
in the complement of U ; the second equality follows after combining the integrals
over the common domain curve γ (x) near which we can simultaneously orient both
foliations F̃1 and F̃2.

The second consequence of the principal parts being identical and the expression (4)
holding in a neighborhoodU is that the (restricted) integral in (10) over γ is bounded.
In the case that n is even, this is immediate as the integrand is bounded (by a constant
C), and when n is odd, the integrand is integrable since in the neighborhood we have:

∫

γ (x)

∣
∣�(

√
q1 − √

q2)
∣
∣ ≤

∣
∣
∣
∣
∣
∣

∫

γ

C

z1/2
dz

∣
∣
∣
∣
∣
∣
= O(1)
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We conclude from this estimate and (10) that dT (h1(x), h2(x)) is bounded indepen-
dently of x .

Since this distance function is also subharmonic (see Lemma 8), and a punctured
Riemann surface is parabolic (in the potential-theoretic sense), then we see that the
distance function is constant. An argument identical to the one in the proof of Propo-
sition 3.1 in [5] then shows that this constant is in fact zero. We briefly recount the
argument of theirs: suppose x ∈ H

2 is a zero of q̃1 with a neighborhood � that does
not include any zeroes of q̃2, except perhaps x itself. Then the collapsing map h1 is
constant on a horizontal arc e ⊂ � that has an endpoint x . Since the image of the arc
h2(e) is at a constant distance from h1, and a sphere in a tree is discrete, the image
must be a point. Hence e is also horizontal for the quadratic differential q̃2; since this
is true for any choice of e, and the level set h−1

1 (h1(e)) branches at x , then the level
set h−1

2 (h2(e)) also branches at x . This implies that x is also a zero of q2. Thus, the
zeroes of q̃1 and q̃2 coincide, and since it is a basic consequence of the agreement of
the principal parts that the poles have the same order, we see that q1 and q2 are constant
multiples of each other. Since the principal parts are identical, the two differentials are
in fact equal. ��

Existence

In this section we prove that there exists a meromorphic quadratic differential on
� with a pole of order n at p that induces a given class of a measured foliation
[F] ∈ MF(n), and has any prescribed principal part P , as long as P is compatible
with F . (For the notion of compatibility, see Definition 6).

Choose a representative foliation F ′ ∈ [F] such that F ′|U is identical to the foliation
induced by P2dz2 onU . By a suitable isotopy of the foliation, we can further assume
that F ′|U is a “model foliation” in Pn (see Definition 12).

Recall that X = �\p. Lifting to the universal cover, the collapsing map for the
foliation F̃ ′ defines an equivariant map

φ : X̃ → T (11)

such that on any lift Ũ\p, the map φ coincides with the (lift of the) collapsing map
for the meromorphic quadratic differential P2dz2. (See Sect. 2.2 for the notion of a
collapsing map).

Note that since the foliation F ′ on U is in the space of model foliations Pn , the
leaf space of the lifted foliation F̃ ′ when restricted to any lift Ũ\p is a tree TU with a
Z-action by isometries, as described in Sect. 3.2.

The collapsing map φ restricted to any such lift thus maps to the subtree TU .
By a method of exhaustion and taking limits, we shall produce a π1(X)-equivariant

harmonic map

h : X̃ → T

such that the distance between the two maps h and φ is asymptotically bounded.
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We begin by considering an exhaustion

X0 ⊂ X1 ⊂ X2 ⊂ · · · (12)

of the punctured surface X by compact subsurfaces with boundary (a more particular
exhaustion shall be chosen in Sect. 4.2).

4.1 Harmonic map from surface-with-boundary

For each i ≥ 1, let Ti be the leaf-space of the foliation F ′ when restricted to the lift
of the subsurface Xi ; here we imagine Ti as a truncation of the tree T .

For each i , we first solve the Dirichlet problem of finding an equivariant harmonic
map hi : X̃i → Ti from X̃i to Ti that:

(I) Agrees with the map φ on the lifts of ∂Xi and
(II) Collapses along a foliation that is measure-equivalent to the restriction of F̃ ′ on

X̃i .

This harmonic map hi is obtained by:

(a) Taking a limit of a sequence of maps hmi (where m ≥ 1) from X̃i to Ti with the
prescribed boundary condition (I) on φ |̃

∂Xi
whose energy tends to the infimum

of energies for all such maps. The subsurface being compact provides an energy
bound, and Lemma 9 guarantees equicontinuity.
We wish to then apply the Arzelà-Ascoli theorem: see the remark just after
Lemma 9. To do so, we need, for each point x ∈ X̃i , to trap the images hmi (x) in
a compact set within the non-locally compact tree. Here we cite the proof, in the
case of a closed surface found in [28], Lemmas 3.3 and 3.4; an identical argument
works for a compact surface with boundary (as in the present case).
A brief summary of that proof is the following: elements of the fundamental
group π1(S) act on the tree by isometries, translating along different isometric
copies ofR, called axes. The equicontinuity of themaps hmi , together with the fact
that the axes of elements only meet along compact subintervals before diverging
(reflecting the NPC nature of the tree), result in a uniform bound on the distance
between the maps hmi and hM

i for any M > m.
We then look at the image hmi (B̃) of the lift B̃ ⊂ X̃i of a non-trivial closed
curve B on Xi . This image must meet the axis of the isometry represented by
[B] ∈ π1(S) on the tree T . By the uniform distance bound we eventually find a
point, say x ∈ X̃i , whose image hmi (x) under hmi converges.
The rest of the argument slowly leverages the existence of simpler sets of points
whose images converge or lie in a compact set into larger sets of points with those
properties. Start from that one point x ∈ X̃i and then connect that point x with
itself on X̃i along the lift of a closed curve B that goes through a singularity zmi
of the lifted foliation: we then trap the images hmi (zmi ) of that singularity zmi into
a segment along an axis corresponding to B, eventually finding that limit points
zi of singularities have the boundedness property we need. This argument is then
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promoted to arcs between such limiting singular points zi and then finally to cells
that these arcs bound.
The only comment needed to explicitly adapt this proof to the present setting is
to note that the boundary arcs ∂Xi already have images lying in a compact set of
the tree T , as their images were fixed by the hypotheses of the problem.

(b) It remains to check that the resulting harmonic map hi to T has a Hopf differential
with a foliation Fi that is measure equivalent to the one desired. Let T ′

i be the
leaf-space of the foliation Fi . It is well-known (see, for example, Proposition 2.4
of [5]) that there is a morphism of R-trees 
i : T ′

i → Ti such that the harmonic
map hi : X̃i → Ti factors through the collapsing map ci of the foliation Fi ,
that is, we have hi = 
i ◦ ci . Moreover, the morphism 
i is π1(X)-equivariant
where the surface-group action on Ti (and T ′

i ) is small, that is, stabilizers of arcs
are at most infinite-cyclic. However the analogue of Skora’s theorem ([22], see
also [9]) for a surface-with-punctures then asserts that any such morphism must
in fact be an isometry (i.e. there is no “folding”).

These steps (a) and (b) complete the proof of the existence of an equivariant har-
monic map hi satisfying (I) and (II) above.

For later use, we note the uniqueness of the solution of this equivariant Dirichlet
problem.

Proposition 21 The solution hi to the equivariant Dirichlet problem (I) and (II) is
unique.

Proof The style of argument is standard ([21], see also [19]): note that in the pre-
scribed homotopy class, we may construct an equivariant homotopy along geodesics
connecting the pair of image points hi (p) and h′

i (p), and along that homotopy, the
(equivariant) energy is finite, convex and critical at the endpoints. We conclude that
the energy is then constant along this homotopy and, by examining the integrand for
the energy functional, that the maps must differ by an isometry that translates along
an axis of the target tree. However, since the maps agree on the lifts of the boundary,
∂Xi , the maps in fact agree. ��

4.2 Taking a limit

To show that the family {hi } subconverges to a harmonic map h : X̃ → T , we
need to prove a uniform bound on energy of the restrictions to a lift of any compact
subsurface. For this, we shall follow a strategy similar to that in our previous paper
[11]. The extension of that argument depends crucially on our ability to choose an
exhaustion of the surface that we now describe.

A symmetric exhaustion

We shall choose a specific exhaustion of the punctured surface. In the neighborhood
U about the puncture, this relies on the normal forms (2) and (3) for a meromorphic
quadratic differential with a pole of order n.
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We consider the exhaustion of a neighborhood of the puncture by concentric disks
in the “normal” coordinate z of (2) or (3). Namely, we have

Ui = {z ∈ D
∗ | |z| < δ/ i} (13)

for each i ≥ 1, where δ > 0 is chosen small enough such that U1 (and hence all
subsequent Ui ) lie in the coordinate disk U chosen earlier.

We thus obtain an exhaustion

X\U = X0 ⊂ X1 ⊂ X2 ⊂ · · ·

where Xi = X\Ui for each i ≥ 1.

Consequences of symmetry

Recall that the collapsing map φ along leaves of the measured foliation for q produces
a Z-equivariant map from the universal cover ofU\p to the dual tree TU , which is the
leaf-space of the lift of the foliation F ′|U ∈ Pn (see Fig. 8).

Denote the annulus Ai = Xi+1\X1.
Since the foliation on Ai for i ≥ 1 is a restriction of the model foliation in Pn , the

image of the restriction φi = φ| Ãi
is the tree TU (see Sect. 3.1).

Passing to the quotient by the Z-action, we obtain a map

φ̄i : Ai → TU

where TU is a graph with single cycle (the quotient of TU—see, for example, the left
figure in Fig. 7—by the Z-action).

An immediate consequence of the preceding construction of an exhaustion is:

Lemma 22 When Ai is uniformized to a round annulus, the map φ̄i above has an
n-fold rotational symmetry when n is odd, and an n/2-fold rotational symmetry, when
n is even.

Fig. 8 The solution of the partially free boundary problem is the Z-equivariant map of least energy from
Ãi to TU that restricts to φ |̃

∂+Ai .
on one boundary component
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Proof The uniformized round annulus can be taken to be

Ai =
{

z ∈ D
∗ | δ

i
< |z| < δ

}

The desired rotational symmetry is evident from the fact that differential in (2) is

invariant under the coordinate change z �→ e
2π i
n z, for n odd, and the differential in (3)

is invariant under the coordinate change z �→ e
2π i
n/2 z for n even. ��

In particular, the corresponding image tree TU has an n-(resp. n/2-) fold symmetry
when n is odd (resp. even).

The key advantage of the symmetry, that the following lemma asserts, is that the
map φi can be further thought of as a branched cover of a harmonic map from a
“quotient” annulus Āi to an interval.

In what follows we shall fix n to be even.

Lemma 23 In the setting just described, there is a map fi from an annulus Āi to an
interval [−ci , ci ] for some ci > 0 such that

• fi has mean zero, and
• the map φ̄i on Ai is an n/2-fold cover of fi .

Namely, there is a n/2-fold covering map pi : Ai → Āi and a branched covering bi
from T 0 to [−ci , ci ] branched over 0, such that fi ◦ pi = bi ◦ φ̄i .

Proof Note that by the change of coordinates z �→ zn/2 = w, the differential (in a
neighborhood of the pole) is seen to be the pullback by an n/2-fold branched cover
of the differential

4

n2

(
1

w2 + a

w

)2

dw2 (14)

where the branching is over 0 in the w-coordinates.
Consider the exhaustion of a neighborhood of such a pole by

Ūi = {w ∈ D
∗ | |w| < (δ/ i)n/2} (15)

which lifts to our exhaustion (13) by the n/2-fold branched covering z �→ zn/2 = w.
We can then define the annulus Āi := Ū1\Ūi and the map fi to be the collapsing

map for the differential in (14).
This map has mean zero, as one can easily verify: the dual metric tree to the induced

foliation on the w-plane is the real line R, and the collapsing map has the expression

fi (w) = �
(

1

w2 + a

w

)

(16)

where for convenience we have dropped the multiplicative real factor as in (14). In
polar coodinates, this can be written as:

fi (r, θ) = − sin 2θ

r2
+ �a

r
cos θ − �a

r
sin θ (17)
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which has mean zero on any circle centered at the origin (r = constant).
Note that the image of its restriction to the boundary ∂Ūi is the interval [−ci , ci ]

where ci is the maximum value of the restriction.
Since the original differential given by the normal form (3) is an n/2-fold branched

covering of (14), the collapsing map φ̄i is n/2-fold branched cover of fi . ��

Decay along annulus

The key conclusion in the previous lemma is that φ̄i is then the lift of a harmonic
function on a cylinderwithmean zero on anymeridional circle. The following technical
lemma (a strengthened version of Proposition 4.11 of [11]) proves an “exponential
decay” for any harmonic function which has such mean-zero boundary conditions.
This will be subsequently used to prove a uniform energy bound on compacta for the
harmonic maps hi .

Lemma 24 Let C(L) be a flat Euclidean cylinder of circumference 1 and length
L > 1. Let h : C(L) → R be a harmonic function with identical maps f : S1 → R

on each boundary that satisfy:

• the maximum value of | f | is M, and
• the average value of f on each boundary circle is 0.

Then the maximum value of the restriction of h to a fixed collar neighborhood of the
central circle is bounded by O(Me−L/2), i.e there is a universal constant K0 so that
|h(L/2, θ)| ≤ K0Me−L/2, independent of the boundary values f of h.

Moreover, such an exponential decay holds for the derivative ∂θh.

The proof is by a straightforward “spectral decay” argument and is an extension of
a similar derivation in [11]; for the sake of completeness, we include a proof, but so
as not to interrupt the discussion, we relegate that argument to Appendix B.

Partially free boundary problem

The key to proving the uniform energy bound is to control the harmonic map (ie.
establish C0-bounds) in any lift of the annulus Ai . In what follows it shall be useful
to consider the harmonic map

ψi : Ãi → TU (18)

that is equivariant with respect to the Z-action on the spaces, and solves the following

Problem 25 (The partially free boundary value problem) Find a map ψi : Ãi →
TU which minimizes the equivariant energy amongst Z-equivariant locally square-
integrable maps from Ãi to TU that restrict to the map φ|

˜∂+Ai
on the lift of one of the

boundary components ∂+Ai , but has no prescribed condition on the lift of the other
boundary component ∂−Ai .

(Recall that Ai = Xi+1\X1. Here and in what follows ∂+Ai shall mean ∂Xi+1 and
∂−Ai that we call the “free boundary” will mean ∂X1.)
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We shall estimate the map ψi , and along the way, also prove the existence of such
a map. We summarize the latter as the following proposition.

Proposition 26 Consider the annulus Âi obtained by doubling across the free bound-
ary and solve the Dirichlet problem on the bi-infinite strip Ãi that is its universal cover,
with identical (and periodic) boundary conditions determined by the model map φ on
each boundary component. Call this map ψ̂i . Then the restriction of ψ̂i to one of the
halves of the strip (i.e. one that is a lift of Ãi ) is a solution ψi of the partially free
boundary problem (Problem 25).

Sketch of proof (details in the Appendix): We provide a brief sketch of the argument
here: We first show that a solution of the partially free boundary problem is character-
ized by having normal derivatives that vanish at the points of the free boundary where
its image avoids a vertex. By an analysis of the possible preimages of the vertices
of the target tree, we show that such preimages intersect the free boundary at finitely
many points (up to theZ-action). These imply that a solutionψi has normal derivatives
vanishing in all but finitely many points (up to the Z-action), and hence one can define
a weakly-differentiable map ψ∗

i on the universal cover of Âi that restricts to ψi and
its reflection on each half. By the boundedness of the derivatives in the L1-norm, the
above points are removable singularities for the holomorphic Hopf differential of ψ∗

i .
Hence this map ψ∗

i is harmonic, and by the uniqueness of the solution to the Dirichlet
problem, it must coincide with the map ψ̂i on the lift of the doubled annulus.

Moreover, by the existence of a solution to this Dirichlet problem (see Sect. 2.2 of
[17]; see also [28], and the argument described in Sect. 4.1, paragraph (a)), we obtain
a solution to Problem 25. ��

The solution of the partially free boundary problem thus extends to a solution of
the Dirichlet problem on the doubled annulus. By the uniqueness of solutions to the
Dirichlet problem, we then immediately also have:

Corollary 27 The solution to the partially free boundary problem is unique.

A uniform control

Before proving the energy bounds for hi , we continuewith our analysis of the solutions
to the partially free boundary problem ψi that we just introduced; in particular, we
aim to control the image of this map on the lift of the free boundary.

Recall that TU is the leaf-space of the lift of the model foliation in U\p to its
universal cover.

Lemma 24 is crucial in the following

Proposition 28 The map ψi |
˜∂−Ai

, which is the solution of the partially free boundary
problem when restricted to the lift of the free boundary, has uniformly bounded image
in the metric tree TU .

Proof First, consider the case that n is even.
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Recall fromProposition 26 thatψi is “half” of the solution ψ̂i to aDirichlet problem
on the strip that is the lift of the doubled annulus Âi , where the identical boundary
conditions are determined by the model map φ on each boundary component).

Note that by the structure of the foliation near the puncture, and its collapsing map
φ, the image of the map ψ̂i on the lifts of the two distinct boundaries of the annulus
is the same sub-tree T i

U ⊂ TU .
The convex hull of the sub-tree T i

U is itself, and hence the entire image of the
Z-equivariant harmonicmap is contained inTU . (Recall that because there is a distance-
decreasingmap on the (NPC) tree into a convex set, the image of an energy-minimizing
map is contained in the convex hull of the image of its boundary, lest a composition
with the distance decreasing projection reduce the energy of the map.)

By the equivariance, the solution ψ̂i passes to a quotient map from Ai to a graph TU
with one cycle. Moreover, by the symmetry of the boundary conditions, this quotient
map is in fact a n/2-fold cover of a harmonic function ψ̄i ofmean zero, as in Lemma23.

As asserted in Lemma 24, such a harmonic function with mean zero has an expo-
nential decay to the central circle.

Namely, consider the coordinates {(x, θ)|0 < x < 2L , 0 ≤ θ < 2π} on the double
of the annulus Āi . Then we have:

|ψ̄i (L , ·)| = O(ci e
−L) (19)

where note that L equals the modulus of the annulus Āi , and ci is the maximum value
achieved on the boundary, as in Lemma 23.

This exponential decay is inherited by the map ψ̂i in the cover.
Note that the above estimates of exponential decay depends on the modulus of the

annulus; this shall be the key estimate on the geometry of the map and its domain
annulus we will need, to conclude the proof of the proposition.

That is, though the maximum boundary value ci → ∞ gets larger as i → ∞, so
does the modulus of Āi , and the above decay shall balance out to prove the result.

To be more precise: ci is the maximum value of φ̄i given by (16), when the map
is restricted to the circle |w| = (δ/ i)n/2. Hence it grows like O(in). On the other
hand, the modulus of Āi can be calculated to be, from (15), of the order of O(n ln i).
Substituting in (29), we obtain |ψ̄i (L , ·)| = O(1) as desired.

All the preceding discussion in this proof was for the case when n was even.
For n odd, we reduce it to the former case by a trick of passing to a further double

cover as we now describe.
Namely, consider the quadratic differential with a pole of order 2n obtained by a

two-fold branched cover of (2). The exhaustion (13) lifts to a neighborhood of this
pole, and one can consider the partially free boundary problem on the lifts of the
corresponding annuli Âi , each a double cover of the original annulus Ai . The solution
ψi to the partially free boundary problem on Ãi is then a two-fold quotient of the
solution ψ̂i on this double cover. By the preceding argument for an even-order pole,
the map ψ̂i is uniformly bounded on the free boundary and hence so is the quotient
map ψi . ��
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We record for future use the following sharper consequence of the previous argu-
ment:

Corollary 29 There exists a δ > 0 such that ψi | Ãδ
has a uniformly (independent of

the index i) bounded image in TU , where Aδ
i is a fixed δ-collar of the free boundary

component ∂−Ai of the annulus Ai . Moreover, the weak angular derivatives of ψi are
uniformly bounded on this lift of Aδ

i .

Proof As before, we uniformize Ai as a flat Euclidean cylinder, and consider the
universal cover which is a flat strip Ãi . The decay of ψi and ∂θψi towards the lift of
the free boundary component ∂−Ai = ∂X1, implied by Lemma 24, provides a uniform
bound in any fixed collar-neighborhood of the free boundary. ��

Uniform energy bounds

We first note the following energy-minimizing property of the map φi = φ| Ãi
, being

the collapsing map for the foliation induced by the meromorphic quadratic differential
P2dz2, where recall that P was the desired principal part.

Lemma 30 The map φi has minimum equivariant energy among all Z-equivariant
smooth maps with the same boundary conditions on the lifts of ∂+Ai and ∂−Ai .

Proof This follows from the fact φi is a harmonic map to a tree: such a harmonic map
with fixed boundary conditions is unique since the target is negatively curved (see
[19]). On the other hand, an energy-minimizer exists for the Dirichlet problem (see,
for example, the proof sketch for Proposition 26) and is harmonic, hence φi must be
the energy-minimizer ��.

As in [11], we can now show that Proposition 28 implies that the energy of the
solution to the partially free boundary problem is comparable to the restriction of the
collapsing map on Ai :

Lemma 31 (Energy bounds) Let ψi be the solution to the partially free boundary
problem (18) and φ the collapsing map in (11). Then we have the following estimate
of equivariant energy:

E(ψi ) ≤ E(φ| Ãi
) ≤ E(ψi ) + K (20)

where K is independent of i .

Proof The first inequality follows from the energy-minimizing property of ψi . The
second inequality follows by noting that

(a) the collapsing map φ| Ãi
solves its own energy-minimizing problem given its

boundary values (Lemma 30), and
(b) we can construct a candidate map for this minimizing problem by adjusting ψ̃i

(at a uniformly bounded cost of energy) such that the boundary values on the lift
of the free boundary ∂−Ai agree with those of φ.
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We provide some more details of (b):
Note that the image of ψ̃i |̃∂−Ai

is uniformly bounded by Proposition 28, and conse-
quently also a uniformly bounded distance from the image of φ |̃

∂X1
, which is a fixed

compact set up to the Z-action.
Moreover, Corollary 29 asserts that the restriction of ψ̃i to the lift of a a δ-collar

neighbourhood of the free boundary ∂−Ai , has uniform bounds on the angular deriva-
tive.

The adjustment of the map ψi can be then described as follows.
Choose the δ- collar neighborhood Aδ

i of the free boundary ∂−Ai . The modification
of ψi is then by a linear interpolation across the lift of the collar, to achieve the
boundary values of φ at the lift of ∂−Ai . The uniform bound on distance ensures that
the stretch in the longitudinal direction is uniformly bounded, and the uniform bound
on angular derivatives ensures that so is the stretch in the meridional direction. Hence
the interpolating map on the collar has a uniformly bounded energy K , independent
of the index i . ��

This gives, in particular, a lower bound to the equivariant energy of hi restricted to
a lift of Ai :

Corollary 32 The harmonic map hi defined in Sect. 4.1 satisfies

E(hi | Ãi
) ≥ E(ψi ) ≥ E(φ| Ãi

) − K (21)

where ψi and φ are as in the above Lemma.

Proof The first inequality is from the energy-minimizing property of the solution to
the “partially-free-boundary problem”ψi , and the second inequality is from the second
inequality in (20). ��

The technique of [26] then provides a uniform energy bound of hi to compact sets:

Lemma 33 For any compact set Z ⊂ X, the restriction of hi to a lift of Z satisfies

E(hi |Z̃ ) ≤ C

where 0 < C < ∞ depends only on Z (and is independent of i).

Proof Recall that hi solves an energy-minimizing problem for equivariant maps from
X̃i to the tree T . Also, by construction, Xi = X1 ∪ Ai . Consider the candidate map
gi for the same energy-minimizing which restricts to h1 on the lifts of X1, and to the
collapsing map φ on the lifts of Ai . Note that by construction, these two maps hi and
φ agree on the lifts of the common boundary ∂X1; their derivatives may fail to match,
but since the curve ∂X1 is real-analytic, the measure of this set of non-differentiability
is zero so the map g has locally square-integrable weak derivatives.

Then for all i ≥ 1, we have

E(hi |X̃1
) + E(hi | Ãi

) = E(hi ) ≤ E(gi ) = E(h1) + E(φ| Ãi
)
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Combining with (21) then yields

E(hi |X̃1
) ≤ K + E(h1)

where the right-hand-side is independent of i .
A similar argument then yields uniform energy bounds on the lift of any compact

subset Z of X : namely, in the preceding argument, we replace the compact subsurface
X1 by a compact subsurface Xm (for some m > 1) in the exhaustion that contains Z .

��
We are now equipped to prove:

Proposition 34 The harmonic maps hi : X̃i → Ti subconverge, uniformly on com-
pacta, to a harmonic map h : X̃ → T .

We prove this in two steps: first, we show that the uniform energy bound of
Lemma33 implies that theHopf differentials�i of the harmonicmaps hi sub-converge
on compacta. The harmonicmaps hi are then collapsingmaps of the foliations induced
by �i ; along the convergent subsequence we have control on their leaf-spaces Ti that
are sub-trees of the fixed R-tree T . Since T is not locally compact, we need a further
topological argument to show that in fact, the images of a fundamental domain under
hi lie in a compact subset of T . This last fact then ensures the sub-convergence of the
sequence hi by an application of the Arzelà-Ascoli theorem.

In the sequel, we index our subsequence of maps as if they were a sequence, simply
to avoid typographical complexity. Let �i = Hopf(hi ) denote the Hopf differential
of the map hi .

Lemma 35 The Hopf differentials�i subconverge, uniformly on compacta, to a holo-
morphic differential � on X.

Proof Choose a compact set Z ⊂ X . Then Lemma 33 implies that the total energy
E(hi ) < C(Z) for some constantC(Z) depending on Z . But the L1 norm ‖�i |Z‖L1 =
E(hi |Z ) < C(Z), and so the restriction�i |Z of theHopf differentials�i to the compact
set Z are uniformly bounded in norm. Since Z has injectivity radius bounded from
below, we can find balls around every point in Z of uniform size so that around such
a point, there is an annulus A(r, R) of inner radius r ≥ δ bounded away from zero
on which �i has uniformly bounded L1 norm. By Fubini’s theorem, we then find, for
each point z ∈ Z , a circle C around z of radius at least δ > 0 on which

∫
C |�i | <

C1(Z) is uniformly bounded. But then the Cauchy integral formula uniformly bounds
|�i (z)| < C2(Z) and | ∂

∂z�i (z)| < C3(Z).
Thus �i |Z is a sequence of uniformly bounded holomorphic differentials on a

compact set, which subconverge by Arzelà-Ascoli. A diagonal argument then gives
subconvergence on X , as required. ��
Lemma 36 The Hopf differential � does not vanish identically on X.

Proof If the Hopf differential were to vanish identically, then the approximating dif-
ferentials �i would, on each compact set, be uniformly small (for large enough i).
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However, the distance distT (hi (p), hi (q)) between image points hi (p) and hi (q) is
bounded below by the horizontal �i -measure of an arc between p, q ∈ X̃ .

So choose an element γ ∈ π1(X) so that γ acts on the tree T by a non-trivial
translation along an axis; such an element γ is guaranteed by our construction of the
tree T as the leaf space of a measured foliation (so that the action of π1(X) on T
is small). In particular, we find a δ > 0 so that distT (hi (p), hi (γ · p)) > δ for any
choice of index i . But as p and q = γ · p live in some compact set Z ⊂ X̃ , we see
from the first paragraph that we may choose i so large that distT (hi (p), hi (q)) < δ,
a contradiction. ��

Proof of Proposition 34 By Lemma 35, the Hopf differentials �i converge to a holo-
morphic quadratic differential � on the punctured surface X .

By Lemma 36, the zeroes of such a non-trivial � are isolated, and we see the
following:

For any compact set Z ⊂ X on which � has no zeroes on ∂Z there is an index
I so that for i > I , we have that all of the zeroes of �i lie inside Z . In addition,
the foliations of �i are uniformly close. Thus we see that, for any fixed fundamental

domain FZ ⊂ X̃ \ Z , the leaf spaces T Z
i of �i |Z are all (1 + ε)-quasi-isometric, in

the sense that they are all the same finite topological graph, with edge lengths that are
nearly identical. We will assume that our compact set Z includes the set X1, so that
its complement is a subset of the cylinder X\Xm for some m.

Now consider a fundamental domain T ∗ for the action of π1(X) on the tree T . It
is also a graph with a finite number of vertices, each of bounded valence, with some
infinitely long prongs corresponding to the poles, and otherwise finite length edges.
Because each �i arises from a solution hi to an appropriate Dirichlet problem with
the horizontal foliation describing the level sets of the maps, each of our trees T Z

i
admits an isometric embedding into T ∗ (with the truncated prongs being taken into
semi-infinite prongs), up to some possible small trimming near the boundary points.
Claim The images of the vertices of T Z

i in T ∗ are constant in the index i , for i large
enough.

Proof of claim As a preparatory observation, note that the vertices of the tree T are
discrete, in the sense that all maps of continua into the vertex set are constant: this
is because the tree T is dual to the measured foliation [F] with which we began this
existence proof, and each vertex corresponds to a singular point of the foliation, of
which there are but countably many.

To see that the images of the vertices of T Z
i in T ∗ are constant in the index i , we

remark on the construction (Sect. 4.1) of the solutions hi to the equivariant Dirichlet
problem on the compact domain Xi . Naturally, since it was formed from a compact
exhaustion of X , the space Xi may be extended to be a sequence Xi ⊂ Xt in a
continuous family Xt which exhausts X ; for example, we could take Xt to just be the
sublevel set of distance t from some point p0 ∈ X . Note that by the same proofs for
the existence and uniqueness of hi (again Sect. 4.1), we obtain the existence and the
uniqueness of a solution ht to the equivariant Dirichlet problem on Xt .

One can see that these solutions ht are a continuous family of maps: note that each
has a holomorphic Hopf differential, and all of the differentials are bounded in L1 on
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the common domain of definition (say Xt0 , if t decreases to t0: to see the assertion,
we might, for example, just apply the proof of Lemma 35).

Thus, there is a converging subsequence of these differentials that converge, uni-
formly on compacta. On the lifts of the boundaries ∂Xt , the Dirichlet conditions for
the harmonic map ht (determined by the values of the differentials in a lift of a collar
neighborhood) converge by construction. Thus the limiting holomorphic differential
provides a solution to the equivariant Dirichlet problem for Xt0 . But as such a solution
is unique by Proposition 21, we see that the family ht converges to ht0 , as desired.

With that continuity established, after onemore observation, the rest of the argument
will be classical. Each of the quasi-isometric embeddings T Z

t defines a finite collection
of vertices of the full tree T as images of the vertices in T Z

t . But we now see that these
vertices vary continuously with t . On the other hand, as observed at the start of the
argument for the claim, the vertices in a tree form a discrete set, so therefore must be
fixed as t varies. This establishes the claim. ��

We conclude that, for t (or i) sufficiently large, the images in T of the zeroes of �t

(or�i ) on a fundamental domain FZ must be constant. Thus, because if the vertices of
a subtree are fixed, then so are the edges between those vertices, and we then conclude
that the ht - (or hi -) images of FZ take values in a fixed compact subtree TZ of the
larger not-locally-compact tree T .

With that last statement in hand, the rest of the convergence proof is classi-
cal: the maps hi are equicontinuous on each compacta, which follows from the
Courant-Lebesgue Lemma (Lemma 9) appliedwith the energy bound fromLemma 33.
Moreover, the images of any fixed point lies in a compact set. Thus the proposition
follows from the Arzelà-Ascoli theorem, followed by a diagonal argument.

This concludes the proof of Proposition 34. ��
Remark Much of this argument could be replaced by a modification of the (slightly
longer) proof of Lemma 3.4 in [28], but this argument provides a different (and briefer)
explanation.

4.3 Finishing the proof

To conclude the proof, we need to verify that the Hopf differential of the limiting map
h indeed satisfies the requirements of Theorem 1.

Principal part is P

First, observe that:

Lemma 37 The distance d(h, φ)|U between the restrictions of h and the model map
φ as in (11), to the neighborhood U of the pole, is uniformly bounded.

Proof Since hi → h uniformly on compact sets, the restriction of the maps hi to the
lifts of the boundary circle ∂U = ∂X1 are of uniformly bounded distance (by say
B > 0) from the corresponding restriction of the map φ. Consider the restriction of
these maps to any lift Ãi of the annulus Ai . By definition, the distance between hi and
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φ on the boundary ∂̃+Ai = ∂̃Xi is zero. By the preceding observation, this distance is
uniformly bounded above by B on ∂̃−Ai . Since the distance function is Z-equivariant,
it defines a subharmonic function on the annulus Ai which is uniformly bounded on
the boundary components. Applying the Maximum Principle, we conclude that it is
uniformly bounded by B throughout Ai . Since this holds for each i , we obtain the
same bound, on any compact set, for the distance between the limiting map h and φ.

��
Corollary 38 The Hopf differential of h has principal part P.

Proof Recall that the Hopf differential of φ is P2dz2, and hence has principal part P
(as defined in Sect. 2.3). The proof then is exactly as in the proof of Proposition 20:
namely, if Hopf(h) and P differed at some term (involving a negative power of z),
then the distance function between the maps to the corresponding trees will blow up
nearer the pole. This divergence then contradicts the previous lemma that the distance
function between the corresponding collapsing maps is uniformly bounded. ��

Measured foliation is F

Finally, it remains to check that

Lemma 39 The measured foliation F induced by the Hopf differential Hopf(h) is
measure-equivalent to F.

Proof Recall that there is a morphism between the leaf-space R-tree T for the lifted
foliation F̃ to the desired R-tree T , that the harmonic map h factors through. (See, for
example, Prop 2.4 of [5].) It suffices to prove that this morphism from T to T is an
isometry.

We first note that since the harmonic maps hi → h uniformly, this C0-convergence
can be promoted in regularity to a local C1-convergence: for smooth maps from
two-dimensional domains, this is a standard application of elliptic regularity and the
Cauchy-integral formula (as in the proof of Lemma 35). To see this in ourmore general
setting where the target is a tree, note that the difficulty is that not only are the maps
hi not smooth in a classical sense at the zeroes of the Hopf differentials, but also the
estimates for theC1 norms can depend on the distance to those zeroes. However, these
zeroes are isolated points, and classical regularity theory can be applied on restricting
to the regions disjoint from them where the target is locally a segment, where the
C0-convergence can be promoted in regularity to a local C1-convergence on those
non-singular points. But the Hopf differential of hi is defined only in terms of the
first derivatives of hi , and the global energy bound will bound the L1 norm of Dhi on
some circle in any annular region on the surface with a bound that depends only on
the radius of the circle (which we can take to be of moderate size and not dependin
on distance to the zeroes of the Hopf differential). The Cauchy-integral formula for
that Hopf differential Hopf(hi ) then applies and one obtains convergence of the Hopf
differentials Hopf(hi ) at both preimages of vertices as well as at preimages of edge
points. Since themeasured foliations for hi are induced by these quadratic differentials
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Hopf(hi ), the convergence of the Hopf differentials then implies the convergence of
the associated measured foliations.

Moreover, we have noted in Sect. 4.1 that for each approximating harmonic map
hi , the corresponding morphism to the truncation Ti of T is an isometry.

Then to verify that there is no folding from the limiting tree T to T—concluding
the proof—we argue as follows.

Choose a pair of distinct leaves l, l ′ of F̃ that map to two distinct points p, q in the
dual treeT for F̃ . It suffices to show that themorphism fromT to T takes p andq to two
distinct points: since the foliations F̃i → F̃ by the argument above, their leaf-spaces
converge in the Gromov-Hausdorff sense to T . In particular, let the leaves li , l ′i of F̃i

converge to l and l ′ respectively. Then the distance between the images of the leaves
li , l ′i in the R-tree for F̃i , is uniformly bounded below, for all large i . However, since
from the previous paragraph there is no folding for these approximating foliations, we
see that the images of these leaves by the map hi have a distance in Ti ⊂ T that is
uniformly bounded below. Since hi → h uniformly, this lower bound persists in the
limit, and hence h maps these leaves to distinct points of T . ��

Conclusion of the proof of Theorem 1

The existence part of Theorem 1 now follows from Corollary 38 and Lemma 39,
while statement of the uniqueness was proven in Proposition 20. ��

5 Relation to singular-flat geometry: shearing horizontal strips

Our Theorem1 asserts that there are local parameters at each pole (namely, coefficients
of the principal part with respect to a chosen coordinate chart), that, together with the
measured foliation, uniquely specify a meromorphic quadratic differential. Recall that
these parameters form a space

∏k
i=1(R

ni−2 × S1) of total dimension N − k where
N = ∑k

i=1 ni is the sum of the orders of all poles (combining the contributions from
each pole—seeLemma7).We conclude the paper by discussing a geometric viewpoint
for these parameters, for the case of a generic meromorphic quadratic differential.

Let Q(S, n1, n2, . . . nk) be the space of meromorphic quadratic differentials on a
surface S of genus g ≥ 1 (with respect to varying complex structures), with k ≥ 1
poles of order ni ≥ 3 for 1 ≤ i ≤ k. This total space of quadratic differentials can be
considered as a bundle over Teichmüller space:

Q(S, n1, n2, . . . nk)⏐
⏐
⏐
�

Tg,k

For any foliation F ∈ MF(n1, n2, . . . nk), let Q(F) ⊂ Q(S, n1, n2, . . . nk) be
the subspace of the total space of all differentials whose induced horizontal measured
foliation is F .
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The main result of the paper, Theorem 1, asserts that the above projection, when
restricted to Q(F), is a surjective map to Tg,k . A dimension count for Q(F) then gives
6g − 6+ 2k parameters coming from Tg,k , and N − k for the fiber over each point as
noted above, yielding a total of χ = 6g − 6 + ∑

i (ni + 1).
In this section, we introduce the operation of “shearing” along horizontal strips in

the foliation, and observe that as a consequence of the work of Bridgeland-Smith in
[3], for a generic foliation F , this parametrizes a neighborhood of any point in Q(F)

(see Proposition 41).

Horizontal strips

The key geometric feature of a generic differential with higher order poles is that the
induced singular-flat metric has horizontal strips as introduced in Sect. 2.3, namely,
maximal subdomains isometric to S(a) = {z ∈ C| − a < Im(z) < a} for some a ∈
R+, with the induced horizontal foliation being the horizontal lines {�z = constant}.

In fact, from the work of Strebel, a generic element of Q(S, n1, n2, . . . nk) has

• all simple zeroes,
• an induced horizontal foliation with each non-singular leaf starting and ending at
poles, and

• an induced singular flat metric that comprises χ = 6g−6+∑
i (ni +1) horizontal

strips, in addition to the (ni − 2) half-planes around each pole.

We also refer to the work in [3] (see, for example §4.5 of that paper). In fact, a generic
differential as described above is a “saddle-free GMN-differential”, as introduced in
that paper.

We also recall from [3] that each horizontal strip H of a generic differential q has
a unique zero on each boundary component, and the complex period of the horizontal
strip is then

Per(H) = ±
∫

γ

√
q (22)

where γ is an arc in the strip between the two zeroes. (Here the sign can be chosen
such that Per(H) ∈ H, by a choice of ‘framing’ in the orientation double-cover.)

Shears

The absolute value of the imaginary part of such a period gives the width or transverse
measure across the strip, c.f. (1).

The following geometric operation on a horizontal strip keeps the width fixed, but
changes the real part of the period.

Definition 40 A shear along horizontal strip of width w is the operation of cutting
along the bi-infinite horizontal leaf in the middle (at height w/2), that is isometric to
R, and gluing back by a translation. The shear parameter is the real number that is the
translation distance, where the sign is determined by a choice of framing or orientation
of the strip.
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Performing a shear with parameter s ∈ R along an (oriented) horizontal strip results
in a new singular-flat surface in Q(S, n1, n2, . . . nk), that is a new Riemann surface
equipped with a meromorphic quadratic differential with the given higher order poles.
In what follows let χ = 6g − 6 + ∑

i (ni + 1). Our main observation is:

Proposition 41 Let F ∈ MF(n1, n2, . . . nk) be a generic measured foliation, that
is, having χ horizontal strips. Let Q(F) be the corresponding subspace of the total
space Q(S, n1, n2, . . . nk). Then for any singular-flat surface �0 ∈ Q(F), there is a
neighborhood V of the origin in R

χ such that the map

S : V → Q(F)

that assigns to a real χ -tuple s̄ = (s1, s2, . . . , sχ ) the singular-flat surface obtained
by shearing�0 along the horizontal strips by shear parameters s̄, is a diffeomorphism
to its image.

Proof By the definition of a shear, the new horizontal strips have periods whose
differences with the previous periods are the real shear parameters. Note that this
operation does not change the imaginary parts of the periods. In particular, by (1), all
transverse measures of arcs are unchanged by the shearing operation. Hence, the shear
operation does not change the horizontal measured foliation.

By Theorem 1, and the discussion at the beginning of this section, the subspace
Q(F) is locally homeomorphic to R

χ , and hence the dimensions of the domain and
target match.

The fact that S is a local diffeomorphism is then a consequence of Theorem 4.12
of [3], which asserts that the complex periods across the strips in fact form local
parameters for the total space of differentials Q(S, n1, n2, . . . nk). ��
Remark It would be interesting to describe a geometric parameterization of the entire
subspace Q(F) using shear operations on strips. One of the difficulties is that the
shearing map S in Proposition 41 , when extended to R

χ , is not proper. Indeed, if it
were proper, then by the Invariance of Domain themapSwould be a homeomorphism,
which cannot hold as Q(F) is not simply-connected: for example, as a bundle over
Tg,k , the fibers have an S1 factor. The non-properness is explained by the phenomenon
that as shear parameters diverge, the periods of simple closed curves transverse to the
foliation might remain bounded, since any such period is the sum of periods across
different strips, which might have opposing signs that allow for cancellations.
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Appendix A: Solving the partially free boundary problem

In this appendix we provide the proof of Proposition 26, restated here in a self-
contained way.

We shall follow the arguments in Sect. 4.3 (Doubling trick) in [11] almost verbatim.
In that paper, the targetwas a k-pronged graphwith a single vertex; in the present paper,
the target is a graph with finitely many vertices, and the arguments are very slightly
modified.

For A a conformal annulus, let Â be the annulus obtained by doubling the annulus
A across its boundary component ∂−A. That is, if we denote, as usual, the boundary
components ∂A = ∂+A � ∂−A, then we set Â to be the identification space of two
copies of A, where the two copies of ∂−A are identified. We write this symbolically
as Â = A �∂−A Ā, where Ā refers to A equipped with its opposite orientation.

Proposition 42 Let A be a conformal annulus and letχ be ametric graph with finitely
many vertices and edges of finite length. Fix a continuous map φ : ∂+A → χ on one
boundary component that takes on each value only finitely often, and consider the
solution h : A → χ to the partially free boundary problem that requires h to agreewith
φ on that boundary component ∂+A. Then thismap h extends by symmetry to a solution
ĥ of the symmetric Dirichlet-problem on the doubled annulus Â = A+�∂−A A− where
one requires a candidate φ to be the map on both boundary components of Â. In
particular, we have h = ĥ|A+ .

Warmup to the proof of Proposition 42 We begin by assuming that the solution h to
the partially free boundaryproblemdescribed abovehas imageh(∂−A)of the boundary
component ∂−A disjoint from the vertices of χ .

By this assumption, near the boundary ∂−A, we have that h is a harmonic map to
a smooth (i.e. non-singular) target locally isometric to a segment.

First, we show that for the solution of the partially free-boundary problem, the
normal derivative at the (free) boundary component ∂−A vanishes. We include the
elementary computation below for the sake of completeness.

Consider a family of maps ut : A → R defined for t ∈ (−ε, ε). A map u0 = h in
this family is critical for energy if

0 = d

dt

∣
∣
∣
t=0

E(ut )

= d

dt

∣
∣
∣
t=0

1

2

∫∫

A
|∇ut |2dvolA

=
∫∫

A
∇u̇ · ∇u0dvolA

= −
∫∫

A
u̇�u0dvolA +

∫

∂A
u̇

∂

∂ν
u0dvol∂A

where the last equality is obtained by an integration by parts. (Here ∂
∂ν

indicates the
outward normal derivative to the boundary.)
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Thus, since u̇ = d
dt

∣
∣
∣
t=0

ut is arbitrary (and vanishes on the boundary component

where the value of u is fixed), we see that the necessary conditions for a solution u0
to the partially free boundary value problem are that

�u0 = 0 (in the interior of A)

∂

∂ν
u0 = 0 (on the free boundary). (23)

We then show that the partially free boundary solution h is “half” of a Dirichlet
problem on a doubled annulus. We follow an approach developed by A. Huang in his
Rice University thesis (see Lemma 3.5 of [14]).

Let ĥ : Â → χ denote the map defined on Â that restricts to h on the inclusion
A ⊂ Â and, in the natural reflected coordinates, on the inclusion Ā ⊂ Â. By the
continuity of h on A and its closure, it is immediate that ĥ is continuous on Â. The
vanishing of the normal derivative at the boundary (23) implies that the gradient
∇h|∂−A is parallel to ∂−A. As that gradient is continuous on A up to the boundary
(see e.g. [7], Theorem 6.3.6), we see that ĥ has a continuously defined gradient on the
interior of the doubled annulus Â.

Next, note that because ĥ is C1 on Â, we have that ĥi is weakly harmonic on Â. In
particular, we can invoke classical regularity theory to conclude that ĥ is then smooth
and harmonic on Â. Thus, since χ is an NPC space, the map ĥ is the unique solution
to the Dirichlet harmonic mapping problem of taking Â to χ with boundary values
h|∂+A.

This concludes the proof of the model case.
Next, we adapt this argument to the general case when the image of the boundary

h(∂−A) might possibly contain a vertex of the graph χ .
To accomplish the extension to the singular target case, we first analyze the behavior

of the level set h−1(O) of a vertex O within the annulus A, particularly with respect
to its interaction with the free boundary ∂−A. ��
Lemma 43 Under the hypotheses above, any connected component of the level set
h−1(O) of a vertex O within the annulus A meets the free boundary ∂−A in at most
a single point.

Proof We begin by noting that the proof of the Courant-Lebesgue lemma (see
Lemma 9), based on an energy estimate for h on an annulus (see, for example, Lemma
3.2 in [28]) extends to hold for half-annuli, centered at boundary points of ∂−A. Apply-
ing that argument yields a uniform estimate on the modulus of continuity of the map h
on the closure of A only in terms of the total energy of h. Thus there is a well-defined
continuous extension of the map h to ∂−A. We now study this extension, which we
continue to denote by h.

First note that there cannot exist an arc � ⊂ A∩ h−1(O) in the level set for O in A
forwhich�meets ∂−A in both endpoints of ∂�. If not, then since A is an annulus, some
component of A\� is bounded by arcs from ∂−A and�. But as ∂−A is a free boundary,
we could then redefine h to map only to the vertex O on that component, lowering the
energy. This then contradicts the assumption that h is an energy minimizer.
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Focusing further on the possibilities for the level set h−1(O), we note that by the
assumption on the boundary values of h on ∂+A being achieved only a finitely many
times, the level set h−1(O) can meet ∂+A in only a finite number of points (in fact
the number of them is also fixed and equal to a number K in subsequent applications,
since the boundary map would be a restriction of the collapsing map for a pole of finite
order).

Therefore, with these restrictions on the topology of h−1(O) in A in hand, we see
that by the argument in the previous two paragraphs, each component of h−1(O) then
must either be completely within, or have a segment contained in ∂−A, or - the only
conclusion we wish to permit - connects a single point of ∂−A with a preimage of the
vertex on ∂+A.

Consider the first case where a component of h−1(O) is completely contained
within ∂−A. A neighborhood N of a point in such a component then has image h(N )

entirely within a single prong, so the harmonic map on that neighborhood agrees with
a classical (non-constant) harmonic function to an interval. Thus in a neighborhood
of the boundary segment, say on a coordinate neighborhood {�(z) = y ∈ [0, δ)},
the requirements from Eq. (23) and that h(0) = O and non-constant imply that the
harmonic function h to (i) is expressible locally as �(azk) + O(|z|k+1) for some
k ≥ 1 and some constant a ∈ C

∗, (ii) be real analytic, and (iii) satisfy ∂h
∂y = 0

(where z = x + iy). It is elementary to see that these conditions preclude this segment
h−1(O) from being more than a singleton: that h−1(O) contains a segment defined
by {y = 0, x ∈ (−ε, ε)} implies that the constant a in condition (i) is real. But then
0 = ∂h

∂y = �(akzk−1) + O(|z|k) also on that segment {y = 0, x ∈ (−ε, ε)}: thus
a = 0, and so the map h must be constant, contrary to hypothesis.

The same argument rules out the case when the level set h−1(O) meets the free
boundary ∂−A in a segment, and that segment is connected by an arc of h−1(O) to
∂+A. Namely, for this situation, we apply the argument of the previous paragraph to
a subsegment of h−1(O) on ∂−A with a neighborhood whose image meets only an
open prong, concluding as above that such a segment on ∂−A is not possible.

Thus the intersection of such a component of the level set h−1(O) with the free
boundary ∂−A is only a singleton, as needed. ��

Conclusion of the proof of Proposition 42: it remains to consider the case when the
image of the boundary ∂−A by h contains a vertex O . It is straightforward to adapt,
as follows, the argument we gave in the warmup for the smooth case to the singular
setting.

Consider a neighborhood of a point on h−1(O) ∩ ∂−A. Doubling the map on that
half-disk across the boundary ∂−A yields a harmonic map from the punctured disk
to the graph (defined everywhere except at the isolated point h−1(O) ∩ ∂−A). That
harmonic map is smooth on the punctured disk and of finite energy, and hence has a
Hopf differential of bounded L1-norm. The puncture is then a removable singularity
for that holomorphic differential, and hence for the harmonic map.

The extended map ĥ is then harmonic on the doubled annulus, and is the (unique)
solution to the corresponding Dirichlet problem, as required.
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(Note that the normal derivative of the map may have a vanishing gradient at the
boundary prior to doubling; this results in a zero of the Hopf differential on the central
circle of the doubled annulus.) ��

Appendix B: Proof of Lemma 24

Consider first the special case when f (θ) = Meinθ where n ≥ 1 and M is a real
coefficient.

We compute that the Laplace equation �h = 0 has solution

h(x, θ) =
(
sinh nx + sinh n(L − x)

sinh nL

)

Meinθ (24)

where we have used the boundary conditions h(0, ·) = h(L , ·) = f .
Thus, at x = L/2 we then obtain

|h(L/2, θ)| ≤ K · Me−|n|L/2 (25)

for some (universal) constant K .
For general boundary values f , we have the Fourier expansion

f (θ) =
∑

n �=0

Mne
inθ

where note that there is no constant term because the mean of the boundary map f
vanishes. The coefficients of f satisfy

∑

n �=0

|Mn|2 = ‖ f ‖22 ≤ M2 (26)

and the general solution is:

h(x, θ) =
∑

n �=0

(
sinh nx + sinh n(L − x)

sinh nL

)

Mne
inθ

From (25) we find:

|h(L/2, θ)| ≤
∑

n �=0

K · Mne
−|n|L/2 (27)

Note that the geometric series

∞∑

n=1

e−nL =
(

e−L

1 − e−L

)

≤ (K ′)2e−L (28)

123



Meromorphic quadratic differentials and measured foliations 117

for the constant K ′ = (1 − e−1)−1/2 ≈ 1.26 (once we assume that L > 1).
By the Cauchy-Schwarz inequality on (29) and using (26) and (30) , we then get:

|h(L/2, θ)| ≤ 2K · M · K ′e−L/2

which is the required bound.
For proving the decay of derivative along the θ -direction, note that from (24) we

have

hθ (x, θ) =
∑

n �=0

(
sinh nx + sinh n(L − x)

sinh nL

)

n · Mne
inθ

and thus just as in (25) we can derive:

|hθ (L/2, θ)| ≤
∑

n �=0

|n| · K · Mne
−|n|L/2 (29)

This time estimating the series yields

∞∑

n=1

n · e−nL = e−L

(1 − e−L)2
≤ (K ′′)2e−L (30)

for the constant K ′′ = (1 − e−1) ≈ 1.6 (once we assume that L > 1).
Thus, by an application of the Cauchy-Schwarz inequality as before, we get:

|hθ (L/2, θ)| ≤ 2K · M · K ′′e−L/2

which is the analogous exponential decay for the θ -derivative of h. ��
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