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1 Introduction.

Consider a properly immersed minimal surface M in R
3 with area A(r) in balls B(r) of

radius r centered at the origin. By the monotonicity formula, the function A(r) = A(r)
r2

is monotonically increasing. We say that M has area growth constant A(M) ∈ (0,∞], if

A(M) = limr→∞ A(r). Note that under a rigid motion or homothety M ′ of M , the number

A(M) = A(M ′), and so, A(M) ≥ π, which is the area growth constant of a plane. We say

that M has quadratic area growth, if A(M) < ∞.

Basic results in geometric measure theory imply that for any M with quadratic area

growth and for any sequence of positive numbers ti → 0, the sequence homothetic shrinkings

M(i) = tiM of M contains a subsequence that converges on compact subsets of R
3 to a limit
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minimal cone C in R
3 over a geodesic integral varifold in the unit sphere S2, which consists

of a balanced finite configuration of geodesic arcs with positive integer multiplicities. C is

called a limit tangent cone at infinity to M .

In 1834, Scherk [14] discovered a singly-periodic embedded minimal surface Sπ
2

in R
3

with quadratic area growth constant 2π. Away from the x3-axis, Scherk’s surface is asymp-

totic to the union of the (x1, x3)-plane and the (x2, x3)-plane. Geometrically Scherk’s singly-

periodic surface may be viewed as the desingularization of these two orthogonal planes,

which form its unique limit tangent cone at infinity. In 1988, Karcher [2] defined a one-

parameter deformation Sθ, θ ∈ (0, π
2
], of Scherk’s original surface Sπ

2
, which are also called

Scherk surfaces and which may be viewed as the desingularization of two vertical planes

with an angle θ between them. The limit tangent cone at infinity to Sθ consists of the

union of these planes. We remark that under appropriate homothetic scalings, the surfaces

Sθ converge to a catenoid as θ → 0. Note that a catenoid has a plane of multiplicity two

as its limit tangent cone at infinity.

In [6], Meeks presented the following three conjectures related to minimal surfaces with

quadratic area growth.

Conjecture 1. (Unique Limit Tangent Cone Conjecture, see Conjecture 11 in [6].) A

properly immersed minimal surface in R
3 of quadratic area growth has a unique limit

tangent cone at infinity.

Conjecture 2. (Quadratic Area Growth Conjecture, see Conjecture 13 in [6].) A properly

immersed minimal surface M in R
3 has quadratic area growth if and only if there exists a

standard double cone in R
3 that intersects M in a compact set. By standard double cone,

we mean the union of all lines in R
3 passing through the origin and through some ε-disk

on S2, ε < π
2
.

Conjecture 3. (Scherk Uniqueness Conjecture, see Conjecture 10 in [6].) A connected

properly immersed minimal surface M in R
3 with quadratic area growth constant A(M) <

3π must be a plane, a catenoid or a Scherk singly-periodic minimal surfaces Sθ, θ ∈ (0, π
2
].

The main goal of this paper is to prove Conjecture 3 under the additional hypothesis of

infinite symmetry.
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Theorem 1. A connected properly immersed minimal surface in R
3 with infinite symmetry

group and area growth constant less than 3π is a plane, a catenoid or a Scherk singly-periodic

minimal surface.

We view Theorem 1 as a first step in resolving Conjecture 3. We hope that some of the

ideas used in the proof of Theorem 1 will eventually lead to a proof of this more general

conjecture and that such a proof will in turn lead to a positive solution of the following

fundamental singularities question.

Conjecture 4. (Isolated Singularities Conjecture, see Conjecture 4 in [6].) Suppose M is

a minimal surface in a closed geodesic ball B in a Riemannian three-manifold such that

∂M ⊂ ∂B and M is properly embedded in B punctured at the center of the ball. Then,

M extends across the puncture to a smooth compact embedded minimal surface in B.

Suppose now that M is a properly immersed minimal surface in R
3 with infinite symme-

try group. Then, M is either a surface of revolution, and so, is a catenoid, or M is invariant

under a screw motion symmetry with possibly trivial rotational part and the symmetry acts

in an orientation preserving manner on M . In [11], Meeks and Rosenberg studied properly

embedded minimal surfaces M in R
3, which are invariant under a group Z of isometries

generated by a screw motion symmetry with vertical axis and whose quotient surface M in

the flat three-manifold R
3/Z has finite topology. They proved that the ends of such a M

are asymptotic to horizontal planes, vertical flat half annuli (quotients of half planes in R
3)

or helicoid ends in R
3/Z. Thus, if M has quadratic area growth and M has finite topol-

ogy (finitely generated fundamental group), then M must have ends asymptotic to vertical

half annuli. Such annular ends of M are called Scherk ends, because the singly-periodic

quotients Sθ of the classical Scherk examples, Sθ ⊂ R
3, θ ∈ (0, π

2
], have this type of end. It

follows that M is also invariant under a pure translation, and so, after a rigid motion and

homothety, we will assume that Z = {(0, 0, n) | n ∈ Z} acts by translation on R
3 in this

case.

The next theorem is the key result that we need to prove Theorem 1.

Theorem 2. The Scherk minimal surfaces Sθ are the unique connected minimal surfaces

in R
3/Z with four Scherk ends.
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To our knowledge, this theorem is the first uniqueness result for singly-periodic Scherk

surfaces of genus greater than 1. The case of genus 0 was shown by Meeks and Rosenberg

[9], and the case of genus 1 was carried out in the doctorial thesis of Hai-Ping Luo [5].

We emphasize a corollary of Theorem 2, by noting that if M ⊂ R
3/Z has ends asymptotic

to vertical half annuli, then its lift to R
3, in the complement of a vertical cylinder, is

asymptotic to four half planes. Thus, we may regard such a surface as a periodic minimal

desingularization of the intersection of two planes, and rephrase Theorem 2 as:

Corollary 1. The Scherk minimal surfaces Sθ are the unique connected periodic minimal

desingularizations of the intersections of two planes.

Our proof of Theorem 1 is broken up into a series of propositions, which appear in

sections of the manuscript. Let M ⊂ R
3/Z be a connected properly immersed minimal

surface with four Scherk ends. The lifted surface M ⊂ R
3 then has quadratic area growth

constant 2π. Applying the monotonicity formula for area to M at a possible point of

self-intersection, we see that M is an embedded minimal surface. In section 2, we prove

that the corresponding M has two vertical planes of Alexandrov symmetry, just as the

classical Scherk examples have. These planes decompose M into four nonempty closed

simply connected regions; we study two one-forms underlying the Weierstrass representation

of M . These forms naturally define flat structures on each of these four regions in M , and

these flat structures develop to one of the two complements of a zigzag in E
2. In section

3, we prove a local rigidity theorem for the surfaces M with fixed angle θ between their

Scherk ends. The implicit function theorem then asserts that in terms of the angle map

between the Scherk ends θ : Mκ → (0, π
2
], defined on the moduli space Mκ of examples

M of genus κ in R
3/Z (defined up to congruence), we have that every component of Mκ

is a nontrivial curve C and θ|C : C → θ(C) ⊂ (0, π
2
] is a diffeomorphism. In section 4,

we prove that θ : Mκ → (0, π
2
] is proper, and so, θ|C : C → (0, π

2
] is a diffeomorphism. In

section 5, we prove that for α close to 0, θ−1(α) is one of the Scherk examples Sα. Thus,

Mκ contains only one component, which is the component of Scherk examples. This result

proves Theorem 2.

In section 6, we prove that if M is a properly embedded minimal surface in R
3 with

A(M) < 3π, then A(M) = π and M is a plane or A(M) = 2π. Under the assumption that

M has infinite symmetry group, we then prove that M is either a catenoid or M is invariant
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under a group Z of translations with M = M/Z having finite topology. Then, our results

from section 5 complete the proof of Theorem 1.

Our basic strategy of proving Theorem 2 is to show that the angle map θ on the moduli

space is open and proper and that examples with small angle in Mκ are Scherk; this strategy

is motivated by the proofs of two previous uniqueness theorems in the literature. Lazard-

Holly and Meeks [4] used this approach in their characterization of the family of Scherk

doubly-periodic minimal surfaces S̃θ, θ ∈ (0, π
2
], which are also parametrized by the angle

between the ends of their quotient surfaces, as being the only properly embedded minimal

surfaces in R
3 with genus 0 quotients. A similar approach was also used by Meeks, Perez

and Ros [8] to characterize of the one-parameter family of Riemann minimal examples,

the helicoid and the plane, as being the only properly embedded periodic genus 0 minimal

surfaces in R
3. In another direction, Perez and Traizet [13] have recently classified the

properly embedded singly-periodic minimal surfaces with quotient surfaces having genus 0

and finite topology; their classification theorem has similar structural attributes and they

prove that these surfaces are precisely the Scherk towers defined earlier by Karcher [2].

Their classification result then leads to the classification [12] of properly embedded doubly-

periodic minimal surfaces in R
3 whose quotients have genus 1 and parallel annular ends in

T × R, where T is a flat torus. We remark that this last classification result implies that

these genus 1 minimal surfaces are the same examples which were defined by Karcher in

[3].

Finally, we remark that the idea used in our proof of Theorem 1 of demonstrating the

local rigidity of a minimal surface in a moduli space of flat structures is a cornerstone of the

work of Weber and Wolf ([20, 18, 19]) in their Teichmüller-theoretic approach to existence

problems in minimal surface theory.

2 Existence of Alexandrov planes of reflectional sym-

metry.

The following proposition is well-known to experts in the field and the proof (unpublished)

we give is due to Harold Rosenberg.
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Proposition 3. Let M ⊂ R
3 be a properly embedded minimal surface invariant under

translation by the vectors Z = {(0, 0, n) | n ∈ Z} and such that the quotient surface M =

M/Z has four Scherk ends and the genus of M is κ. Let Ax1 and Ax2 be the vertical annuli

parallel to the x1 and x2 axes, respectively, which are quotients of the vertical (x1, x3)- and

the (x2, x3)-planes, respectively by the Z-action.

Then:

1. After rigid motion, we may assume M is invariant under reflection in the vertical

annuli Ax1 , Ax2, which each intersect M orthogonally in κ + 1 strictly convex simple

closed curves contained in the respective annuli.

2. The regions of M on either side of Ax1 or Ax2 are graphs over their projections

to the respective annuli. In particular, the (x1, x3)-plane and the (x2, x3)-plane are

Alexandrov planes of reflexive symmetry for M , after a rigid motion of M .

Proof. Consider the flux vectors

vi =

∫
γi

(∇x1, ∇x2), i = 1, 2, 3, 4

defined for oriented loops γ1, γ2, γ3, γ4 around the four cyclically ordered Scherk ends of M .

Since each of these vectors is a unit vector and the sum of these vectors is zero by the

divergence theorem, we see that after a rotation of M around the x3-axis, we must have

v1 = (cos α, sin α), v2 = (cos α,− sin α), v3 = −v1 and v4 = −v2, where α ∈ (0, π
4
]. Note

that the Scherk ends of M are asymptotic to ends A1, A2, A3, A4, of flat vertical annuli,

where vi is parallel to Ai.

Now consider the family E(1, t) of vertical annuli, which are parallel to Ax1 and pass

through the point (0, t, 0), for t ∈ R. Let R(1, t) : R
2 × R/Z → R

2 × R/Z denote reflection

across E(1, t), let M+(1, t) denote the portion of M on the side of E(1, t) which contains

large positive x1 valued points of M and let M−(1, t) = R(1, t)(M+(1, t)). Note that

for t > 0 sufficiently large, the surface M+(1, t) consists of two almost flat annular end

representatives for M and ∂M+(1, t) = ∂M−(1, t) = M ∩ M−(1, t).

Define t1 to be the infinum of the values t such that M+(1, t) is a nonnegative graph

with bounded gradient over its projection to E(1, t) and ∂M−(1, t) = M ∩ M−(1, t). By
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the interior maximum principle and the Hopf maximum principle applied along ∂M−(1, t1),

we observe that M+(1, t1) is a graph over its projection to E(1, t1), R(1, t1)(M) = M

and M is orthogonal to E(1, t1). This observation is just the standard one that arises in

the application of the Alexandrov reflection argument, when one take into account the

maximum principle at infinity [10] which guarantees that an end of M−(1, t1) cannot be

asymptotic to an end of M unless M−(1, t1) ⊂ M .

Note that ∂M+(1, t1) consists of a finite number of simple closed curves in E(1, t1), since

it has compact boundary. Furthermore, M+(1, t1) is a planar domain with two ends, since

it is a graph over a proper noncompact planar domain in the annulus E(1, t1) with two

ends. Since the Euler characteristic χ(M) = 2(1 − κ) − 4 = −2 − 2κ, then ∂M+(1, t1) =

M ∩ E(1, t1) consists of κ + 1 simple closed curves. Since these curves are planar lines of

curvature on M and M+(1, t1) is a graph over its projection to E(1, t1), then the simple

closed curves in ∂M+(1, t) are strictly convex curves bounding disks in E(1, t1).

Similarly, we have for some t2 a related annulus E(2, t2) parallel to Ax2 , which is an

Alexandrov annulus of symmetry for M . After a fixed translation of M , we may assume that

the circle E(1, t1) ∩E(2, t2) is (0, 0)× R/Z ⊂ R
2 × R/Z. The proposition now follows.

3 The angle map θ : Mκ → (0,∞] is a local diffeomor-

phism.

Our goal in this section is to prove the following result.

Proposition 4. For any component C in Mκ, the image θ(C) is an open subset of (0, π
2
]

and θ|C : C → θ(C) is a diffeomorphism.

The proof of Proposition 4 will depend on the following lemma.

Lemma 5. If M ∈ Mκ with θ(M) = θ0, then M is locally rigid, i.e., there are no defor-

mations of M though a family of minimal surfaces in Mκ with the same angle θ0.

Before we begin the proofs, we need to recall the Weierstrass representation and set

some notation. Recall that for a Riemann surface R with a holomorphic function g and
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a holomorphic form dh (not necessarily exact, despite the notation), we may define a

conformal branched minimal immersion via a map F : R → E
3 by

z 7→ Re

∫ z

ρ0

(
1
2

(
g − 1

g

)
dh, i

2

(
g + 1

g

)
dh, dh

)
. (1)

For this surface, the function g will be the Gauss map (postcomposed with stereo-

graphic projection) and dh will be the complexified differential of the third coordinate in

E
3. Conversely, given a conformal minimal immersion F : R → E

3 with Gauss map g and

complexified differential dh of the third coordinate, the surface may be represented by the

expression (1). The induced metric on the minimal surface is given by

dsF (R) =
1

2

(
|g| + 1

|g|

)
|dh|; (2)

thus a regular minimal surface will have zeroes of dh of order n balanced by poles or zeroes

of g of the same order.

The global problem for producing minimal surfaces is that of well-definedness: analytic

continuation around a cycle must leave the map unchanged. Thus we require

Re

∫
γ

1
2

(
g − 1

g

)
dh = Re

∫
γ

i
2

(
g + 1

g

)
dh

= Re

∫
γ

dh = 0

(3)

for every cycle γ ⊂ R.

With this background in hand, we may begin the proof of Lemma 5.

Proof. Let M be the lift of M to R
3. Let g and dh denote the Weierstrass data of M in

the standard notation. These combine to define the forms gdh and 1
g
dh, which we restrict

to one of the fundamental domains of the surface with respect to the Z2 ⊕ Z2 group of

Alexandrov reflections guaranteed to exist by Proposition 3.

3.1 The shape of the developments of |gdh| and |1
g
dh|.

The fundamental domain described above is planar, and as the group elements act as isome-

tries of the singular flat metrics |gdh| and |1
g
dh|, the forms gdh and 1

g
dh develop injectively
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to planar Euclidean domains, say Ωgdh and Ωg−1dh bounded by a ‘zigzag’ boundary, as we

describe in just a moment. Before we do that, however, we note that we already see that

as the fundamental domain is periodic with respect to a translation (in space), which is an

isometry of |gdh| and |1
g
dh| as well, then the developed image of the domain is invariant by

a cyclic group of translational isometries (of the plane).

Much of our attention in this section will be focussed on the boundaries of the developed

domains Ωgdh and Ωg−1dh, as those boundaries contain much of the geometry of the surface

M . Indeed, from the geometry of M , we recognize the basic shape of the zigzag boundary

of the developed image in E
2. To draw this boundary, begin by drawing an arc downwards

for some distance at a slope of −1. Then make a left turn and draw a segment upwards at

a slope of +1. Then draw downwards along a segment of slope −1, etc. Continue drawing

in this way n = 2κ + 2 segments (n is even and κ is the genus of M) and then repeat the

pattern indefinitely, both backwards and forwards. This construction is meant to determine

the gdh structure (the portion of the plane above the zigzag) for the surface M .

The 1
g
dh structure is then determined by the requirement that its periods should be

conjugate to those of the gdh structure, i.e.
∫

gdh =
∫

γ
1
g
dh for all cycles γ ⊂ M . So we do

this: on another plane, we draw another zigzag, so that the portion of the plane above that

zigzag will correspond to the 1
g
dh structure. The conjugate period requirement is that we

draw it as follows: we draw the first arc at a slope of +1 and of exactly the same length as

the first segment on the first (gdh) zigzag. Then we draw the second arc at a slope of −1 of

exactly the same length as the second segment on the first zigzag. We draw the third arc at

slope +1 and of the same length as the third segment of the first zigzag. We continue this

construction for all n segments and then repeat in both directions to guarantee symmetry

by an infinite group of translations (i.e. isometries of the range E
2 of development).

We assert that the developments Ωgdh and Ωg−1dh of a fundamental domain for the

action of the Z2⊕Z2 group of Alexandrov reflections on M have the forms described above.

In effect, we have to prove two statements to justify this: first we need to show that the

boundary of those domains Ωgdh and Ωg−1dh are piecewise straight, and then we need to

show that those straight edges meet at angles that alternate between π
2

and 3
2
π. For the first

claim, note that those Alexandrov reflections are isometries of the flat singular metrics |gdh|
and |1

g
dh|, and that the boundary of the fundamental domain is fixed by the isometry. But
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as a smooth fixed set of an isometry is totally geodesic, and the metrics |gdh| and |1
g
dh|

are flat and smooth away from the the poles and zeroes of g, we see that the smooth

components of the boundary of the developed images (Ωgdh and Ωg−1dh) of the fundamental

domain of M is bounded by straight lines. Next observe that at the endpoints of those

geodesic segments (those endpoints corresponding to the 2κ + 2 points where M meets

the intersection Ax2 ∩ Ax1 described in Proposition 3), the forms gdh and 1
g
dh alternate

between being regular and having second order zeroes. (Also, one of those two forms has

a double zero at such a point if and only if the other one of the forms is regular there.) Of

course, the developed image of a holomorphic one-form with a zero of order k has a cone

point with cone angle 2π(k + 1); as these endpoints of the straight lines are fixed points

of all four of the reflections, we see that one-quarter of the cone-angles will be visible in

one of the fundamental domains. Thus the boundaries will be composed of straight lines,

meeting at angles that alternate between π
2

and 3
2
π, with angles at corresponding points of

Ωgdh and Ωg−1dh disagreeing, as claimed.

Because the gdh and 1
g
dh structures are defined on the same Riemann surface, there is

a conformal map between those planar domains (above the corresponding zigzag).

In all of this, we have ignored the flat structure for the form dh. This is because, following

the same procedure for the development of dh as we did for the developments of Ωgdh and

Ωg−1dh, we see that the form dh develops on a fundamental domain to a domain with

piecewise straight edges meeting at angles of π. Thus the developed image is a (geometric)

halfplane with a periodic collection of distinguished points on the boundary. As any such

domain satisfies the (vertical) period condition that the distinguished points lie horizontally

parallel to each other, we see that any such domain will satisfy the relevant period condition,

and there is no restriction on the geometry of this domain. This geometric fact corresponds

to the observation that the developed domain doubles to a geometric sphere, so that the

form dh is exact. From both points of view, we cannot expect to glean much information

from the period condition for M on dh.

3.2 The angle between the ends.

Having described the geometric structure of the developments Ωgdh and Ωg−1dh of the defin-

ing Weierstrass forms gdh and 1
g
dh of M , our next goal is to describe the moduli space
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M(θ0) of candidates for surfaces with asymptotic angle fixed at θ = θ0. To do this, we

need to recognize the angle between those asymptotic planes in the zigzags, as our moduli

space will be defined in terms of zigzags.

Proposition 6. There is a function m(θ) which is strictly monotone in θ so that if

the Scherk ends of M make an angle of θ with one another, then the zigzag boundaries

of the domains Ωgdh and Ωg−1dh are invariant by a group of translations generated by

〈z 7→ z + `M(e) exp(im(θ))〉, where `M(e) is the length of the translation vector of M and

i =
√
−1.

We begin by considering the quotient of the surface by a single vertical plane of sym-

metry. A single fundamental domain of the quotient has flux
−→
F across this boundary equal

to the flux across its ends, the latter given by

−→
F = (2 cos(θ/2))h~n. (4)

Here θ is the angle between the planes, h is the (normalized) height of the fundamental

domain, and ~n is the (appropriate) normal to the reflective planes. Of course, the pair of

ends of the domain is homologous to the κ + 1 closed curves {γ1, . . . , γκ+1} of intersection

between the plane and the surface. As these curves are orthogonal to the plane, the flux

across those circles is given by

−→
F =

κ+1∑
i=1

`M(γi)~n

=

(
κ+1∑
i=1

∫
γi

1

2
(|g| + 1

|g|)|dh|
)

~n

=
1

2

(
κ+1∑
i=1

[∫
γi

|gdh| +
∫

γi

|1
g
dh|
])

~n,

as the line element on the surface is given by dsM = 1
2
(|g| + 1

|g|)|dh|. Thus, we can rewrite

the length of the flux vector as

F = |−→F | =
1

2

κ+1∑
i=0

[`|gdh|(γi) + `|gdh|(γi)].
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We now consider the quotient by action of reflection in the other vertical plane. As

reflection about this plane is an isometry for the metrics |gdh| and |1
g
dh|, we see that we

may rewrite the previous equation as

F =
κ+1∑
i=0

[`Ωgdh
(Γi) + `Ωg−1dh

(Γi)].

Here, we multiply by two because we are only measuring lengths on a single fundamental

domain of the Z2⊕Z2 action (instead of in the pair of fundamental domains in the previous

line), and we interpret γi as having trace Γi in that domain. Yet, by construction, the arcs

Γi are the arcs of the zigzags which all have the same slope, say +1. Since, by construction

as well, we have

`Ωgdh
(Γi) = `Ωg−1dh

(Γi),

we conclude

F = 2

κ+1∑
i=0

`Ωgdh
(Γi). (5)

We consider next the total translational displacement of the zigzag, i.e. the Euclidean

distance between a point and its image under a generator of the isometry group of Ωgdh or

Ωg−1dh. Elementary Euclidean geometry describes this quantity in terms of the the segments

of the zigzag, as follows. Note that if we project a zigzag along one of its directions, we

obtain a segment composed of isometric images of the the arcs of one slope, and if we

project in the orthogonal direction, we obtain a segment composed of isometric images of

arcs of the other slope: the translational displacement is the length of the hypotenuse of the

right triangle with these two segments as legs. Now the total translational displacement is

normalized by the requirement that the translation `M(e) of the end is fixed; if Γ is an arc

around an end of a fundamental domain, then `M(Γ) = 1
2
(`|gdh|(Γ)+ `|g−1dh|(Γ)) = `Ωgdh

(Γ).

Thus, `M(e) = `Ωgdh
(Γ)+o(1) (as Γ tends towards the end e) and this fixes the translational

displacement length .

In summary, from equations (4) and (5), we know that the total length, say L+(θ), in

Ωgdh of the segments {Γ0, . . . , Γκ} (of slope +1) is a monotone function of θ ∈ (0, π), while

the length of the total displacement vector of the segments in a fundamental domain has

length fixed independently of the angle θ. Now the difference between the endpoints of a
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fundamental domain of the zigzag is described as having length `M(e) and argument given

as arctan(L+

L− )− π
4
, where L− is the total length of all of the segments of the zigzag of slope

−1. Thus, as L2
− + L2

+ = `M(e)2, we see that the the slope of the orbit of a point in Ωgdh

under the action of the cyclic group of translations is monotone in the asymptotic angle θ

between the ends.

For the rest of the proof of Lemma 5, we will assume that the angle between the ends

is fixed. The passage above shows that this forces the zigzag boundary to have an orbit

whose slope is m(θ0), which is a well-defined constant depending only on θ0.

3.3 Deformations of Orthodisks.

In general, a domain bounded by a zigzag with orthogonal edges is known as an orthodisk.

An orthodisk has geometry described by the positions of its vertices {Pi}. A pair of or-

thodisks with conjugate edge vectors
−−−−→
PjPj+1 are called conjugate orthodisks. We have

shown in section 3.1 how a minimal surface of the type we are considering in this paper

gives rise to a conjugate pair of orthodisks. Moreover, such a conjugate pair of orthodisks

is quite special, as the identity map on the minimal surface descends to a conformal map

between the orthodisks which takes vertices on one orthodisk, say Ωgdh, to corresponding

vertices on the other orthodisk, say Ωg−1dh. In this subsection, we will study a moduli space

of pairs of conjugate orthodisks; these pairs will usually not be related by a conformal map

which preserves corresponding vertices.

To introduce this space, consider a surface M ∈ Mκ with θ(M) = θ0, as described

in the statement of Proposition 6. Then the domains Ωgdh and Ωg−1dh for M have zigzag

boundaries with slopes m(θ0) as described in the previous subsection. There is also then

a 2κ-dimensional family {(Ωgdh, Ωg−1dh)} of pairs of domains bounded by deformations of

those zigzags invariant under the same group of Euclidean planar isometries as for M :

of course, most of the pairs in this space will not be related by a conformal map which

preserves corresponding vertices, as would be the case for the pair, say Z0, of domains for

M .

We then consider a family {Mt} of minimal surfaces containing M = M0; these then

induce, as above, a family {Zt} of such pairs of zigzags passing through Z0, which would

deform through domains with zigzag boundaries. Infinitesimally, then, we can compute
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the general form of the (infinitesimal) Beltrami differential for the gdh domain and for

its counterpart on the 1
g
dh domain. This pair represents a tangent direction to the pair

(gdh, 1
g
dh), construed to be a point in the product of Teichmuller spaces of the quotient

domains.

With all of this background, the crux of the argument is to compute those Beltrami

differentials. In particular, let us denote by, say ν, the Beltrami differential prescribing the

deformation on the 1
g
dh structure, and by, say µ, the Beltrami differential parametrizing

the deformation of the gdh structure. We then pull back ν to the gdh structure via the

assumed conformal map F and obtain a Beltrami differential F ∗ν. Then, if µ is the Beltrami

differential for the gdh structure, we compute (!) F ∗ν = −µ.

The upshot of this result is that the two domains Ωgdh and Ωg−1dh cannot remain confor-

mally related for t 6= 0, unless the lengths of all of the segments are preserved, ie., gdh and
1
g
dh do not change, which means that the family {Mt} of minimal surfaces is infinitesimally

unmoving.

In particular, from F ∗ν = −µ, and since −µ is not equivalent to µ unless both are

equivalent to zero, we conclude that neither structure has deformed. But one can check

that this can only mean that no periods have changed, and so, the minimal surfaces {Mt}
have only deformed by a congruence/homothety. That concludes the argument, at least in

outline form.

We need to formalize the previous discussion. Let Ωgdh and Ωg−1dh denote the orthodisk

structures for the forms gdh and 1
g
dh, respectively. We are concerned with relating the

Euclidean geometry of the orthodisks (which corresponds directly with the periods of the

Weierstrass data, as in the construction above) to the conformal data of the domains Ωgdh

and Ωg−1dh. From the discussion above, since a family of minimal surfaces {Mt} will always

give rise to a corresponding family {(Ωgdh(t), Ωg−1dh(t))} of orthodisks, it is clear that the

allowable infinitesimal motions can be parameterized in terms of the Euclidean geometry of

Ωgdh and Ωg−1dh. These infinitesimal motions are given by infinitesimal changes in lengths

of finite sides with the changes being done simultaneously on Ωgdh and Ωg−1dh to preserve

conjugacy of the periods. The link to the conformal geometry is that a motion which

infinitesimally transforms Ωgdh, say, will produce an infinitesimal change in the conformal

structure. Tensorially, this tangent vector to the moduli space of conformal structures is
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represented by a Beltrami differential.

3.3.1 Infinitesimal pushes.

Here, we explicitly compute the effect of infinitesimal pushes of certain edges on the con-

formal geometry. This is done by explicitly displaying the infinitesimal deformation and

then computing the Beltrami differential.

In what follows, we rotate our picture by an angle of π/4 so that all of our boundary

edges are either horizontal or vertical. This simplifies our notation somewhat, even if it

complicates the meaning of ’conjugacy’.
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Figure 1: Domain for Beltrami Differential Computation

We first consider the case of a horizontal finite side, say E; as in the figure above, we see

that the neighborhood of the horizontal side of the orthodisk in the plane naturally divides

into six regions which we label R1,...,R6. Our deformation fε = fε,b,δ differs from the identity

only in such a neighborhood, and in each of the six regions, the map is affine. In fact, we have

a two-parameter family of these deformations, all of which have the same infinitesimal effect,

with the parameters b and δ depending on the dimensions of the supporting neighborhood.
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fε(x, y) =



(
x, ε + b−ε

b
y
)
, {−a ≤ x ≤ a, 0 ≤ y ≤ b} = R1(

x, ε + b+ε
b

y
)
, {−a ≤ x ≤ a,−b ≤ y ≤ 0} = R2(

x, y +
ε+ b−ε

b
y−y

δ
(x + δ + a)

)
, {−a − δ ≤ x ≤ −a, 0 ≤ y ≤ b} = R3(

x, y − ε+ b−ε
b

y−y

δ
(x − δ − a)

)
, {a ≤ x ≤ a + δ, 0 ≤ y ≤ b} = R4(

x, y +
ε+ b+ε

b
y−y

δ
(x + δ + a)

)
, {−a − δ ≤ x ≤ −a,−b ≤ y ≤ 0} = R5(

x, y − ε+ b+ε
b

y−y

δ
(x − δ − a)

)
, {a ≤ x ≤ a + δ,−b ≤ y ≤ 0} = R6

(x, y) otherwise,

(6)

where we have defined the regions R1, . . . , R6 within the definition of fε. Also, note that

here, the orthodisk contains the arc {(−a, y) | 0 ≤ y ≤ b}∪{(x, 0) | −a ≤ x ≤ a}∪{(a, y) |
−b ≤ y ≤ 0}. Let E denote the edge being pushed, defined above as [−a, a] × {0}.

Let νε =
(fε)z̄

(fε)z
denote the Beltrami differential of fε, and set ν̇ = d

dε

∣∣
ε=0

νε. It is easy to

compute that ν̇ = [ d
dε

∣∣
ε=0

(fε)]z̄ evaluates near E to be

ν̇ =



1
2b

, z ∈ R1

− 1
2b

, z ∈ R2

1
2b

[x + δ + a]/δ + i (1 − y/b) 1
2δ

= 1
2bδ

(z̄ + δ + a + ib), z ∈ R3

− 1
2b

[x − δ − a]/δ − i (1 − y/b) 1
2δ

= 1
2bδ

(−z̄ + δ + a − ib), z ∈ R4

− 1
2b

[x + δ + a]/δ + i (1 + y/b) 1
2δ

= 1
2bδ

(−z̄ − δ − a + ib), z ∈ R5

1
2b

[x − δ − a]/δ − i (1 + y/b) 1
2δ

= 1
2bδ

(z̄ − δ − a − ib), z ∈ R6

0 z /∈ supp(fε − Id).

(7)

3.3.2 Deformation of a Conjugate Pair.

With these definitions in place, we prove that a conformal pair (Ωgdh, Ωg−1dh) of conjugate

orthodisks (recall that this refers to a pair of zigzags with conjugate edge vectors) admits

only trivial deformations. Let the space ∆κ denote the space of conjugate pairs of orthodisks

of the type described at the opening of the argument in subsection 3.3. The two-fold

branched cover of the double of one of these orthodisks is, after quotient by a translation,
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a surface of genus κ (which branches over the sphere at a set of 2κ + 2 points on an

equator). Thus, we may regard ∆κ as a subset ∆κ ⊂ Tκ × Tκ of the product of a pair of

Teichmüller spaces Tκ; note dim ∆κ = dim Tκ. Let X0 denote a pair which is related by a

conformal map ζ : Ωgdh → Ωg−1dh (and which therefore defines a periodic minimal surface

with the appropriate ends); note that such an example may be regarded as an element

X0 ∈ ∆κ ⊂ Tκ × Tκ.

We claim that ∆κ is transverse to the diagonal Dκ = {(R,R)} ⊂ Tκ × Tκ, where of

course dim Dκ = dim ∆κ. To see this, note that we may regard a tangent direction as

a pair (ν̇gdh, ν̇g−1dh) of Beltrami differentials, each representing a tangent direction to the

points [Ωgdh] ∈ Tκ and [Ωg−1dh] ∈ Tκ, respectively. Yet at X0, the points [Ωgdh] and [Ωg−1dh]

represent the identical point in Tκ, so we begin by computing how the Beltrami differentials

ν̇gdh and ν̇g−1dh relate to one another. To this end, consider how an infinitesimal push in

the sense of the previous section on an edge E defines Beltrami differentials ν̇gdh and ν̇g−1dh.

Of course, the conjugacy of Ωgdh and Ωg−1dh provides, via the formulas of that section, the

basic defining relation that if ν̇gdh has local expansion ν̇gdh(z) = 1
2b

dz̄
dz

near an interior point

of an edge E, then also ν̇g−1dh(ζ) = 1
2b

dζ̄
dζ

at the corresponding edge. However, since X0 is

a pair of conformally related orthodisks, we may also assume, in this particular case, the

existence of a conformal map ζ : Ωgdh −→ Ωg−1dh which preserves the vertices. Such a

map takes vertical sides to horizontal sides by construction and this has the local expansion

ζ = ±i|c|z + 0(|z|2) near an interior point of an edge. We therefore compute the pullback

of ν̇g−1dh to Ωgdh as

ν̇g−1dh(ζ)
dζ̄

dζ
= ν̇g−1dh(ζ)

ζ̄ ′

ζ ′
dz̄

dz

= (−ν̇g−1dh(ζ) + h.o.t.)dz̄/dz

= − 1

2b

dz̄

dz

along the edge E. We conclude that, locally in the interior of the edge E, we have ζ∗ν̇g−1dh =

−ν̇gdh + ob(1), where ob(1) may be taken arbitrarily small. The above computation nearly

proves that [ν̇gdh] = −[ν̇g−1dh] as elements of the tangent space TΩgdh
Tκ = TΩg−1dh

Tκ: what

is left to prove for that conclusion is that the contributions to [ν̇gdh] or [ν̇g−1dh] from the

regions R3 and R5 – and their counterparts in the other fundamental domains for the

Z2 ⊕Z2 group of Alexandrov reflections – is negligible. To see this, begin by noticing that
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our surface M is hyperelliptic, branching over the points where the Gauss map g is singular,

ie. over the images of the endpoints of the edges of the zigzags. Recall next that the pairing

of the tangent and cotangent spaces to Tκ is given by integrating the product of Beltrami

differentials and holomorphic quadratic differentials on M . Now, as M is hyperelliptic, the

Taylor expansion of a holomorphic quadratic differential Φ on M around (the lift of) a

corner of an edge is even, i.e. Φ = (c0 + c2w
2 +h.o.t)dw2. This descends to a neighborhood

of a corner of the edge via the local map w = z
1
3 as Φ = (1

9
c0z

− 4
3 + 1

9
c2z

− 2
3 + Oz(1))dz2.

In terms of this expression, the terms of order O(z−
2
3 ) and higher are easily seen to

integrate against [ν̇gdh] or [ν̇g−1dh] to negligible amounts in a small neighborhood of the

endpoints of an edge, but the term of order O(z−
4
3 ) is more worrying. To understand that

it also has but a negligible effect, we need to consider its effect in an entire neighborhood in

M of an endpoint of an edge of the zigaag. In particular, we consider the development of the

other three fundamental domains whose closures contain that point: these developments

are obtained by reflection across the edges incident to that point. After a reflection in each

of these edges, we obtain the development of the domain in the image of w 7→ −w of our

original domain: it has the form in Figure 1 consisting of the regions R2, R4 and R6. In that

region, because the deformation of the relevant edge will be downwards instead of upwards,

the Beltrami differentials ν̇g−1dh and ν̇gdh should be regarded as expressed by the formulas

for −ν̇ in (7). In terms of these explicit formulas and using that the map between these

developments may be written as Ψ : z 7→ −z (abusing notation by setting a = 0 in both

formulas), we note that

Ψ∗(−ν̇
∣∣
R6

) + ν̇
∣∣
R3

= Ψ∗(−ν̇
∣∣
R4

) + ν̇
∣∣
R5

= 0. (8)

On the other hand, since Φ is even, we have that Ψ∗Φ = Φ, and so we conclude that the

pairing
∫

Φν̇ between Φ and either ν̇ = ν̇g−1dh or ν̇ = ν̇gdh over the images of the regions

R3, R4, R5 and R6 (in all of the fundamental domains) vanishes: the effect of ν̇g−1dh and

ν̇gdh as tangent vectors in a pairing with covectors is given by integration over (the images

of) the regions R1 (and R2).

We conclude that for ν̇g−1dh and ν̇gdh defining an infinitesimal push, we have [ζ∗ν̇g−1dh] =

−[ν̇gdh] as elements of the tangent space to Tκ. Further, since any deformation of X0 is given

by a linear combination of such infinitesimal pushes, we conclude that [ν̇gdh] = −[ν̇g−1dh]

as elements of the tangent space TΩgdh
Tκ = TΩg−1dh

Tκ. Thus, any conjugacy-preserving
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deformation of X0 destroys the conformal equivalence of Ωgdh and Ωg−1dh to the order of

the deformation, a statement which implies ∆κ is transverse to the diagonal. This concludes

the proof of the claim.

To finish the proof of Proposition 4, observe any deformation Mt of minimal surfaces

through M0 must preserve the conformality between Ωgdh(t) and Ωg−1dh(t). Thus, by the

computation above, we conclude that the tangent vector for Mt is trivial as a tangent vector

to Teichmüller space, and moreover, the forms gdh and 1
g
dh are only trivially deformed.

Since these forms suffice as Weierstrass data, we conclude that Mt deforms only by an

infinitesimal congruence, as desired.

Recall the moduli spaces M(θ) of pairs of surfaces (Ωgdh, Ωg−1dh) whose zigzag bound-

aries have orbits of points which accend at slope m(θ) under the translation group. The

paragraph above shows that M(θ0) meets the diagonal Dκ in Tκ ×Tκ transversely. As the

dim(M(θ)) + dim(Tκ) = dim(Tκ × Tκ), the implicit function theorem implies that there is

a curve Xθ ∈ M(θ)∩Dκ for θ near θ0. By our construction of zigzags, such an element Xθ

represents a periodic minimal surface whose ends make an angle θ with each other. This

concludes the proof of Proposition 4.

4 Properness of the angle map.

In this section, we prove the following properness result.

Proposition 7. The angle map θ : Mκ → (0, π
2
] is proper.

Proof. Since Mκ consists of curves and θ : Mκ → (0, π
2
] is a local diffeomorphism by

Proposition 4, it is sufficient to prove that if {Mn}n∈N is a sequence of examples in Mκ

with limn→∞ θ(Mn) = θ0 > 0, then a subsequence of the surfaces converges on compact

subsets of R
3/Z to a minimal surface M∞ ∈ Mκ with θ(M∞) = θ0. Note that we choose

the surfaces {Mn}n∈N so that each lies in R
3/Z and is invariant under reflection in the

vertical annuli Ax1 , Ax2 in R
3/Z given in the statement of Proposition 3.

As the four ends of Mn are asymptotically flat, the lifted surface Mn in R
3 has area

growth constant A(Mn) = 2π. Thus, by the monotonicity formula for area of a minimal

surface in R
3, every Mn has at most 2πr2 of area in balls of radius r. Hence, after choosing
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r < 1
2

so that the balls in R
3 embed in the quotient space, we see that the surfaces Mn

have locally bounded area in R
3/Z. We now check that there are also uniform estimates

for the curvature of the surfaces in the sequence.

Arguing by contradiction and after extracting a subsequence, suppose that there exist

points pn ∈ Mn with maximal absolute curvature λ2
n ≥ n; note that maximal curvature

points pn exist since the asymptotic curvature of the Mn is zero. Consider the homoth-

etically expanded surfaces M̃n = λn[Mn ∩ B(pn, 1
2
)] in the homothetically expanded ball

λnB(pn, 1
2
). The surfaces M̃n are submanifolds in the flat three-manifolds λnB(pn, 1

2
), which

are isometric to balls B(~0, rn) of radius rn = λn

2
≥

√
n

2
in R

3 centered at the origin ~0; these

balls are converging naturally to all of R
3. Consider the surfaces M̃n to lie in B(~0, rn) ⊂ R

3.

Since the M̃n have maximal absolute curvature 1 at the origin and in balls of radius r ≤ rn

have area at most 2πr2, standard results (see, for example, [7]) imply that a subsequence of

these surfaces converges on compact subsets of R
3 to a properly embedded minimal surface

M̃ in R
3 with absolute curvature at most 1 and with absolute curvature 1 at the origin.

The surface M̃ is connected by the strong halfspace theorem [1]. Furthermore, since each

surface M̃n has the same total absolute curvature as Mn∩B(pn, 1
2
), then each M̃n has total

absolute curvature less than the total absolute curvature of Mn, which by the Gauss-Bonnet

formula is −2πχ(Mn) which is the finite number 4π(κ+1). In particular, M̃ has finite total

curvature. Since M̃ is embedded and not flat, it has at least two ends which are asymptotic

to either planes or ends of catenoids. Since M̃ has area growth constant at most 2π and it

is not a plane, then it has exactly two ends. By Schoen’s theorem [15], we see that M̃ is a

catenoid with waist circle passing through the origin.

We claim that each of the Alexandrov annuli of symmetry of the Mn intersect B(pn, rn)

for n large and limit to planes of symmetry for M̃ . Otherwise, the surface M̃ would be

the limit of domains in M̃n ⊂ λnMn, which are graphical over their projections to one

of its Alexandrov annuli of symmetry. It would then follow that the Gaussian image of

M̃ would lie in a hemisphere of S2, which is false for a catenoid. Hence, the Alexandrov

annuli of symmetry of the M̃n limit in a natural way to Alexandrov planes of symmetry

of M̃ , which, after a translation of M̃ , we can consider to be the (x1, x3)- and (x2, x3)-

planes. Furthermore, since each component of the fixed point set of an Alexandrov annulus

of symmetry is a simple closed convex curve, which is invariant under reflection across the
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other such Alexandrov annulus and hence has two fixed points, then it is easy to show that,

since M̃ is connected, the fixed point set of one of the planes of Alexandrov symmetry of M̃

must intersect the fixed point set of the other plane of symmetry of M̃ . It follows that M̃

is a catenoid with axis being either the x1-axis or the x2-axis (rather than with axis being

the x3-axis).

From the discussion in the previous paragraph, we conclude that a subsequence of the

locally finite integral minimal varifolds Mn in R
3/Z converges to a limit minimal varifold

M∞ with mass density 2 at some point of the vertical circle α = (0, 0) × R/Z in R
3/Z. It

follows from the monotonicity formula for area that M∞ is the union of two flat vertical

annuli, not necessarily distinct and both containing α.

We claim that the convergence of the Mn to M∞ is smooth away from α. If not, then

there exists a point p ∈ R
3/Z − α, such that, after extracting a subsequence, the absolute

curvature of the Mn in the ε = 1
2
d(p, α) ball B(p, ε) centered at p is at least n. Let qn

be a point of M̂n = Mn ∩ B(p, ε), where the function d(·, ∂M̂n)|K|(·) has its maximum

value; here, |K|(·) is the absolute curvature function on M̂n. Let λn =
√
|K(qn)| and note

that the surfaces Σn = λn(M̂n ∩ B(qn, rn)), where rn = 1
2
d(qn, ∂B(p, ε)), have bounded

curvature in the balls λnB(qn, rn) of radius rn centered at qn. These balls converge to R
3

with qn considered to be at the origin. The surfaces Σn have absolute curvature bounded

by 4 and have local area estimates. Our previous arguments now imply that a subsequence

of the Σn converges to a catenoid in R
3 and this catenoid contains a point which is a

limit of points coming originally from α = Ax1 ∩ Ax2. This is a contradiction, since α is

disjoint from B(p, ε). This contradiction proves that the surfaces Mn converge smoothly

with multiplicity two to M∞, away from α.

We claim that M∞ is either Ax1 or Ax2 with multiplicity two. If not, then since M∞
is the union of two flat vertical annuli, the circle α ⊂ M∞ is contained in the intersection

set of two distinct vertical flat annuli, and so, every point p ∈ α is a point in the singular

set of convergence to M∞. Now, the blow up argument in the previous paragraph shows

that, for any ε > 0 the ball B(p, ε) contains for n large, an approximately scaled down

catenoid in Mn, and so, the total absolute curvature of Mn ∩ B(p, ε) is at least 3π for n

large. Since ε is arbitrary and the total absolute curvature of Mn is 4π(κ + 1) which is

finite, we obtain a contradiction. Hence, M∞ is Ax1 or Ax2 with multiplicity two as a limit
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varifold. (Although we do not use it here, we observe that this argument also shows, after

choosing a subsequence, that there are at most κ+1 distinct singular points of convergence

of the Mn to Ax1 or Ax2 , which by our earlier arguments must lie on α).

Let Nε(α) be any fixed ε > 0 neighborhood around α. For n large, our analysis of the

limits λnMn shows that Mn − Nε(α) consists of four annular Scherk ends of Mn. Now,

we have also shown that the convergence of Mn − Nε(α) to M∞ − Nε(α) is smooth along

∂(Mn − Nε(α)), so the flux vectors (integrals of the conormals along each component of

∂(Mn − Nε(α))) are converging to either (±1, 0, 0) or (0,±1, 0), since those limits are the

flux vectors of M∞. But these flux vectors are also the flux vectors of the ends of Mn

by the divergence theorem, and the flux vectors of the ends of Mn are bounded away

from (±1, 0, 0), since the limit angle θ0 > 0. This contradiction implies that the sequence

{Mn}n∈N with θ(Mn) → θ0 > 0 have uniformly bounded curvature.

We now prove that our original sequence {Mn}n∈N with θ(Mn) → θ0 > 0 converges to

an example M∞ ∈ Mκ. Since the sequence of surfaces has uniformly bounded curvature

and local area estimates, a subsequence converges on compact subsets of R
3/Z to a properly

embedded minimal surface M∞. Recall that the sum of the lengths of the convex curves in

Mn ∩ Axi
corresponds to the flux of ∇x(i+1) mod 2 of Mn, which is less than or equal to 2

and is determined by θ(Mn). Since every convex curve in Mn ∩ (Ax1 ∪ Ax2) intersects the

vertical circle α, these κ + 1 convex curves Mn ∩ Axi
converge smoothly to κ + 1 convex

curves in M∞ ∩ Axi
, each of length less than 2 for i = 1, 2. Moreover, the lengths of these

curves are also bounded away from zero, since they are planar curves and principal on Mn:

any pinching of them would then blow up the curvature somewhere along them. Yet these

lengths correspond to the lengths of the segments in the zigzags bounding the domains

Ωgdh and Ωg−1dh for Mn, so we see that these domains Ωgdh and Ωg−1dh for Mn also converge

smoothly and without degeneration to the orthodisks of M∞.

These orthodisks, together with the implied vertex-preserving conformal map between

them, of course determine the Weierstrass data for a minimal surface whose geometry is

given by the Euclidean geometry of the orthodisks. Here, since the limiting orthodisk has

a fundamental domain bounded by 2κ + 2 nondegenerate segments of alternating slope,

we see that the surface M∞ is a nondegenerate minimal surface of genus κ. Further, as

the flux is determined (see Proposition 6) by the slope of the orbit of a vertex, and the
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orthodisks are converging smoothly, we see that θ(M∞) = θ0.

This completes the proof of the proposition.

Remark 8. We note that the flux argument given in the curvature estimate part of the

proof of Proposition 7 implies that if, for some sequence in {Mn}n∈N in Mκ we have

θ(Mn) → 0, then the locally finite limit integral minimal varifold M∞ is the annulus Ax1

with multiplicity two.

5 Small angle examples are Scherk examples.

In this section, we prove the following result.

Proposition 9. For every κ > 0, there exists an ε > 0 such that if M ∈ Mκ and

θ(M) < ε, then M is a Scherk example.

Proof. Suppose Mn ∈ Mκ is a sequence of examples, where θ(Mn) < 1
n
. After extracting a

subsequence, the Mn converges to an integral varifold M∞. From the proof of Proposition

7 and Remark 8, it is easy to see that M∞ is one of the annuli Ax1 or Ax2 (with multiplicity

two) of symmetry and that the limiting flux vectors to the ends of the Mn converge to

vectors in M∞. Hence, M∞ corresponds to Ax1 . Modifications of the arguments used

in the proof of Proposition 7 also show that, for α = (0, 0) × R/Z and n large, there

exist κ + 1 points Pn = {p1(n), p2(n), . . . , pκ+1(n)} ⊂ Mn ∩ α with normal vector (0, 0, 1)

together with small positive numbers ε1(n), ε2(n), . . . , εκ+1(n), such that for each i, the

intersection B(pi(n), εi(n)) ∩ Mn is a compact annulus which is C2-close to a standard

catenoid with axis along the x2-axis, which has been scaled by inverse of square root of

the absolute curvature at pi(n). Furthermore, after replacing by a subsequence, the surface

M̃n = Mn ∩ [R3/Z −
⋃

κ+1
i=1 B(pi(n), εi(n))] consists of two components which are graphs of

gradient less than 1
n

over their projections to the annulus M∞.

A subsequence of the (paired) graphs M̃n converges smoothly to M∞ punctured in at

most κ + 1 points with graphical gradients converging to zero as n → ∞. Thus, the

degenerating conformal structures of Mn as n → ∞ can be seen to converge to that of

two copies of the annulus with nodes forming at the (limits of the) κ + 1 points Pn along

α ⊂ M∞.
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Now let Ân denote the Z-cover of one of the fundamental annuli of Mn and let Â denote

the limit of An. Thus, the domains Ân and An are conformal half-planes, with the points

Pn lifting to a periodic sequence P̂n of boundary points of Ân; that sequence P̂n converges

to a periodic sequence N̂n of lifts of the nodes Nn on the boundary of Â. We shall also have

need of the periodic sequence Q̂n ⊂ ∂Ân which are lifts of the points Qn ∈ Mn ∩ α whose

normal vectors are (0, 0,−1). Naturally, the points P̂n and Q̂n alternate in position along

∂Ân and Q̂n → N̂n along with P̂n. We take the upper half-plane H as a model for Ân and

Â, and we let the images of P̂n be given by {ak,` = k + a` | ` = 0, . . . , κ where a0 = 0 and

0 < a` < 1 for ` > 1} and the images of Q̂n be given by {bk,` = k + b` | ` = 0, . . . , κ, where

0 < b` ≤ 1}. Naturally we take ak,j < bk,j < ak,j+1 < bk,j+1 for every k. These points ak,j

and bk,j depend on n, but we will suppress the natural dependence on n until it is relevant

and important.

As in section 3, we consider the forms gdh and 1
g
dh on Ân and An. These evidently

develop to domains bounded by a periodic boundary, as described in § 3.1. We observe

that we may parametrize the domains Ωgdh and Ωg−1dh via the Schwarz-Christoffel maps

(suppressing the dependence on n)

FΩgdh
(ζ) = e−iπ/4

∫ ζ κ∏
j=0

[
z − a0,j

z − b0,j

]1/2 ∞∏
k=1

κ∏
j=0

[
(z − ak,j)(z − a−k,j)

(z − bk,j)(z − b−k,j)

]1/2

dz

and

FΩg−1dh
(ζ) = e−iπ/4

∫ ζ κ∏
z=0

[
z − b0,j

z − a0,j

]1/2 ∞∏
k=1

κ∏
j=0

[
(z − bk,j)(z − b−k,j)

(z − ak,j)(z − a−k,j)

]1/2

dz. (9)

To see this, first observe that as the terms
(

(z−ak,j)(z−a−k,j)

(z−bk,j)(z−b−k,j)

)1/2

are asymptotically 1+O( 1
k2 )

for k large, the infinite product converges absolutely, and uniformly on compacta in H.

Moreover, the images of the boundary are evidently periodic zigzags: they are zigzags

by the basic Schwarz-Christoffel theory, and they are periodic as the periodicity of the

coefficients (ak+1,j = ak,j +1, bk+1,j = bk,j +1) forces the periodicity of the developing maps

FΩgdh
and FΩg−1dh

.

Now, the crucial part of the analysis is the determination of the coefficients ak,j and bk,j:

we know that as n → ∞, we have |ak,j − bk,j | → 0 so that ak,j, bk,j → ck,j, and we need to

25



determine both |ak,j − bk,j| and ck,j. This sort of analysis has been carried out by Traizet

in a number of slightly different settings (e.g. [17], [16]). Unfortunately for the brevity of

this argument, while we can follow his general outline, he does not seem to have treated

this precise case; fortunately, as all of the relevant information about the surfaces Mn is in

the development (9) (recall that the dh development offers no substantive restrictions), we

can give a full yet more elementary treatment directly from the equations (9).

The crucial condition is that
∫

γ
gdh =

∫
γ

1
g
dh for every cycle γ ⊂ M . On the annuli An,

this implies that

Fgdh(α) − Fgdh(β) = Fg−1dh(α) − Fg−1dh(β)

for α, β ∈ Pn ∪ Qn: here the point is that any cycle on Mn is homologous to a linear

combination of arcs on the boundary connecting the vertical points of the Gauss map.

Let us normalize the setting. We focus on four consecutive points α − cε, α, β, β + dε;

naturally, each of the points depends on the parameter n, and as n → ∞, the points α− cε

and α converge to a node as do β and β + dε. In the natural notation, we compute

Fgdh(β) − Fgdh(α) = c0 +
e−iπ/4

2
(d − c)ε log ε + higher order terms and

Fg−1dh(β) − Fg−1dh(α) = c0 −
eiπ/4

2
(d − c)ε log ε + higher order terms.

Thus, in order that Fgdh(β) − Fgdh(α) = Fg−1dh(β) − Fg−1dh(α), we must have (from the

singular term) that d = c. As this computation holds for the interval between any pair of

points coalescing to a node, we find that |ak,j − bk,j |/|ak′,j − bk′,j| → 1 as n → ∞ for any

choice of k, k′, j and j′.

Remark 10. This last statement reflects that the sizes of the curves (as curves in space)

being pinched are (asymptotically) identical.

Before turning our attention to the “small” intervals between ak,j and bk,j, we read-

just our notation, setting bk,j = ak,j + ε + ηk,j where ηk,j = o(ε(n)) = o(ε) as n → ∞.

Also, being mindful of convergence issues that will eventually arise, we explicitly consider
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approximations

F M
Ωgdh

(ζ) = eiπ/4

∫ ζ κ∏
j=0

[
z − a0,j

z − b0,j

]1/2 M∏
k=1

κ∏
j=0

[
(z − ak,j)(z − a−k,j)

(z − bk,j)(z − b−k,j)

]1/2

dz

FM
Ωg−1dh

(ζ) = −eiπ/4

∫ ζ∏[
z − b0,j

z − a0,j

]1/2 M∏
k=1

κ∏
j=0

[
(z − bk,j)(z − b−k,j)

(z − ak,j)(z − a−k,j)

]1/2

dz

(10)

to the infinite vertex Schwarz-Christoffel map in (9). As the convergence of the “partial

product” map in (10) is uniform in M with estimates independent of n (because Pn ∪ Qn

converge to the nodes, uniformly in n), we see that the maps in (10) provide uniformly

accurate approximations of the maps in (9) on compacta, for M and n sufficiently large.

We consider the quantity F M
Ωgdh

(bk,j) − F M
Ωgdh

(ak,j) = F M
Ωgdh

(ak,j + ε + ηk,j) − F M
Ωgdh

(ak,j)

(for M � k) as n → ∞, or equivalently, as ε → 0. In the integrand, we can introduce the

substitution z = ak,j + t(bk,j − ak,j) so that the factor

z − ak,j

z − bk,j

becomes −t
1−t

. Moreover, using from the previous passage the estimate that |bk′,j′ − ak′,j′| =

ε + o(n), the other factors
z − ak′,j′

z − bk′,j′

become 1+ ε
ck,j−ck′,j′

+o(ε) for n sufficiently large: here recall that ck represents the position

of the node which is the limit of the points ak,j and bk,j. As a consequence, we compute

that

FM
Ωgdh

(bk,j) − F M
Ωg−1dh

(ak,j) = eiπ/4

∫ 1

0

(
t

1 − t

)1/2

dt

1 +
ε

2

∑
(k′,j)6=(k,j)

|k|≤M

1

ck,j − ck′,j

 ,

where the sum runs over the terms in the integrand of F M
Ωgdh

which are not indexed by (k, j),

with k ≤ M .
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Now, the computation of F M
Ωg−1dh

(bk,j) − F M
Ωg−1dh

(bk,j) is analogous, yielding

FM
Ωg−1dh

(bk,j) − F M
Ωg−1dh

(ak,j) = e−iπ/4

∫ 1

0

(
1 − t

t

)1/2

dt

1 − ε

2

∑
(k′,j)6=(k,j)

|k|≤M

1

ck,j − ck′,j′

 .

Since
∫ 1

0

(
t−1

t

)1/2
=
∫ 1

0

(
t

1−t

)1/2
dt, we see that the horizontal period condition FΩgdh

(bk,j)−
FΩgdh

(ak,j) = FΩg−1dh
(bk,j) − FΩg−1dh

(ak,j) provides that

FM
k,j =

∑
k′,j′ 6=(k,j)
|k|≤M

1

ck,j − ck,j′
= 0. (11)

(Evidently, these “forces” FM
k,j converge to

Fk,j =
∞∑

M=0

∑
(k′,j′)6=(k,j)

|k|=M

1

ck,j − ck′,j′
= 0 (12)

but we prefer to continue to work with the approximations for a few more paragraphs, in

order to interpret Fk,j as a gradient.)

We have three final goals. We first aim to show that there is a unique configuration

{ck,j} which satisfies (11), that this configuration consists of equally spaced points (to order

o(1) in M), and finally that this symmetric configuration is a non-degenerate critical point.

To begin, we observe that the “force” equations (11) may be interpreted as the vanishing

of the gradient for the function Ĥ({ck,j}) = −
∏

(k,j)6=(k′,j)
|k|=M

|ck,j − ck′,j′|−1. As the ck,j are

periodic in n (at least up to the cut off M), we may regard this function as arising from

a function H with domain the simplex D = {0 = c0,0 < c0,1 < · · · < c0κ < 1}. Clearly

the function H is proper on this simplex, and so we may expect an interior critical point

at an interior global minimum. We now compute the Hessian of H , as equivalently, the

differential of the map FM : D → Rκ+1 given by FM = (FM
0,0, . . . ,FM

0κ
). This Hessian has
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the form

−
∑

(k,j)6=(0,0)
|k|≤M

(c0,0 − ck,j)
−2

∑
|k|<M

(c0,0 − ck,1)
−2 . . .

∑
|k|≤M

(c0,0 − ck,κ)−2

∑
|k|≤M

(c0,1 − ck,0)
−2 −

∑
(k,j)6=(0,1)

|k|≤M

(c0,1 − ck,j)
−2 . . .

∑
|k|≤M

(c0,1 − ck,κ)−2

−
∑

(k,j)6=(0,g)
|k|≤M

(c0κ − ck,j)
−2



= −

 κ∑
j=0

∑
(k,j)6=(0,j)

|k|≤M

(c0,j − ck,j)
−2

 I −

∑
|k|≤M

(c0,i − ck,j)
−2

κ

i,j=0

. (13)

As each row of the second matrix in (13) sums to the negative of the diagonal entry of the

first matrix, we easily see that this Hessian is negative semi-definite with kernel coming

only from a vector (λ, . . . , λ) with identical entries. As this vector (λ, . . . , λ) represents

only a constant translation of the nodes to one direction or other, it is not a permissable

deformation in D, since we required c0,0 = 0. Thus this Hessian is negative definite on the

(projectivized) domain D of configurations of nodes. Thus each critical point of −H has

index 0, and so, Morse theory applied to the cell D implies that there is a unique critical

point.

Finally let c∗ = (0, 1
κ+1

, 2
κ+1

, . . . , κ

κ+1
) ∈ D denote the configuration of equally spaced

points in D. We observe that FM
i (c∗) = o( 1

M
). Thus, since the unique zero (say cM) of

FM is a minimum of H , it is then uniformly bounded away from ∂D, and so we see that

cM → c∗ as M → ∞.

We conclude that the equally spaced point set c∗ is the unique limit configuration of the

vertices {ak,j, bk,j}. Moreover, from the analysis above of the Hessians, we observe that c∗ is

a non-degenerate zero of the map F0,j : D → Rκ+1 (where we have now passed to the limit

force equations (12)). Thus, by the implicit function theorem, there is a unique extension of

this configuration to the unnoded case (9), yielding a zigzag, whose corresponding minimal

surface has Scherk ends making a small positive angle between them. But as the standard

Scherk examples are also such a family, and the family produced by the implicit function

theorem is unique, we conclude that Mn = S(tn) for n large. This completes the proof of
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Proposition 9.

6 The proofs of Theorems 1 and 2.

We are now in a position to prove Theorem 2. By the openness result in Proposition 4, the

components of Mκ are curves. By properness result in Proposition 7, for each component

C of Mκ, the map θ : C → (0, π
2
] is a diffeomorphism. By the uniqueness result for small

angle in Proposition 9, the only component of Mκ for which the restriction of θ is onto

is the component of Scherk examples. Hence, Mκ consists of the component of Scherk

examples, which proves Theorem 2.

Assume now that M is a connected minimal surface with A(M) < 3π. In this case,

the limit tangent cone C of M is a cone over an integral varifold F of S2, consisting of

a finite number of geodesic segments joined at the finite number of vertices of F , and at

each vertex x0 ∈ F , in a small neghborhood of x0, the varifold F consists of two geodesics

crossing transversely. This fact follows immediately from our area growth assumption and

the fact that when considered to be a current, the varifold F has no boundary. From this

local property at the vertices, we see immediately that F is a finite union of circles and

our area assumption implies that there are at most two such circles, counted with possible

multiplicity. In particular, the area growth constant A(M) = kπ, where k = 1 or 2.

If A(M) = π, then M is a plane by the monotonicity formula for area. So, assume now

that A(M) = 2π. In this case, any limit tangent cone at infinity for M consists of two

planes or a single plane of multiplicity two. Now assume that M has infinite symmetry

group and we will prove that M is a catenoid or one of the Scherk examples.

Since M has infinite symmetry group, then M is invariant under a continuous group

of rotations or it is invariant under a screw motion symmetry. Assume that M is not a

catenoid, which is the only minimal surface of revolution. Since M is invariant under a

screw motion symmetry, one sees that it has a unique limit tangent cone C(M) at infinity.

It follows that C(M) consists of two distinct planes or a single plane of multiplicity two.

Since the screw motion symmetry of M leaves C(M) invariant, the screw motion composed

with itself four times is a pure translation γ : R
3 → R

3, which, after a rigid motion and

homothety, can be taken to be translation by the vector (0, 0, 1) that lies in “both” planes
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in C(M).

Consider the translational subgroup Z = {(0, 0, n) | n ∈ N} of R
3, which leaves M

invariant. Note that if M = M/Z ⊂ R
3/Z has finite topology, then Theorem 2 implies M

is a Scherk surface. So, it remains to show M has finite topology. If C(M) consists of two

distinct planes P1, P2, then the facts that each has multiplicity 1 and M is periodic imply

that outside of some solid cylinder ∆ around P1 ∩ P2, M consists of four graphs of small

gradient over (P1 ∪ P2) − ∆, which implies M has finite topology.

Assume now that C(M) is the (x1, x3)-plane P (with multiplicity two as a locally finite

integral varifold) and we will obtain a contradiction. Since C(M) is unique and M is

invariant under Z, there exists a Z-invariant regular neighborhood N(P ) whose width

around P is a positive function W (|x1|) which grows sublinearly in the variable |x1|, such

that M is contained in the interior of N(P ). Let N(Ax1) in R
3/Z be the quotient regular

neighborhood of Ax1 . Note that every annulus in R
3/Z which is parallel to Ax1 must

intersect M , otherwise M is contained in a halfspace in R
3 which contradicts the Half Space

Theorem [1], since M is not a plane. For some R > 0 large, the circle αR = (0, R) × R/Z

lies outside of N(Ax1). For θ ∈ [0, π
2
], let A(θ) be the vertical infinite flat half annulus in

[0,∞) × [0,∞) × R/Z with boundary αR and parallel to the vector (cos(θ), sin(θ), 0).

Without loss of generality, we may assume that A(0)∩M 6= ∅, and so, by the maximum

principle for minimal surfaces, A(0) intersects M transversely at some point. It follows that

A(θ0) also intersects M transversely at some point for some positive θ0 close to 0. Since

A(θ0) intersects N(Ax1) in a compact set, then there is a nonempty compact subdomain ∆

of M which lies in one of the bounded components of N(Ax1) −A(θ0). Hence, there exists

a largest θ1 such that A(θ1) ∩ M 6= ∅ and such that at every point of this intersection,

M locally lies on one side of A(θ1). This contradicts the maximum principle for minimal

surfaces, which completes the proof of Theorem 1.
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