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1 IntroductionLet � = �1(S) be the fundamental group of a closed surface S of genusat least two. Morgan-Shalen showed [MS2], [GiSh] that every point inthe Thurston compacti�cation PMF(S) of the Teichmuller space Teich(S)gives an isometric �-action on an R-tree. Given a measured foliation F 2PMF(S), the action is simply the �-action on the leaf space of the lift of Fto H2. This action is small in the sense that edge stabilizers do not containrank two free groups. It is also minimal in the sense that it leaves no propersubtree invariant.Shalen [Sh] conjectured that every minimal small action of � on an R-tree T arises in this way. This problem has several important applicationsin low-dimensional geometry and topology (see [Ot]). Partial results wereobtained by Morgan-Shalen [MS1] and Gillet-Shalen [GiSh].The conjecture was eventually proven in two steps: Morgan-Otal [MO](see also [Ha]) constructed the candidate foliation, with dual R-tree R, anda �-equivariant morphism � : R ! T so that � has no \edge folds" (seebelow); then Skora [Sk1, Sk2] showed that � has no \vertex folds", givingthat � is a �-equivariant isometry, completing an a�rmative solution to theconjecture.Theorem 1.1 (Morgan-Otal, Skora) Let � = �1(S), S a closed surfaceof genus at least two. Then any small, minimal �-action on an R-tree isdual to the lift of a measured foliation on S.A complete exposition of Theorem 1.1 is given in [Ot].�Partially supported by NSF grant DMS 9704640yPartially supported by NSF grants DMS 9300001 and DMS 96265651



The purpose of the present paper is to prove Theorem 1.1 from a di�erentpoint of view, using harmonic maps. Harmonic maps were used by Gromov-Schoen [GrSc] to show that certain groups do not act nontrivially on singularspaces such as trees. Here we use harmonic maps to classify, in the specialcase of a surface group, all minimal, small actions on R-trees, against abackground where many such actions exist (namely 6g�7 dimensions worth).Our other interest in this proof is in the way it uses harmonic mapsas a tool in combinatorial group theory. For example, combinatorial topol-ogy arguments become greatly simpli�ed (via the maximum principle) whenlooking at a harmonic representative. Another example is the existence of amoduli space of harmonic maps (and harmonic map invariants) associatedto a group action, allowing for an extra tool in proofs.1.1 OutlineHere is a brief description of our approach to the proof.Step 1 (Find a harmonic map): Given a small action of the surfacegroup � = �1(S) on an R-tree T , it is relatively straightforward to �nd a�-equivariant harmonic map f : eS ! T . Here we have endowed S with acomplex structure.Step 2 (Associated data): The harmonic map f automatically hasassociated to it the following data:� a �-equivariant holomorphic quadratic (Hopf) di�erential e� on theRiemann surface eS� a �-equivariant measured foliation eF , the vertical foliation of e�� the leaf space R of eF , with metric induced from the measure on eF ,making R into an R-treeThe map f is projection along the leaves of eF , with the possibility ofseveral vertical leaves being sent to the same point in T . The �-action on Sinduces an isometric �-action on R.Step 3 (Morphism from a geometric action to the given action):Let � : eS ! R be the natural projection sending each leaf of eF to a point.Here a leaf may have a countable number of k-pronged singularities. We thenobtain a �-equivariant morphism � : R! T of R-trees, where � = f � ��1.We must show that � is an isometry, which is the same as saying that �does not fold at any point. 2



Step 4a (No edge folds): If � folded at an edge point of R, i.e. a pointwhose \tangent space" has only two directions, then this would force f tolocally take the form z 7! jRe zj which is not harmonic. Hence there are noedge folds, nor even vertex folds at trivalent vertices. The vertex points of Rare precisely the images under � of leaves of eF passing through a singularityof eF .Step 4b (No vertex folds): Ruling out folds at high order verticesv 2 R requires a global argument (see Example 3.2.1 of a local vertex fold).The smallness hypothesis implies that, if two edges adjacent to v are foldedtogether, then neither edge can contain a point representing the lift of aclosed leaf of F . This basically allows us to reduce the proof to the modelcase (see x5.2.3) where some leaf of F is dense in S.We now exploit the fact that we have a choice of conformal structures forS. Assuming � folds at some vertex point, we can always choose a path ofconformal structures St on S = S0 so that the Hubbard-Masur di�erentialon eSt (the holomorphic di�erential e	t whose vertical foliation projects toR) has simple zeroes for t 6= 0, and the edges which are folded together arerepresented on eFt by domains with a common one-dimensional frontier. Asthe harmonic map would again take the form z 7! jRe zj across this frontier,we see that e	t 6= e�t, where e�t is the Hopf di�erential for the harmonic mapf : eS ! T .Hence there is a family of distinct R-trees Rt and morphisms �t : Rt !T . These trees come from measured foliations on S which themselves comefrom interval exchange maps. But any nontrivial continuous variation in aninterval exchange map forces a nontrivial variation in the tree T . As T is�xed this is impossible, so there can be no vertex folds.1.2 AcknowledgementsWe thank Mladen Bestvina for useful discussions, Howard Masur for all hishelp (including the idea and most of the details of the proof of Proposition2.3), and the referee for numerous comments and corrections which greatlyimproved the paper. Misha Kapovich [Ka] also had the idea to use harmonicmaps in the proof of Skora's theorem.
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2 Preliminaries2.1 R-treesAn R-tree is a metric space T such that any two points in T are joined bya unique arc and every arc is isometric to a segment in R. Let [x; y] denotethe unique (geodesic) segment from x to y in T .We say that x 2 T is an edge point (resp. vertex point) of T if T � fxghas precisely two (resp. more than two) components. An edge in T is anontrivial, embedded segment [x; y] in T .A morphism of R-trees is a map � : T ! T 0 such that every nondegen-erate segment [x; y] has a nondegenerate subsegment [x;w] for which � j[x;w]is an isometry.The morphism � : T ! T 0 folds at the point x 2 T if there are nonde-generate segments [x; y1] and [x; y2], with [x; y1]\ [x; y2] = fxg, such that �maps each segment [x; yi] isometrically onto a common segment in T 0. It iseasy to see that the morphism � : T ! T 0 is an isometric embedding unless� folds at some point x 2 T .By an action of � on T we mean an action by isometries. The actionis minimal if � leaves no proper subtree of T invariant. For any �-actionon T , there is a �-invariant proper subtree which is minimal (see, e.g.,[CM]). Also, if A is the isometry of T corresponding to  2 �1S for whichinfy2T d(Ay; y) > 0, then A has an axis l in T , i.e., an isometricallyembedded line in T which is invariant under A and which has the propertythat x 2 l i� d(Ax; x) = infy2T d(Ay; y). The proof is a straightforwardconsequence of the non-positive curvature of T .Assumption: Henceforth we will assume, without loss of generality, thatall actions are minimal.We will need the following fact about small actions.Lemma 2.1 Let � = �1(S), S a closed surface of genus at least two. If theaction �� T ! T is small then T must have a vertex point.Whenever speaking of vertex or edge points in a subtree of a tree T , wemean with respect to the space of directions in the subtree, not the ambienttree T .Proof: If T has no vertex points then it is isometric to R, so the action of� gives a representation  : �! Isom(R). As  (�) < Isom(R) is virtuallyabelian and � is not solvable, it must be that the kernel of  contains two4



noncommuting elements. But S is a closed surface of genus at least two, sosu�ciently high powers of any two noncommuting elements of � = �1(S)generate a free group. This free group lies in the kernel of the action, inparticular stabilizes any nondegenerate edge of T , a contradiction. �2.2 Holomorphic quadratic di�erentialsA holomorphic quadratic di�erential � on the Riemann surface S is a tensorgiven locally by an expression � = '(z)dz2 where z is a conformal coordinateon S and '(z) is holomorphic. Such a quadratic di�erential � de�nes ameasured foliation in the following way. The zeros ��1(0) of � are well-de�ned and discrete. Away from these zeros, we can choose a canonicalconformal coordinate �(z) = R zp� so that � = d�2. The local measuredfoliations (fRe� = constg, jdRe�j) then piece together to form a measuredfoliation known as the vertical measured foliation of �.2.3 Actions dual to a measured foliationLet (F ; �) denote the vertical measured foliation of �. Lift it to a �1S-equivariant measured foliation ( eF ; ~�) on eS. The leaf space R of eF is aHausdor� topological space. Let � : eS ! R denote the projection. The leafspace R of the measured foliation ( eF ; �) inherits a metric space structurefrom the measure �: a geodesic segment [x; y] in R is given by any path in H2 from a point in the leaf corresponding to x to a point in the leafcorresponding to y, such that  is transverse to the leaves of the foliation eF .The distance dR(x; y) is simply �(), and the metric space (R; d) is an R-tree (see [MS2]). This tree is often not locally compact. For instance, whenthe leaves of the foliation on the surface S are dense, we can �nd sequencesof arcs Cn transverse to the foliation with endpoints on singularities of eFwhose transverse measure �(Cn) goes to zero, forcing the distance betweenthe corresponding images of the (lifts of) vertices to also go to zero.The action of � on H2 preserves �, and so induces an isometric actionof � on R. The stabilizers of this action are virtually cyclic, in particularare small.The action of �1S on H2 preserves �, and so induces an isometric actionof �1S on R. The map � : eS ! R is equivariant with respect to this action.
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2.4 The Hubbard-Masur TheoremHolomorphic quadratic di�erentials on a Riemann surface S are related toclasses of measured foliations via the Hubbard-Masur Theorem. To setthe notation, �x a Riemann surface S and de�ne a map HM : QD(S) !MF(S) from the space QD(S) of holomorphic quadratic di�erentials onS to the space MF(S) of equivalence classes of measured foliations on Sthat associates to � 2 QD(S) the class of its vertical measured foliation. Afundamental result isTheorem 2.2 (Hubbard-Masur [HM]) HM is a surjective homeomor-phism.Remark. A proof of Theorem 2.2 in the spirit of the current work can befound in [W2].An alternative phrasing will be convenient for us. Let Q(S)! Teich(S)denote the bundle of holomorphic quadratic di�erentials over Teich(S): herethe �ber over [S] 2 Teich(S) is the space QD(S) of quadratic di�erentialsholomorphic with respect to a complex structure S in [S]. Let (F ; �) denotea given measured foliation. Then the Hubbard-Masur Theorem shows thatthere is a well-de�ned section 	� : Teich(S) ! Q(S) which associates to[S] 2 Teich(S) the holomorphic quadratic di�erential 	�(S) 2 QD(S) whosevertical measured foliation is measure equivalent to (F ; �).2.5 Moving around in the Hubbard-Masur sectionIn this subsection we give a basic property of the section 	�.Let S be a Riemann surface and let q be a holomorphic quadratic dif-ferential with vertical measured foliation (F ; �). Let p0 be a singularity ofq and let L be the maximal compact graph of singular vertical arcs throughp0 which connect p0 to all the other singularities on the leaf through p0.Consider a neighborhood N of L in S. We refer to the components fsig ofN � L as sectors, and say that two sectors meet along a (nondegenerate)arc if their closures intersect along that arc. We observe that there is anatural correspondence of sectors near a maximal singular arc L as aboveunder Whitehead moves and isotopies of the foliation.Proposition 2.3 (Sectors can be made adjacent) Let S be a Riemannsurface, let q be a holomorphic quadratic di�erential with vertical measured6



foliation (F ; �), and let L, p0 and fsig be as above. Choose any pair ofsectors si1 and si2 from the list of sectors fsig. Then there is a Riemannsurface S� and a holomorphic quadratic di�erential q� on S� so that thevertical foliation of q� is measure equivalent to (F ; �), and under the equiv-alence the sectors s�i1 and s�i2 (corresponding to si1 and si2, respectively) meetalong an arc.Note that both q and q� are in the image of the Hubbard-Masur sectioncorresponding to (F ; �). A self-contained proof of Proposition 2.3 is givenin the appendix.3 Harmonic maps to trees3.1 De�nition of harmonic mapGiven a Lipschitz continuous map w : S ! (T; h) from a Riemann surface Sto a locally �nite metric tree T , we de�ne the energy form to be the tensoredz 
 dz = (kw�@zk2h + kw�@zk2h)dz 
 dzSince the map w is Lipschitz, it is di�erentiable almost everywhere andbounded almost everywhere on closed balls; thus the form edz
dz is de�nedalmost everywhere with edz ^ dz integrable over compacta. Note that evenwhen T is not locally �nite, the image of any closed ball in S is compacthence lies in a locally �nite subtree of T , so this analysis applies.Alternatively, for any conformal metric g on S with area form dAg, theenergy form may be expressed as follows. Choose an orthonormal framefv1; v2g at a point z 2 S, and consider the pushforward vectors fw�v1; w�v2g.The the energy form is the 2-form 12 (kw�v1j2h+kw�v2k2h)dAg, or alternatively12 trg(w�h)dAg. The energy of the map w is E = R edz ^ dz. The map w isa harmonic map if it is a minimum for this functional in its homotopy classof maps. We de�ne the Hopf di�erential � for a map w : S ! T by� = �dz2 = 4 hw�@z; w�@zih dz2Note that k�k = k�kL1 < 2E.3.2 ExamplesIn this subsection, we list some motivating examples of harmonic maps fromRiemann surfaces to R-trees. Each example will illustrate a principle we willlater use. 7



1. The map f(z) = Refz2g as the most basic vertex fold.The map f(z) = Refz2g : C ! R can be viewed as a harmonicmap from the Riemann surface C to the R-tree R. Observe thatthe preimage of the origin O 2 R is the pair of intersecting linesfx = �yg which divides C into four sectors. The other level linesof a nonzero r 2 R consist of hyperbolas fx2 � y2 = rg. The leafspace of the connected components of these level curves is the pairof coordinates axes. We conclude that the harmonic function f(z)factors as a projection to the R-tree of the coordinates axes followedby a vertex fold of each half-axis to its negative, which results in theimage R-tree R.2. Here is an example from [W3]: begin with the holomorphic di�erentialzkdz2 on C, whose vertical measured foliation is the set of curvesfRezk+2 = cg. When we project along this foliation, we obtain aharmonic map to a tree with k + 2 prongs out of a single vertex.3. Actions Dual to a Measured Foliation (F ; �), as given in x2.3.Here the harmonic map is simply the projection along the verticalfoliation of the properly normalized Hubbard-Masur di�erential for(F ; �). This characterization is independent of the particular Riemannsurface chosen. We therefore observe the following.Lemma 3.1 (When � and 	 agree) If the action of � is dual to ameasured foliation (F ; �), then there is a well-de�ned Hopf di�erentialsection � : Teich(S)! Q(S) for �, and this section � agrees with theHubbard-Masur di�erential section 	 : Teich(S)! Q(S) for F .Proof: The lemma is e�ectively the content of [W2], which we nowsummarize; for complete details, see [W2]. (Later on, in x4, we shallgive an independent proof of the existence of a harmonic map dual toa measured foliation.) As in x2.3, a measured foliation (F ; �) on Slifts to an equivariant measured foliation ( eF ; ~�) on ~S; we can projectalong the leaves to obtain an R-tree (R; d), with this construction alsoyielding an equivariant map �0 : ~S ! (R; d).For each complex structure � on S, we can minimize the energy in theequivariant homotopy class of �0 obtaining [W2; proof of Prop. 3.1]a map � : (S; �) ! (R; d) whose Hopf di�erential �R(�) has vertical8



foliation measure equivalent to (F ; �). (This argument is a straight-forward application of Ascoli-Arzela, with a crucial use of the axes ofgroup elements in R to control (see [W2; Lemma 3.4]) the images ofsome points by elements of the minimizing sequence of maps.) Thischaracterizes the di�erential uniquely [HM]; for a harmonic maps ar-gument for this uniqueness, see [W2; x4]. Here the point is that bothmaps can be given as projections along minimal stretch foliations ofHopf di�erentials and the distance between the image points of thetwo maps can be equivariantly de�ned, and is a subharmonic func-tion. [As the pullback of a smooth convex function o� of the zeroes ofthe Hopf di�erentials, this pullback of the distance function is smoothand subharmonic (i.e. submean for balls of �xed radii) away from adiscrete set of singularities and continuous across them; hence it issubharmonic everywhere. (Compare Proposition 3.2)] The maximumprinciple then applies, showing that the distance must be constant.Some geometry of the tree, in particular the fact that it has branches,forces that constant to vanish. Thus �R(�) = 	�(�). �An important part of our proof of Theorem 1.1 will be a converse(Lemma 5.3) to Lemma 3.1.4. Actions Dual to the Measured Foliation of the Hopf Di�erential for anArbitrary Harmonic Map from a Surface.Let f : S ! X be a harmonic map from the Riemann surface Sto a metric space (possibly Riemannian, possibly singular). Let �denote the associated Hopf di�erential; we will see in x3.3, that thisHopf di�erential is a holomorphic quadratic di�erential on S. Liftthis di�erential � to an (equivariant) di�erential e� on the universalcover eS, and consider its vertical (corresponding to the minimal stretchdirections of ~f) measured foliation ( eF ; �) and associated projection� : eS ! R to the leaf space (see x2.3).Part of the content of the previous example is that the equivariantprojection map � : eS ! R from eS to R is harmonic.Our proof of Skora's theorem involves a study of the relationship be-tween the harmonic map we will construct from eS to T and the asso-ciated harmonic map � : eS ! R from eS to the leaf space R.Remark. In [W4], we study the product harmonic map ( ~f; �) : eS !X �R, and �nd that it is also conformal, after a slight homothety of9



R. We also �nd that when X is smooth and two-dimensional, thenthis map is a stable minimal map.5. A Harmonic One-Form with Integral Periods.Project a square torus T 2 along its natural vertical foliation to thecircle S1. This map is clearly harmonic. Now, there is a genus twosurface S which is a branched cover over T 2, and the 1-form dz lifts toyield a holomorphic one form on S. One can still project along leavesof this one form to a �gure 8 which is a branched cover of the originalS1. Hence by composing with the map to S1, we see that there is anassociated harmonic map f : S ! S1 and, via the one-form lifted fromdz, an associated holomorphic one-form with integral periods on S.As we vary S in Teich (S) (say in a family St), the holomorphic oneforms with the same A-periods (in the usual notation) varies contin-uously through one-forms, say, !t. It is interesting to consider thetopology of the foliations Ft that integrate ker Re!t.The original surface S could be described as being constructed from apair of cylindersC1 andC2 bounded by circles fS11; S12g and fS21; S22g,respectively. Each Sij is composed of two semicircles stij and sbij. Now,the upshot of the notation is that S is de�ned by identifying sb11 tost12, sb12 to st21, sb21 to st22 and sb22 to st11 in the natural way, and thefoliations parallel to the core curves of the cylinders become F0.A natural motion in Teichm�uller space is to slightly rotate one ofthese cylinders against the other. This has the e�ect in our case ofpreserving the topology of F0, up to a Whitehead move which splitsthe singularities from being locally a pair of coordinate axes as inExample 1 to a \double Y " con�guration. Of course, as Ft is thefoliation of a harmonic one-form, we see that this new syntheticallyconstructed foliation inherited from the cylinders, which is actuallythe foliation of the Hubbard-Masur di�erential for (F0; �0) on St, isnot Ft. We conclude in this case that for the natural �1S- actionon R de�ned via the one form !, it is not the case that the Hopfdi�erential section � : Teich(S) ! Q(S) agrees with the Hubbard-Masur di�erential section 	 : Teich(S)! Q(S).3.3 Local structureR. Schoen has emphasized (see [Sc]) that a map for which the energy func-tional is stationary under reparametrizations of the domain has a Hopf dif-10



ferential which is holomorphic: one uses suitable domain reparametrizationsto show that the Hopf di�erential satis�es the Cauchy-Riemann equationsweakly, and then Weyl's Lemma forces the Hopf di�erential to be (strongly)holomorphic. We observe that in this argument, the range manifold may besingular.The vertical and horizontal foliations of the Hopf di�erential for w : S !T integrate the directions of minimal and maximal stretch of the gradientmap dw, for smooth energy minimizing maps w : S ! T . As the imageis one-dimensional, the harmonic map w is a projection along the minimalstretch direction. Further, if one normalizes the conformal coordinates ina domain that avoids the zeroes ��1(0) of the Hopf di�erential � so that� = dz2 in that neighborhood, then one sees from the geometric de�nitionof � above that the energy-minimizing map takes maximal stretch segmentsof measure � to segments in T of length �.3.4 E�ect on convex functionsA function de�ned on a anR-tree is convex if its restriction to every geodesicis convex in the classical sense. Recall that a function is subharmonic if it issubmean, that is it's value at any point is less than or equal to its averagein a small ball around that point. Harmonic maps between Riemannianmanifolds pull back convex functions to subharmonic functions (see, e.g.[I]). This important property extends to the case of R-tree targets.Proposition 3.2 A harmonic map from a surface S to an R-tree pulls back(germs of) convex functions to (germs of) subharmonic functions.Proof: We �rst argue that the map � : eS ! R to the leaf space R pullsback germs of convex functions on R to germs of subharmonic functionson eS. Locally, the level set of the vertex, say V 2 R, near a zero or poleof the Hopf di�erential e� divides the neighborhood of the singularity into'sectors', with the natural coordinate � mapping each sector conformallyonto a neighborhood of zero in the upper half-plane (see [St;x7.1]). Underthis mapping of a sector, the foliation of preimages of points in the tree R(in a sector) is taken to the horizontal foliation of the half-plane given bycurves of the form fy = constg.While it is not essential for the proof at this point, let us now consider aconvex function F de�ned on the tree R near the point V 2 R. This functionpulls back to a function on a collection of sectors, which is constant on thehorizontal levels fy = constg, and convex in y. Since any sector can be11



taken to any other sector by an appropriate rotation, it is straightforwardto see that this pullback is submean. (A more detailed argument is alsogiven below, in the case of the tree T .)With this in mind, let us return to the original case of the map f : eS ! T .In the neighborhood of the singularity p of the Hopf di�erential e(�), we canregard our map as �rst projecting to a neighborhood of a vertex V in R (thisneighborhood of V is metrically a k-pronged star out of V , with one prongfor each sector, by construction), followed by a map of R to T , in whichseveral prongs of R map to a single prong of T , this prong of T emanatingout of the image v 2 T of the vertex V 2 R). Here we must have each prongtaken injectively to a prong, because of the form of the map f : � 7! Re� = �away from singularities of e(�).In order to see why the map f : eS ! T pulls back germs of convexfunctions on T to germs of subharmonic functions on eS, we make one crucialobservation: we note that neighboring sectors on eS must be taken to di�erentprongs out of f(p) 2 T ; this is because a small arc transverse to the commonboundary leaf of the pair of sectors is projected by f injectively into T , onceagain because in a neighborhood of such an arc, there are no singular points,and so the map f is of the form � 7! Re� = �. This implies that the pre-image under f of any given prong in T consists of at most half of the sectorsabutting p.Consider then a convex function F on the tree T near a point p 2 T . Thisfunction pulls back to a function on a collection of sectors, which is constanton the horizontal levels fy = constg, and also convex in y. Suppose we havethat F (v) = 0, so we need the mean value of f�F to be non-negative on adisk D around p. Of course, since F is convex on f(D) � T , we know thatF can be negative on at most one prong of f(D), and must be non-negativeon the other prongs. Moreover, since F is convex, if we average f�F overa pair of sectors, one in which f�F is nonpositive, and one in which f�Fis non-negative, we see that the sum of the averages must be non-negative.(To see this, conformally map each sector to a half-plane (say fy � 0g), andthen glue the halfplanes together so that f�F is convex in the coordinate yacross the foliation.) Then we simply apply the observation of the previousparagraph to conclude that since f�F is non-negative on at least half of thesectors, the average of f�F on the union of sectors (i.e th disk D) must benon-negative, as required. �
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4 Constructing a morphism from a geometric ac-tion to the given actionLet � = �1(S), S a closed surface of genus at least 2, and let ��T ! T be anaction (not necessarily small) on an R-tree T . In this section we constructan action of � on an R-tree R which is dual to a measured foliation, and a�-equivariant morphism � : R! T .We will think of S as having a �xed hyperbolic structure, and so theuniversal cover eS is the hyperbolic plane H2. Since T is contractible, thereis a �-equivariant Lipschitz continuous map f0 : H2 ! T . To be concrete,one may lift a triangulation of S, de�ne f0 by equivariance on the 0-skeletonof this triangulation, then extend (by contractibility of T ) equivariantly tothe 1-skeleton and 2-skeleton.4.1 Finding the foliation using a harmonic mapOur �rst goal is to �nd a harmonic f map in the equivariant homotopyclass of the �-equivariant continuous map f0 : H2 ! T constructed at thebeginning of x4. The harmonic map f will have the property that there is ameasured foliation (F ; �) on S so that every leaf of eF gets mapped to a pointunder f . While it is possible to use the general theories of Korevaar-Schoen[KS] and Jost [J1, J2] on harmonic maps to nonpositively curved metricspaces, we will construct the harmonic map from elementary methods here.To carry this out, we choose balls B1; : : : ; Bn on S so that:� the balls are topologically trivial� the restriction f0 jB̂j of f0 to a lift B̂j of Bj is not a constant map forj = 1; : : : ; n, and� the set fB1; : : : Bng of balls is an open cover of SThus we have that each lift of Bj is disjoint from every other lift of Bj ,and the union of all the lifts of all the balls fB1; : : : Bng covers eS.Now for each lift bB1 of B1 the image f0( bB1) is a �nite subtree of T . Thisfollows from the fact that, for a basepoint b1 2 bB1, the image f0( bB1) lies ina compact subset K of the space of directions at f0(b1), and as this spaceof directions K is discrete (from the de�nition of R-tree), it is also �nite.It is straightforward that there exists a unique harmonic map cf0 : bB1 !T so that cf0 j@B̂1= f0 j@B̂1 (see the Appendix of [W1] for existence. To seeuniqueness, apply the method of Cor. 3.2 of [W3] (see also x4 of [W1]):13



the distance between any pair of solutions would be subharmonic on bB1and vanishing on @B̂1 { thus any pair of solutions coincide.). Moreover, ifh( bB1) is any other lift of B1, the uniqueness of the harmonic map then forcescf0 jh(B̂1)= h �cf0 jB̂1 . Let �1 denote the map from the complete lift of B1 toT . Then �1, being nonconstant, also has the following properties:� �1 is projection along the vertical measured foliation of its Hopf dif-ferential, and� �1 is C1 on the interior of its domain (o� of the zeroes of the Hopfdi�erential of �1)Set f1(z) = ( �1(z) z 2 lift of B1f0 otherwiseThen f1 is equivariantly homotopic to f0, and is a C1 equivariant pro-jection (as above) along a measured foliation on the domain of �1.We repeat this procedure for lifts of the ball B2, using f1 as the originalmap instead of f0. We then obtain a map f2. The situation is most inter-esting when B1 \B2 6= ;, as then the boundary values for �2 are de�ned byvalues of �1, which may not agree with those of the original f0.The main observation we need to make is the following: along most of asmall neighborhood of @ bB2 � bB1 we have that �1 jB̂1nB̂2 and �2 jB̂2 extendto be a well-de�ned Lipschitz projection along a well-de�ned Lipschitz mea-sured foliation. To see this note that �1 j@B̂1 is C1;� and the measure of thevertical foliation of the Hopf di�erential of �1 is de�ned by distance betweenimage points in T (see x2.5). As this also holds for �2 jB2 , and @ bB1 � bB2is compact, the claim follows, except at (a discrete set of) places where theboundary values f1 j@B2 double back and result in small arcs in both B1 andB2 which close up in bB1 [ bB2.We follow the same procedures iteratively for lifts of B3; : : : ; Bn obtainingan equivariant map fn : eS ! T which is a projection along a Lipschitzmeasured foliation except for a discrete set of places where the leaves areclosed and homotopically trivial.In these places, we do an equivariant surgery to the map. For any regionconsisting of a union of concentric closed leaves, consider the closure of thelargest such region. We then collapse the region to a segment which mapsto the point de�ned by the boundary leaves. Call the new (collapsed) mapF : eS ! T . It is evidently an equivariant map along a measured foliationwith singularities that are k-pronged.14



In [W2](Prop. 3.1), an elementary proof shows that the piecewise har-monic map F : H2 ! T as above is equivariantly homotopic to a harmonicmap f : H2 ! T . (This proof only requires that there are two elements of �whose axes in T have unbounded intersection. This property is much weakerthan requiring that the action be small, but, for our purposes, follows fromLemma 2.1 above.) Moreover, attached to f is a holomorphic quadraticdi�erential e�0, the Hopf di�erential of f , with the following properties (see[W2; x2.2]):� The vertical measured foliation of e�0 is equivalent to ( eF ; ~�).� The leaf space of the vertical foliation of e�0 is R, and the verticalmeasure pushes down (say via � : H2 ! R) to the metric on R. Thismap is harmonic.� On neighborhoods B � ~S which are disjoint from e��1(0), the mapf jB agrees with �jB up to an isometry, while �jB is the projectionz 7! Rez in a natural coordinate system.This last property is quite important for the sequel, so we recall somethe details from, for instance, [W1; p. 273] and [W2; p. 117]. By x2.2,there is a canonical coordinate � = � + i� so that �0 = d�2 on B. In itsguise as a Hopf di�erential, of course, the de�nitions from x3.1 providesthat �0 =k f�@� k2 � k f�@� k2 +2i < f�@�; f�@� >. Combining these twodescriptions of �0 and using that B is one-dimensional, we �nd that f jB isisometric to the map � 7! Re� = �.4.2 De�nition of the morphism � : R! TDe�ne an associated harmonic projection � : eS ! R via the constructionin Example 3.2.4. De�ne also a map � : R ! T by � = f � ��1. We claimthat � is a morphism. To see this, let I denote a nondegenerate segment onthe tree R; we must �nd a non-degenerate subsegment J � I for which � jJis an isometry. Well, as R is de�ned via projection � : eS ! R, we can �ndan arc  � eS with �() = I. Here  is quasi-transverse to eF (in the senseof [HM],p. 231) and �() = `R(I). On any subarc 0 of  which avoids thezeros of e�0, we may write (as we did at the end of the previous subsection)e�0 = dz2 for a choice of conformal coordinate in a neighborhood of 0, and(again as in the previous subsection) f is an isometric submersion. Thenfor J = �(0) � �() = I, we have that � jJ= f j0 which is an isometry byconstruction. 15



Finally, � is surjective by the minimality hypothesis, and � is equivariantsince f is equivariant.5 Proving that � doesn't fold5.1 No edge foldsIt is a direct consequence of harmonicity of � that � does not fold at edgepoints. This is actually implicit in the proof above that � is a morphism,but we give a slightly di�erent proof in the next proposition, to which wewill refer back several times in the sequel.Proposition 5.1 (no edge-point folds) The morphism � : R ! T doesnot fold at an edge point x 2 R.Proof: The pre-image of an edge point is a nonsingular leaf of the foliationeF . Any point z0 on this leaf has a neighborhood N foliated by non-singulararcs of leaves, and admits a conformal coordinate z = x+iy with the foliationparallel to ker(Redz). If � : R! T were to fold at an edge point �(z0), thenthe harmonic map on the neighborhood N would necessarily have the formz 7! jRezj, which is, of course, not harmonic.Alternatively, using the same notation for the morphism � folding at anedge point �(z0), letting p0 denote the point p0 = � � �(z0), we may applythe maximum principle to the function h = f�(�dT (p0; �)) on a neighbor-hood of z0. Here �dT (p0; �) is convex on f(N ), while f�(�dT (p0; �)) is notsubharmonic on N , contradicting Proposition 3.2. �Note that, at this point, we have shown that for any small �-action onan R-tree T , there is an action on a tree R, dual to a measured foliation,and a �-equivariant morphism � : R! T which folds only at vertex points.5.2 No vertex foldsIn this section we will show that, when the action of � on T is small, themorphism � is an isometry. A crucial feature of our argument will be alemma that says that for actions ��T ! T which are not small, the choiceof tree R is not uniquely determined.Proposition 5.2 (no vertex folds) If the action � � T ! T is small,then the morphism � does not fold at a vertex point v 2 R.The rest of this section is devoted to proving Proposition 5.2.16



5.2.1 Vertex fold gives bad familyWe begin with the following generalization of Lemma 3.1.Lemma 5.3 With notation as above, the following conditions are equiva-lent:1. The action of � on T is dual to the measured foliation F .2. The morphism � : R! T is an isometry.3. The Hubbard-Masur section  F : Teich(S)! Q(S) for F is the sameas the Hopf di�erential section � : Teich(S)! Q(S) for T .Proof: As R is the dual tree of eF , it is clear that (2) implies (1). Lemma 3.1states that (1) implies (3).Now we prove that (3) implies (2). If � is not an isometry, then � mustfold at some vertex point v 2 R, by Proposition 5.1. Say �(e1) = �(e2) foredges e1; e2.We may assume that R has vertices of valence at least 4: otherwise avertex fold at a vertex v 2 R would be the fold of a 3-pronged star to aninterval or half-interval. Thus the map f would restrict, in a neighborhoodof the pre-image of v 2 R, to a harmonic function on a disk where thecorresponding Hopf di�erential has a 3-pronged zero. This is impossible, asharmonic functions are locally Re(czk) +O(zk+1), for k an integer.[Alternatively, the preimage of ��1(v) is a tree with discrete trivalentsingularities. Near the singularities, this tree locally disconnects eS intothree sectors, with the harmonic map f : eS ! T folding the image of onesector onto the image of an adjacent sector. Yet as the sectors meet alongan edge, the proof of Proposition 5.1 applies to yield a contradiction.]Now consider the Hubbard-Masur section  F : Teich(S) ! Q(S) forthe foliation (F ; �). We are assuming that  F (S) has zeroes of order atleast two. Let s1; s2 be the sectors of F corresponding to the edges e1; e2.By Proposition 2.3 there is another quadratic di�erental q0 =  F (S0) sothat the sectors of the vertical foliation of q0 corresponding to s1; s2 haveclosures which meet along an edge. Since by assumption  F is the sameas the Hopf di�erential section �, this is a contradiction: it violates themaximum principle for the map f 0 (de�ned as projection along the foliationof  F (S0) = �(S0)), again as the map would locally have the form z 7! jRe zj.� 17



Proof of Proposition 5.2: We now suppose, in expectation of reachinga contradiction, that the given action is not dual to a measured foliation,i.e. that � is not an isometry. The equivalence of (1) and (3) in Lemma5.3 then implies that there is a family fStg; t 2 R of distinct Riemannsurfaces for which  F (St) 6= �(St) for t > 0 and  F (S0) = �(S0) (here Fis de�ned by setting  F (S0) = �(S0) for some base point S0), as we mayas well assume for notational convenience that the two sections di�er in aneighborhood of S0: here we get a family of surfaces where the sections  Fand � disagree rather than just a pair of points because the sections  F and� are continuous.To set notation, we rephrase this as follows: there is a family fStg ofdistinct Riemann surfaces and corresponding �-equivariant harmonic mapsft : eSt ! T , Hopf di�erentials e�t, vertical foliations Ft, and projections�t : eSt ! Rt to R-trees with small �-actions and universal covering mapspt : H! St (choosing the notation so that t = 0 corresponds to the originalaction). Note that the trees Rt and morphisms �t are distinct, and that thefoliations Ft represent di�erent points in PMF(S). If this were not truethen  F (St1) = �(St1) for some t1 > 0, which would force the sections  Fand � to agree over St1 , contrary to the de�nition of the family St.The heart of our argument is the case when the foliations Ft are ori-entable and minimal. We begin with a reduction towards that case.5.2.2 Some leaf is not closedLet e 2 E � T denote a point of T which is not the image of a vertex inR0 and which lies on the folded edge E of T . We consider the leaves of F0containing p0 � f�10 (e) � S0. Since e lies on the folded edge E there areat least two of these. Each such leaf which is a closed curve represents a(conjugacy class of) element of � which �xes the edge E � T .If each of these two leaves were closed, then they must represent the sameelement of �1(S): being simple closed curves, they do not represent powersof a common element of �1(S), hence some powers of these two elementsin �1(S) must generate a free group since S is closed and hyperbolic; thisfree subgroup of �1(S) stabilizes E, contradicting smallness. But these twoclosed leaves are not even freely homotopic. If they were then they wouldbound an annulus A on S0. Since A has Euler-characteristic zero and theboundary components are leaves of F0, no singularity of F0 lies in A. Hencethe foliation F0 on this annulus would be by closed curves parallel to theboundary and the harmonic map � jA restricted to this annulus would mapto an interval, with constant boundary values. This forces the map to be18



everywhere constant, so that the Hopf di�erential vanishes on A, henceeverywhere, an absurdity.5.2.3 The model caseSo we may assume that one of the components ` of p0 � f�10 (e) is not closed.Then consider a small arc � � S transverse to ` and to F0. As the leaf ` isnot closed, it is dense in a subsurface which we might as well take to contain� (after maybe reducing the size of � -see [St], x11). Indeed, we can �nd a�nite number of edge points e1; : : : ; en so that the trajectories p0 � f�10 (ei)have closure equal to all of S0.Again, let � denote a small half-open arc transverse to Ft on St withits endpoint on the singularity q0 2 S; we also assume that ft(�) � E, thefolded edge, and that � is chosen small enough to ensure that �t j�t(�) isan isometry. By 5.2.2, we may assume that the nonsingular leaves through� are not closed on St. (If a non-singular leaf were closed, it would becontained in a neighborhood of non-singular closed leaves ([St], x9.3) and sothere would be no leaf through � which would also be dense in a subsurfacecontaining �. On the other hand, if every neighborhood of q0 in � hadregular closed leaves, since there are but a �nite number of (maximal) ringdomains (i.e. maximal neighborhoods of regular closed leaves) in Ft, we seethat a neighborhood of q0 in � is contained in one of these ring domains. Ifthis were true for all arcs � as above with ft(�) � E, we would be in thesituation of 5.2.2, a contradiction.)We begin with the model case of Ft being orientable and minimal, i.e.,every non-singular leaf is dense. The general case will follow from technicalmodi�cations to the proof in this case, but the essential ideas will be thesame as in this model case.Now, under the assumption that Ft is minimal and orientable, we seethat the �rst return map Pt : � ! � determines an interval exchange map�t : �! � on � (see [St], p. 58). Moreover, one can reconstruct the measuredfoliation (Ft; �t) directly from the interval exchange map �t : � ! �. Werecall that this interval exchange map �t is determined by looking at thelargest open subintervalsRi(t) of � on which Pt is continuous. The endpointsfx0(t) = q0; x1(t); : : : ; xN (t)g of these subintervals are contained in singularleaves of Ft, and hence (have lifts to eS which) project to vertex points ofthe tree Rt.We know that the set of vertex points in Rt is totally disconnected, asthey are the image of the countable discrete set in H of zeroes of �t. It isalso easy to see from this that the set of vertex points of the tree �t(Rt) in19



T is also totally disconnected. We now assume, postponing the proof untilthe end of this subsection, that for each t there is some vertex point v 2 Rtsuch that �t(v) a vertex point.Continuity argument: Our main observation is that, since the �-equivariant maps ft : H2 ! T are continuous in t, we see that if ft( gxi(t)) isa vertex in T , then as the vertices in T are a totally disconnected set, thefamily ft( gxi(t)) is constant in t. By the previous paragraph, there must be atleast one endpoint xi(t) whose lift gxi(t) projects to a vertex in Rt. Since Ftis minimal and ft is equivariant, we have that �ft( gxi(t)) = �f( exi) is dense inf(e�), for lifts gxi(t) and e� with gxi(t) 2 e�. Letting �xi(t) = e�\��1t (��t gxi(t)),we see that ft j�xi(t) is constant in t, which forces ft( gxj(t)) to be constantin t for each j.Since the measure of e� between consecutive vertices gxi(t) and gxi+1(t) (fori = 0; : : : ; N � 1) is determined by the distance dT (ft( gxi(t)), ft( gxi+1(t)) inthe tree T , we see that these measures are also constant. Of course, afterprojecting from the cover eS to the surface S, we see that the endpointsxi(t) � � are also constant in t.Finally, observe that the �rst return maps Pt : �! � vary continuouslyin t on the interiors of the intervals Ri(t) (and are a�ne there); hence, sincethe endpoints xi(t) are constant in t, we see that the maps Pt are constantin t as well. We conclude that the interval exchange maps �t are constant int, so that (Ft; �t) = (F0; �0) after we reconstruct (Ft; �t) from �t : � ! �.Hence we are done by Lemma 5.3.Proof that some vertex point maps to a vertex point: Since thisproperty is preserved under perturbations of the map, it is enough to provethe statement for some t.Suppose this were not the case. Then every vertex point of every Rtmaps to an edge point of T . Hence by Lemma 2.1 some edge point of eachRt maps to a vertex point of T . Since there are �nitely-many �-orbits ofvertex points, there exists �t > 0 so that, on a ��fundamental domain ofRt, any such edge point of Rt has distance at least �t from any vertex pointof Rt. For t small, we may take all �t > �, for some �xed � > 0.We �rst claim that by making a small perturbation in Teichm�uller spacefrom S to St we may assume that Ft has a closed leaf � representing an edgepoint x 2 Rt within a �=6-neighborhood of some vertex point vt; necessarily,then there is a whole nondegenerate edge E containing x which is both withina distance �=3 of vt and �xed by an element g 2 �. This �rst claim follows20



from essentially the same argument we used in the continuity argumentabove: take a small arc which abuts the vertex vt 2 Rt, and consider theimage � on St of a lift of that arc. The foliation Ft is determined by theinterval exchange de�ned by the �rst return map on that arc �. In particular,perturbations of F0 are given by perturbations of that �rst return map, andwe can �nd such a perturbation F0 so that Ft has a closed leaf through �.Now we make a few observations about our situation: since (1) all ver-tices are being folded away to edge points creating edges of radius at least�=2 from the image of vt, but (2) on the surfaces St, no pair of adjacentsectors are having their Rt images folded together (by the argument late inthe proof of Proposition 3.2), we see that for any point e0 in any edge E0within �=2 of the image of vt in T , we must have at least two distinct leaveson St whose lifts project to e0. But this contradicts smallness, as we showedin x5.2.2. Hence some vertex point maps to a vertex point.Next we begin to loosen the hypotheses of the model case so as to even-tually �nd ourselves in the general case, where Ft may be non-orientableand have several minimal components.5.2.4 Nonorientable caseLet us �rst drop the assumption that Ft should be orientable. This is merelya matter of generalizing the correspondence between measured foliations(Ft; �t) and interval exchange maps St. The idea here goes back to Strebel(see [St]). We regard one side of � as �+ and the other side as ��: if Ftis orientable, then the rectangles Ri(t) have one edge on �+ and anotheron ��, but if Ft is not orientable, a rectangle may have both edges on,say, �+. Yet, if we now regard the �rst return map Pt as a map Pt :�+ [ �� ! �+ [ ��, we can consider an associated interval exchange mapSt : �+ [ �� ! �+ [ �� from which we can reconstruct (Ft; �t). Theendpoints fxi(t)g of the intervals Ri(t) on �+ [ �� still (have lifts which)map continuously into the disconnected set of vertices (constant in t) of T ,so then, as before the endpoints fxi(t)g, and the map Pt, St are constant int. We conclude that the measured foliations are also constant in t.5.2.5 Breaking the model case into piecesWe come �nally to the most general part, where we no longer require thatFt is minimal. Then for F0 choose a collection of closed arcs �1; : : : �n whichare transverse to F0, and whose F0-orbits both cover H2=�0 and intersectat most along some compact singular leaves. At this point, we also require21



the intervals �i to have corresponding interval exchange maps for F0 whichare either irreducible, i.e. we cannot (non-trivially) decompose �i = �0i [�00iwith the interval exchange map �i for �i having a restriction �i j�0i : �0i ! �0iwhich preserves the proper subinterval �0i, or correspond to a single cylinderin F0 , so that the interval exchange is the identity on a single cylinder.We claim that the measured foliation Ft on the whole surface �(t) isconstant in t. This will give a contradiction by Lemma 5.3, proving thetheorem.Let �i(t) be the subsurface of St obtained by taking the closure of theorbit of �i along the leaves of Ft. Our restrictions on f�ig have the e�ectof forcing either �i(0) to be a cylinder or a surface on which F0 is minimal.We observe that the argument given earlier for the cases where F0 wasminimal on the closed surface H2=�0 continue to hold for the case where F0is minimal on �i(0). In particular, for �i(0) a subsurface with almost everyleaf dense, we see that the interval exchange maps �i(t) must be constant int. Yet, it is part of the basic construction of measured foliations from intervalexchange maps that the topology of �i(t) (as well as Ft) is determined fromthe map �i(t) (see, e.g., [Ma1]). Thus, as �i(t) = �i(0), we see that �i(t) ishomeomorphic to �i(0).Now each boundary circle of each �i(t) is a leaf of the foliation on thatsubsurface. This leaf may be taken to be singular as it would otherwise bean interior leaf of a cylinder of non-singular homotopic leaves, counter tothe construction of f�ig. Thus the continuity argument also shows that thefoliations on the cylindrical subsurfaces �j(t) are constant in t. Hence themeasured foliation on each subsurface �i(t) is constant in t. Finally, when-ever two subsurfaces �i(t) and �j(t) have a common boundary componentC(t), the continuity argument shows that C(t) cannot become a cylinder atany time t as this would require the single vertex ft(C(t)) to continuouslydeform into a non-trivial family of pairs of vertices, an absurdity. So we seethat the identi�cation of all the boundary components of all the �i(t) areconstant over t, so that Ft is constant.6 AppendixThis appendix is dedicated to a proof of Proposition 2.3, which is partlyimplicit in [HM] and partly a \folklore theorem". We provide here an ele-mentary, geometric, and self-contained proof due almost entirely to HowardMasur (personal communication), who graciously permitted us to reproduceit here. 22



The proof can be reduced to the following claim: If either1. q has a pair fz1; z2g of distinct zeros connected by an arc A of a leafof its vertical foliation, or2. q has a k-pronged singularity at z3, and 2 arbitrary sectors s1; s2 ofthis k-prong are speci�ed,then there is a Riemann surface S� and a holomorphic quadratic di�er-ential q� on S� so that the vertical foliation of q� is measure equivalent to(F ; �) and1. (in case (1) above) the zeros of q� corresponding to fz1; z2g coincide,or2. (in case (2) above) the images of the sectors s1; s2 under the equiva-lence of foliations meet along an arc.The proposition follows from the claim as follows. First apply (1) aboveto get s1 and s2 as sectors abutting a common singularity z. Then apply(2) above and we are done.We are left to prove the claim.Single cylinder case. We �rst prove the claim for Jenkins di�erentials,i.e. those di�erentials whose vertical foliations are but one foliated open(right Euclidean) cylinder C with all singularities lying in @C. Here S canbe thought of as an identi�cation space � : C ! S, with identi�cations be-ing made on @C. Let C1; C2 denote the 2 components of @C. Note that thegraph L lies in @C, and all the singularities on a single component of @C areconnected by L. Moreover, there are natural correspondences between topo-logical or geometric operations on the surface S and topological or geometricoperations on C. This means that if we continuously deform C to anotherright Euclidean cylinder C� (so that there is a canonical correspondence ofidenti�cations on @C�), then the canonical quadratic di�erential q� on C�(de�ned so that the metric jq�j agrees with the Euclidean metric on C� andall of whose vertical leaves are parallel to @C�) descends to a quadratic dif-ferential q� on the identi�ed surface S� with the vertical foliation of q� onS� being Whitehead equivalent to the vertical foliation of q on S.To prove (1) and (2) above, we will �rst perform the desired operationon C to obtain a new Euclidean cylinder C� with canonically determinedquadratic di�erential q� as above. The important thing to check in eachcase is that we can do this so that the resulting Euclidean lengths `(C�1 ) and23



`(C�2 ) of the 2 components of @C� are equal. This imediately implies thatthe identi�cation � determines an identi�cation �� : C� ! S� to a Riemannsurface S�, and that the canonical quadratic di�erential on C� descends toa quadratic di�erential q� on S�. By construction q� has vertical foliationmeasure equivalent to that of the vertical foliation of q.Consider case (1). Let A1; A2 � @C denote the 2 components of ��1(A),where we recall that A is the arc of the vertical foliation we wish to collapse.Note that `(A1) = `(A2).Case 1a: A1 and A2 lie in di�erent components of @C. In this casecontract both A1 and A2 to a point to give a Euclidean cylinder C�. SinceC�1 and C�2 have the same Euclidean length, so we are done by the above.Case 1b: A1; A2 lie on the same component of @C. First note that thearcs of L have preimages in @C which come in pairs, as neighborhoods of thearcs on the identi�cation space have full neighborhoods, while neighborhoodsof arcs on @C have only half-neighborhoods. Hence since A1; A2 lie on thesame component of @C, we must be able to �nd some collection of pairs ofarcs on the other component the sum of whose lengths is at least that of thesum of the lengths of A1 and A2. (This is just a pigeon-hole principle: thearcs come in pairs whose lengths are equal and for which total lengths ofall the arcs are the sum of the lengths of the boundary components of @C,yet each of these boundary components have the same lengths, so the factthat A1 and A2 contribute solely to one component of @C forces some otherfamily of pairs to contribute at least as much solely to the other componentof @C.) Thus we act as before, contracting A1 and A2 on one componentof @C and simultaneously some other pairs of arcs the same amount on theother component of @C. It is quite important here that the contraction ofthe other components has no e�ect on our claim or our purpose; the proofof the �rst part of the claim concludes as before.Now to prove part (2) of the claim. Under the identi�cation map � : C !S, each sector si; i = 1; 2 has a unique pre-image on C as a neighborhoodUi of a vertex vi.Case 2a: v1 and v2 lie on di�erent components of @C.We split the vertex v1 into a pair of vertices v1;1 and v1;2 connected byan arc A1, and we split the vertex v2 into a pair of vertices v2;1 and v2;2connected by an arc A2 of the same length as A1. We then re-identify thecylinder as before, with the only changes being that instead of identifyingv1 to v2, we send A1 isometrically onto A2 (there is a unique way to do this24



which preserves the ordering of the sectors). The resulting surface gives S�and q� as required.Case 2b: v1 and v2 lie on the same component, say C1, of @C.Split v1 and v2 as in Case 2b. We now do a further deformation to make`(C�1 ) = `(C�2 ).If for some compact singular arc B � L, we have both components of��1(B) lying on C2, then by lengthening B we could achieve `(C�1 ) = `(C�2 ).If this isn't true, then by the pigeon-hole priciple, for each such B we know��1(B) has one component on C1 and one on C2.Now observe that any singularity on the surface S with, say, k sectors,admits a cyclic ordering of these sectors s1; :::sk (where the closure of s2meets the closure of s1 on one side and the closure of s3 on the other side,and so on). Since we are in a case where each edge incident to a singularityon S has preimages on both boundary components C1 and C2 of @C, andsince sectors have preimages near components of @C where their boundingarcs have preimages, we see that the sectors s1; : : : ; sk also alternate betweenhaving preimages in C1 and in C2. This implies that all of the singularitieson the surface S have an even number of sectors.We now claim that there are vertices w1; w2 inC2 which are still identi�edby the identi�cation rules, even after the splitting of v1 and v2. (Here thesubtlety is that by �rst splitting v1 and v2, we have changed the identi�cationrules, and hence the orbits of identi�ed vertices on @C. Our vertices w1 andw2 must not only then correspond to each other by the original identi�cationrules, but they must also lie in the same new orbit of vertices on @C, afterthe splitting of v1 and v2.) This �nishes the proof of case 2b since we thensplit w1 and w2 to make `(C�1 ) = `(C�2 ).To see that there are such vertices w1 and w2, we recall that the totalmultiplicity of zeroes of a holomorphic quadratic di�erential on a Riemannsurface S of genus g is equal to 4g � 4 (Riemann-Roch). Thus, since inthe case under consideration all of the singularities have an even number ofsectors (and hence an even order of zero), we see that there is either onesingularity z0 with at least six sectors, or several singularities which all haveat least four sectors. In the �rst case we see that any initial splitting of z0(by splitting a pair of vertices v1 and v2 on the same component C1 of @C)would leave a topological foliation with two singularities of which at leastone would have four sectors, with two of those sectors having preimages onC2: we would then split the vertices of those sectors, say w1 and w2 to �nishthe case. In the second case, there is at the outset a singularity on S whosepreimages do not include v1 and v2, and which has at least a pair of sectors25



with preimages on C2, as desired.General case. We prove the general case by the now standard techniqueof approximating. By [Ma2] we may approximate q by a sequence fqng ofJenkins di�erentials on S. In case (1), let A denote the arc of the verti-cal foliation of q which we wish to contract. As qn approximates q, thereis an arc An � @Cn which approximates A. Furthermore, there is a con-tractible neighborhood U on the underlying di�erentiable surface which is aneighborhood of the arc A and all arcs An for n su�ciently large.Now, the Riemann surface S is an identi�cation space of each cylinderCn, with identi�cations being made on @Cn. As in the single cylinder caseabove, we can form new Riemann surfaces S�n equipped with quadratic dif-ferentials q�n by contracting the arcs An � @Cn and identifying as before;here the arc An on Sn bounded by a pair of low order zeros is replaced onS�n by a single higher order zero, say z�n.The important thing to notice about this operation is that the comple-ment V = U c of the neighborhood U � S is approximated by the closure ofan open set Vn on S�n which only avoids a small neighborhood of the highorder zero z�n; moreover, the conformal structures on Vn compare uniformlyto the conformal structure on V , hence to each other. Hence, by passing to asubsequence if necessary, we have that that S�n converges in (the interior of)Teichmuller space to a Riemann surface S�. It also follows that q�n convergesto a holomorphic quadratic di�erential, say q�, on S�; as qn approximates qand q�n is measure equivalent to qn, we see that q� is measure equivalent toq. Moreover, as the foliation of q�n results from a Whitehead move appliedto the foliation of qn (which contracts An to a point), the foliation of q� isobtained from the foliation of q via a Whitehead move which contracts A.Case (2) is virtually identical: we still have uniform convergence of theconformal structures outside the pair(s) of neighborhoods of the vertices (orarcs) we are splitting to pairs of vertices connected by an arc.�References[CM] M. Culler and J. Morgan, Group actions on R-trees, Proc. LondonMath. Soc., Vol. 3, No.55 (1987), p.571-604.[GiSh] H. Gillet and P. Shalen, Dendrology of Groups in Low Q-Ranks,J. Di� Geom., Vol. 32 (1990), p.605-712.26
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