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Second-Order Equations

We are ready to move on to differential equations of higher order. We will start
with those of second order. These are especially important since so many of the
equations that arise in science and engineering are of second order.

In Section 4.2 we will completely solve homogeneous, second-order, linear
equations with constant coefficients, and in Section 4.3 we will apply this to the
analysis of harmonic motion. We then examine methods of solution for inhomoge-
neous equations and apply these methods to the study of forced harmonic motion.

4.1 Definitions and Examples
A second-order differential equation is an equation involving the independent vari-
able t and an unknown function y along with its first and second derivatives. We will
assume it is possible to solve for the second derivative, in which case the equation
has the form

y′′ = f (t, y, y′).

A solution to such an equation is a twice continuously differentiable function y(t)
such that

y′′(t) = f (t, y(t), y′(t)).

Many problems in physics give rise to models that are second-order equations.
For example, in the study of motion, almost all models start with Newton’s second
law,

F = ma.

Here we are modeling the displacement x(t) of a body from some reference point.
The derivative of x is the velocity v and the second derivative is the acceleration
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164 Chapter 4 Second-Order Equations

a. The force F acting on the body is usually a function of time t , the displacement
x , and the velocity v, or F = F(t, x, v). Thus Newton’s second law gives us the
differential equation

m
d2x

dt2
= F(t, x, dx/dt),

an equation of second order. We will discuss an important example in this section.

Linear equations
We will spend most of our time discussing linear equations. These have the special
form

y′′ + p(t)y′ + q(t)y = g(t). (1.1)

The coefficients p, q, and g can be arbitrary functions of the independent variable
t , but y, y′, and y′′ must all appear to first order. This means we do not allow
products of these to occur, nor any powers higher than 1, nor any complicated func-
tions like cos y′. For example, when the coefficients p and q are positive constants,
equation (1.1) is the equation for the harmonic oscillator, which we will derive later
in this section. On the other hand, the equation for the angular displacement of a
pendulum bob is

θ ′′ + k sin θ = 0.

Because of the sin θ term this equation is nonlinear.
The function g(t) on the right of equation (1.1) is called the forcing term. This

is because in physical systems such a term usually arises from an external force. For
example, such is the case in the equation of the harmonic oscillator. If the forcing
term is equal to 0, the resulting equation is said to be homogeneous. Thus the
homogeneous equation

y′′ + p(t)y′ + q(t)y = 0. (1.2)

will be called the homogeneous equation associated to (1.1).

An example—the vibrating spring
An important example of a second-order differential equation occurs in the model of
the motion of a vibrating spring. The mathematical principles behind the vibrating
spring appear in many areas of science and engineering. The differential equation
that we derive here is the paradigm of oscillatory behavior.

The situation is illustrated in Figure 1. We consider the spring suspended from
a beam. In Figure 1(a) we see the spring with no mass attached. It is assumed to
be in equilibrium, so there is no motion. This is called the spring equilibrium. The
position of the bottom of the spring is the reference point from which we measure
displacement, so it corresponds to x = 0. We will orient our measurements by
making x positive below the spring equilibrium.

In Figure 1(b) we have attached a weight of mass m to the spring. This weight
has stretched the spring until it is once more in equilibrium at x = x0. This is called
the spring-mass equilibrium. At this point there are two forces acting on the mass.
There is the force of gravity mg, and there is the restoring force of the spring, which
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Figure 1 Analysis of a vibrating spring.

we denote by R(x) since it depends on the distance x that the spring is stretched.
The fact that we have equilibrium at x = x0 means that the total force on the weight
is 0,

R(x0) + mg = 0. (1.3)

In Figure 1(c) we have stretched the spring further. The weight is no longer in
equilibrium so it is most likely moving. Its velocity is

v = x ′. (1.4)

Now, in addition to gravity and the restoring force, there is a damping force D,
which is the resistance to the motion of the weight due to the medium (air?) through
which the weight is moving and perhaps to something internal to the spring. The
damping force depends on a lot of factors, such as the shape of the body, but the ma-
jor dependence is on the velocity. Hence we will write it as D(v). To be complete,
we will allow for an external force F(t) as well.

Let a = v′ = x ′′ denote the acceleration of the weight. According to Newton’s
second law,

ma = total force acting on the weight

= R(x) + mg + D(v) + F(t).

Since a = x ′′, and v = x ′, we get the second-order differential equation

mx ′′ = R(x) + mg + D(x ′) + F(t). (1.5)
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166 Chapter 4 Second-Order Equations

To discover the form of the restoring force we resort to experimentation. For
many springs, it turns out that the restoring force is proportional to the displacement.
This experimental fact is referred to as Hooke’s law. It says that

R(x) = −kx . (1.6)

We use the minus sign because the restoring force is acting to decrease the displace-
ment, and this allows us to say that the spring constant k is positive. It is important
to realize that Hooke’s law is an experimental fact. There are some springs for which
it is not true, even for small displacements. Test it for a bungee cord, for example.
Furthermore, for any spring Hooke’s law is valid only for small displacements. As-
suming Hooke’s law, (1.5) becomes

mx ′′ = −kx + mg + D(x ′) + F(t). (1.7)

Assuming, for the moment, that there is no external force and that the weight is
at spring-mass equilibrium where x = x0, and x ′ = x ′′ = 0, then the damping force
is D = 0, and we have (see (1.3))

0 = R(x0) + mg = −kx0 + mg or mg = kx0. (1.8)

E X A M P L E 1 . 9 � In an experiment, a 4 kg weight is suspended from a spring. The displacement of
the spring-mass equilibrium from the spring equilibrium is measured to be 49 cm.
What is the spring constant?

This example will give us an opportunity to discuss units. We will use the
International System, in which the unit of length is the meter (abbreviated m),
that of time is the second (abbreviated s), and the unit of mass is the kilogram
(abbreviated kg). Other units are derived from these. For example, the unit for
velocity is m/s, and that for acceleration is m/s2. Thus, the acceleration due to
gravity near the earth is g = 9.8 m/s2. According to this system, the unit for force
is kg·m/s2, but this is called a Newton (abbreviated N).

We can determine the spring constant in our example by solving (1.8) for k,

k = mg

x0
.

According to our data, the mass m = 4 kg, and x0 = 49 cm = 0.49 m. Using
g = 9.8 m/s2, we find that the spring constant is

k = 4 kg × 9.8 m/s2

0.49 m
= 80 kg/s2. �

Using (1.8) to substitute for mg in equation (1.7), it becomes

mx ′′ = −k(x − x0) + D(x ′) + F(t).

This motivates us to introduce the new variable y = x − x0. Notice that y is the
displacement of the weight from the spring-mass equilibrium (see Figure 1). Since
y′ = x ′ and y′′ = x ′′, our equation becomes

my′′ = −ky + D(y′) + F(t). (1.10)
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The damping force D(v) always acts against the velocity. Hence we can write
it as

D(v) = −µv, (1.11)

where µ = µ(v) is a non-negative function of the velocity. Again it is an exper-
imental fact that for objects of many shapes and for small velocities, the damping
force is proportional to the velocity. In such cases µ is a nonnegative constant,
called the damping constant. Again there are examples when the dependence of D
on v is more complicated.

If we use (1.11) in equation (1.10) it becomes

my′′ = −ky − µy′ + F(t) (1.12)

or

my′′ + µy′ + ky = F(t). (1.13)

If µ is a constant, this is a second-order, linear differential equation for the dis-
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Figure 2 A vibrating spring with
no damping.

placement y(t). We can compute the solution numerically. With k = 3, m = 1, no
damping (µ = 0), and no external force (F(t) = 0), a solution is plotted in Figure 2.
In Figures 3 and 4, we see the results with damping—in Figure 3 µ = 0.4, and in
Figure 4 µ = 4.

Let’s look at the case when the spring is undamped (µ = 0) and unforced
(F(t) = 0). Then our equation reduces to

y′′ = − k

m
y. (1.14)

Can we solve this equation? We will develop systematic methods to solve such
equations later, but for now we can only use our knowledge of calculus. It might
help to look at the solution plotted in Figure 2. To solve equation (1.14) we must
find a function whose second derivative is a negative multiple of itself. When we
think in those terms (and look at Figure 2) we are led to consider the sine and cosine.
With a little experimentation we can discover that
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Figure 3 A vibrating spring with
small damping.

cos
(√

k/m t
)

and sin
(√

k/m t
)

are solutions to (1.14). In fact, direct substitution shows that any function of the
form

y(t) = a cos
(√

k/m t
)

+ b sin
(√

k/m t
)

(1.15)

where a and b are constants is a solution to (1.14).
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Figure 4 A vibrating spring with
large damping.

From (1.15) we see that our solutions are periodic functions. If we introduce
the natural frequency

ω0 = √
k/m,

the solution can be written as

y(t) = a cos ω0t + b sin ω0t. (1.16)

If

T = 2π/ω0 = 2π
√

m/k

cos ω0(t + T ) = cos(ω0t + ω0T ) = cos(ω0t + 2π) = cos(ω0t)

and the same is true for sin ω0(t + T ). Hence y(t + T ) = y(t), so y is periodic and
T is the period.
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168 Chapter 4 Second-Order Equations

Existence and uniqueness
The existence and uniqueness results for second-order equations are very similar to
those for first-order equations. We will state a result for linear equations, which we
will find quite useful.

THEOREM 1.17 Suppose the functions p(t), q(t), and g(t) are continuous on the interval (α, β). Let
t0 be any point in (α, β). Then for any real numbers y0 and y1 there is one and only
one function y(t) defined on (α, β), which is a solution to

y′′ + p(t)y′ + q(t)y = g(t) for α < t < β,

and satisfies the initial conditions y(t0) = y0 and y′(t0) = y1.

The major difference between this result and the corresponding theorem for
first-order linear equations in Section 7 of Chapter 2 is that an initial condition is
needed not only for the function y, but also for its derivative y′. It is important to
notice that we can be sure that a solution exists, and furthermore that it exists over
the entire interval where the coefficients are defined and continuous.

Structure of the general solution
We will use Theorem 1.17 to find the form of the general solution to a homogeneous
linear equation. It is based on the following result, which is the defining feature of
linearity.

PROPOSITION 1.18 Suppose that y1 and y2 are both solutions to the equation

y′′ + p(t)y′ + q(t)y = 0. (1.19)

Then the function y = C1 y1 + C2 y2, is also a solution to (1.19) for any constants
C1 and C2.

Proof We notice that y′ = C1 y′
1 + C2 y′

2, and y′′ = C1 y′′
1 + C2 y′′

2 . Consequently,
by simply rearranging the terms we get

y′′ + py′ + qy = (
C1 y′′

1 + C2 y′′
2

) + p
(
C1 y′

1 + C2 y′
2

) + q (C1 y1 + C2 y2)

= C1
(
y′′

1 + py′
1 + qy1

) + C2
(
y′′

2 + py′
2 + qy2

)
= 0.

As an example, direct substitution will show that y1(t) = e−t and y2(t) = e−2t

are solutions to the linear equation y′′− y′−2y = 0. In light of Proposition 1.18, we
know that any linear combination y(t) = C1e−t + C2e−2t is also a solution. Again
this can be checked by direct substitution.

The general linear combination, y = C1 y1 + C2 y2, of two solutions y1 and y2,
contains two arbitrary constants. One might be led to expect that this is the general
solution. This is often the case, but not always. This will be the content of our main
theorem. However, to state it we need some terminology.
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4.1 Definitions and Examples 169

DEFINITION 1.20 Two functions u and v are said to be linearly indepen-
dent if neither is a constant multiple of the other. If one is a constant multiple
of the other they are said to be linearly dependent.

Thus, the functions u(t) = t and v(t) = t2 are linearly independent. It is true
that v(t) = tu(t), but the factor t is not a constant. On the other hand u(t) = sin t
and v(t) = −4 sin t are obviously linearly dependent.

We are going to use Theorem 1.17 to prove the following result, which will
provide us with our solution strategy for homogeneous equations.

THEOREM 1.21 Suppose that y1 and y2 are linearly independent solutions to the equation

y′′ + p(t)y′ + q(t)y = 0. (1.22)

Then the general solution to (1.19) is

y = C1 y1 + C2 y2,

where C1 and C2 are arbitrary constants.

Theorem 1.21 will be proved after some discussion of the result. We will find it
advantageous to define some more terminology.

DEFINITION 1.23 A linear combination of the two functions u and v is
any function of the form

w = Au + Bv,

where A and B are constants.

With this definition we can express Proposition 1.18 by saying that a linear
combination of two solutions is also a solution. Theorem 1.21 says that the general
solution is the general linear combination of the solutions y1 and y2, provided that y1

and y2 are linearly independent. Because of this result we will say that two linearly
independent solutions form a fundamental set of solutions.

Notice that Theorem 1.21 defines a strategy to be used in solving homogeneous
equations. It says that it is only necessary to find two linearly independent solutions
to find the general solution. That is what we will do in what follows.

E X A M P L E 1 . 2 4 � Find a fundamental set of solutions to the equation for simple harmonic motion,

x ′′ + ω2x = 0.

It can be shown by substitution that

x1(t) = cos ωt and x2(t) = sin ωt

are solutions. (See equation (1.14) and what follows.) It is clear that these functions
are not multiples of each other, so they are linearly independent. It follows from
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170 Chapter 4 Second-Order Equations

Theorem 1.21 that x1 and x2 are a fundamental set of solutions. Therefore, every
solution to the equation for simple harmonic motion is a linear combination of x1

and x2. �

To prove Theorem 1.21, we need to know a little more about the impact of
linear independence. The best way to determine if two given functions are linearly
independent is by simple observation. For example, in Example 1.24 it is pretty
obvious that cos ωt and sin ωt are not multiples of each other and therefore are
linearly independent. However, we will need a way of making this determination in
more difficult cases. The Wronskian of two functions u and v is defined to be

W (t) = det

(
u(t) v(t)
u′(t) v′(t)

)
= u(t)v′(t) − v(t)u′(t).

The relationship of the Wronskian to linear independence is summed up in the next
two propositions.

PROPOSITION 1.25 Suppose the functions u and v are solutions to the linear, homogeneous equation

y′′ + p(t)y′ + q(t)y = 0

in the interval (α, β). Then the Wronskian of u and v is either identically equal to
zero on (α, β) or it is never equal to zero there.

Proof To prove this result, we differentiate the Wronskian W = uv′ −vu′. We get

W ′ = u′v′ + uv′′ − v′u′ − vu′′ = uv′′ − vu′′.

Since u and v are solutions to y′′ + py′ + qy = 0, we can solve for their second
derivatives and substitute. We get

W ′ = u
(−pv′ − qv

) − v
(−pu′ − qu

)
= −p(uv′ − vu′)
= −pW.

This is a separable first-order equation for W . If t0 is a point in (α, β), the solution
is

W (t) = W (t0)e
− ∫ t

t0
p(s) ds for α < t < β.

If W (t0) = 0, then W (t) = 0 for α < t < β. On the other hand, if W (t0) �= 0, then
W (t) �= 0, since the exponential term is never zero.

Consider the solutions x1(t) = cos ωt and x2(t) = sin ωt we found in Exam-
ple 1.24. The Wronskian of x1 and x2 is

W (t) = x1(t)x ′
2(t) − x ′

1(t)x2(t) = ω0 cos2 ω0t + ω0 sin2 ω0t = ω0.

Thus for these two solutions the Wronskian is never equal to zero. This is always
the case for a fundamental set of solutions, as we will prove in the next result.
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4.1 Definitions and Examples 171

PROPOSITION 1.26 Suppose the functions u and v are solutions to the linear, homogeneous equation

y′′ + p(t)y′ + q(t)y = 0 (1.27)

in the interval (α, β). Then u and v are linearly dependent if and only if their Wron-
skian is identically zero in (α, β).

Proof Suppose first that u and v are linearly dependent in (α, β). Then one of
them is a constant multiple of the other. Suppose u = Cv. Then u′ = Cv′ as well,
so

W (t) = u(t)v′(t) − v(t)u′(t) = Cv(t)v′(t) − v(t)Cv′(t) = 0.

Conversely, suppose that W (t) = 0 for α < t < β. It remains to show that u
and v are linearly dependent. First, if v(t) = 0 for α < t < β, then v = 0u, so u
and v are linearly dependent. Suppose, therefore, that v is not identically equal to 0
on (α, β). Suppose that v(t1) �= 0. Since v is continuous, there is an interval (c, d)

containing t1 on which v �= 0. On this interval we have

d

dt

u

v
= u′v − uv′

v2
= −W

v2
= 0.

Hence, on the interval (c, d), u/v is equal to a constant C , or u = Cv. In particular,
at t1 we have u(t1) = Cv(t1) and u′(t1) = Cv′(t1). By Proposition 1.18 both u and
Cv are solutions to the differential equation y′′ + py′ + qy = 0. Since they have the
same initial conditions at t1, it follows from Theorem 1.17 that u = Cv everywhere
in (α, β). Consequently, u and v are linearly dependent.

Let’s restate the results of these two propositions to highlight the points we will
need.

PROPOSITION 1.28 Suppose the functions u and v are solutions to the linear, homogeneous equation

y′′ + p(t)y′ + q(t)y = 0

in the interval (α, β). If W (t0) �= 0 for some t0 in the interval (α, β), then u and
v are linearly independent in (α, β). On the other hand, if u and v are linearly
independent in (α, β), then W (t) never vanishes in (α, β).

Proof If W (t0) �= 0 for some t0 in the interval (α, β), then by Proposition 1.26, u
and v cannot be linearly dependent. Hence they are linearly independent.

If u and v are linearly independent in (α, β), then by Proposition 1.26 the Wron-
skian is not identically equal to 0. By Proposition 1.25 it is never equal to 0 in (α, β).

Now we are ready to prove Theorem 1.21.

Proof of Theorem 1.21 Suppose that y1 and y2 are linearly independent solutions
to the equation y′′ + py′ + qy = 0, and suppose that y(t) is any solution. We need
to find the constants C1 and C2 such that y = C1 y1 + C2 y2. Let t0 be any point in
(α, β). We choose the constants so that

y(t0) = C1 y1(t0) + C2 y2(t0), and

y′(t0) = C1 y′
1(t0) + C2 y′

2(t0).
(1.29)
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172 Chapter 4 Second-Order Equations

This system is solvable provided the determinant

det

(
y1(t0) y2(t0)
y′

1(t0) y′
2(t0)

)
�= 0.

However, this determinant will be recognized as the Wronskian W of y1 and y2.
Since y1 and y2 are linearly independent, by Proposition 1.28 we know that W (t0) �=
0. Therefore we can find C1 and C2 solving (1.29).

We know that y and C1 y1 + C2 y2 are both solutions to the differential equation
y′′ + p(t)y′ + q(t)y = 0, and by (1.29) they have the same initial conditions at t0.
By the uniqueness part of Theorem 1.17, we have

y(t) = C1 y1(t) + C2 y2(t) for α < t < β.

Initial value problems
Let’s give some thought to formulating the initial value problem for the second-order
equation y′′ = F(t, y, y′). We see in Theorem 1.17 that to determine a solution y
uniquely it is necessary to specify both y(t0) and y′(t0). While the theorem applies
only to linear equations, this is true for all second-order equations.

E X A M P L E 1 . 3 0 � Find the solution to the equation for simple harmonic motion x ′′ + 4x = 0, with
initial conditions x(0) = 4 and x ′(0) = 2.

We know from Example 1.24 that the general solution has the form

x(t) = a cos 2t + b sin 2t,

where a and b are arbitrary constants. Substituting the initial conditions we get

4 = x(0) = a, and 2 = x ′(0) = 2b.

Thus a = 4 and b = 1 and our solution is

x(t) = 4 cos 2t + sin 2t. �

................
EXERCISES
In Exercises 1–4, show, by direct substitution, that the given functions y1(t) and
y2(t) are solutions of the given differential equation. Then verify, again by direct
substitution, that any linear combination of the two given solutions is also a solution.

1. y′′ − y′ − 6y = 0, y1(t) = e3t , y2(t) = e−2t

2. y′′ + 4y = 0, y1(t) = cos 2t , y2(t) = sin 2t

3. y′′ − 2y′ + 2y = 0, y1(t) = et cos t , y2(t) = et sin t

4. y′′ + 4y′ + 4y = 0, y1(t) = e−2t , y2(t) = te−2t

In Exercises 5–8, use Definition 1.20 to explain why y1(t) and y2(t) are linearly
independent solutions of the given differential equation. In addition, calculate the
Wronskian and use it to explain the independence of the given solutions.
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5. y′′ − y′ − 2y = 0, y1(t) = e−t , y2(t) = e2t

6. y′′ + 9y = 0, y1(t) = cos 3t , y2(t) = sin 3t

7. y′′ + 4y′ + 13y = 0, y1(t) = e−2t cos 3t , y2(t) = e−2t sin 3t

8. y′′ + 6y′ + 9y = 0, y1(t) = e−3t , y2(t) = te−3t

9. Show that the functions

y1(t) = t2 and y2(t) = t |t |
are linearly independent on (−∞, +∞). Next, show that the Wronskian of the
two functions is identically zero on the interval (−∞, +∞). Why doesn’t this
result contradict Proposition 1.26?

10. Show that y1(t) = et and y2(t) = e−3t form a fundamental set of solutions for
y′′ + 2y′ − 3y = 0, then find a solution satisfying y(0) = 1 and y′(0) = −2.

11. Show that y1(t) = cos 4t and y2(t) = sin 4t form a fundamental set of solutions
for y′′ + 16y = 0, then find a solution satisfying y(0) = 2 and y′(0) = −1.

12. Show that y1(t) = e−t cos 2t and y2(t) = e−t sin 2t form a fundamental set of
solutions for y′′ + 2y′ + 5y = 0, then find a solution satisfying y(0) = −1 and
y′(0) = 0.

13. Show that y1(t) = e−4t and y2(t) = te−4t form a fundamental set of solutions
for y′′+8y′+16y = 0, then find a solution satisfying y(0) = 2 and y′(0) = −1.

14. Unfortunately, Theorem 1.21 does not show us how to find two independent so-
lutions. However, there is a technique that can be used to find a second solution
when one solution is known.

(a) Show that y1(t) = t2 is a solution of

t2 y′′ + t y′ − 4y = 0. (1.31)

(b) Let y2(t) = vy1(t) = vt2, where v is a yet to be determined function
of t . Note that if y2/y1 = v, and v is nonconstant, then y1 and y2 are
independent. Show that the substitution y2 = vt2 reduces equation (1.31)
to the separable equation

5v′ + tv′′ = 0. (1.32)

Solve equation (1.32) for v, form the solution y2 = vt2, then state the
general solution of equation (1.31).

Use the technique shown in Exercise 14 to find the general solution of the second
order equations in exercises 15–18.

15. t2 y′′ − 2t y′ + 2y = 0, y1(t) = t

16. t2 y′′ + t y′ − y = 0, y1(t) = t

17. t2 y′′ − 3t y′ + 3y = 0, y1(t) = t

18. t2 y′′ + 4t y′ + 2y = 0, y1(t) = 1/t
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4.2 Second-Order Equations and Systems
A planar system of first-order equations is a set of two first-order differential equa-
tions involving two unknown functions. It might be written as

x ′ = f (t, x, y)

y′ = g(t, x, y),

where f and g are functions of the independent variable t and the two unknowns x
and y.

There is a close connection between higher-order equations and first-order sys-
tems. In this section, we will begin to explore that connection. Then we will explore
ways to visualize solutions to second-order equations. One of those ways involves
the use of the phase plane, which is really a way of visualizing solutions to planar
systems of equations. We will begin a systematic study of first-order systems in
Chapter 8.

Second-order equations and planar systems
Let’s look again at the second order equation

y′′ = F(t, y, y′). (2.1)

If we introduce a new variable v = y′, then, in terms of v, equation (2.1) can be
written v′ = F(t, y, v). We see that the functions y and v are related by the system
of first-order equations

y′ = v

v′ = F(t, y, v)
(2.2)

If y is a solution to the second-order equation (2.1), and we set v = y′, then
the pair of functions y and v solve the first-order system (2.2). The converse is also
true. If the pair of functions y and v solve the first-order system (2.2), then y is
a solution to the second-order equation (2.1). To see this, notice that by the first
equation in (2.2), y′ = v. Differentiating this and using the second equation in (2.2)
we get

y′′ = v′ = F(t, y, v) = F(t, y, y′),
which is equation (2.1).

Thus the second-order equation (2.1) and the first-order system (2.2) are equiv-
alent in the sense that a solution of either leads to a solution of the other. This fact
is important for two reasons. First, when solving higher-order equations numeri-
cally, it is often necessary to solve the equivalent first-order system, since numerical
methods are typically designed only to solve first-order systems. Second, the equiv-
alence allows us to study first-order systems and deduce from them results about
higher-order equations. This procedure will be illustrated when we begin the study
of first-order systems in Chapter 8.

E X A M P L E 2 . 3 � Let’s look first at one of the most important examples, the single, second-order,
linear equation. The general such equation has the form

y′′ + p(t)y′ + q(t)y = F(t). (2.4)
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4.2 Second-Order Equations and Systems 175

To find an equivalent system we introduce the new variable v = y′. Then
solving (2.4) for y′′ we see that v′ = y′′ = F(t)− p(t)y′ −q(t)y = F(t)− p(t)v −
q(t)y. Hence, y and v solve the system

y′ = v

v′ = F(t) − p(t)v − q(t)y. �

Visualization of solutions
The simplest and most obvious way to visualize a solution to a second-order differ-
ential equation is to graph it. We have already seen examples of this in Figures 2, 3,
and 4 in Section 4.1.

Sometimes it is of interest to graph both the solution y and its first derivative,
which is especially true if the derivative has physical significance, which is often
the case in applications. For example, if we are solving for a displacement y, then
y′ = v is the velocity. If we are solving for the charge Q on a condenser, then the
derivative Q′ = I is the current. In both of these cases it might be of interest to see
graphs of both the solution and its derivative.

0 10 20 30

−2

2

t

y

Figure 1 The graph of the
displacement.

0 10 20 30
0

2

t

− 2

Figure 2 The graph of the
velocity.

Let’s use as an example a damped unforced spring. The equation is

my′′ + µy′ + ky = 0.

Let’s use m = 1, µ = 0.4, and k = 3. We will look at the solution y which
satisfies the initial conditions y(0) = 2 and v(0) = y′(0) = −1. The graph of the
displacement y alone is shown in Figure 1, and the graph of the velocity alone is
in Figure 2. Sometimes it is useful to see both plotted together. This is shown in
Figure 3.

Another type of figure that is often useful is the plot of the curve

t → (y(t), v(t))

in the yv-plane. The yv-plane is called the phase plane, and this is called a phase
plane plot. For our example the phase plane plot is shown in Figure 4. Notice
how this curve spirals into the origin. This gives an interesting visual interpretation
of the effect of the damping. Missing from a phase plane plot is any indication
of the dependence on t . However, it does show nicely the interplay between the
displacement and the velocity.
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0 10 20 30
0

2

t

x and 

y 

2−

Figure 3 The displacement y and the velocity v.

0 2
0

2

y
2−

2−

Figure 4 The phase plane
plot of y and v.

Also illuminating is a three dimensional (3D) plot of the three variables t , y,
and v. These can be plotted either of the orders

t → (t, y(t), v(t)) or t → (y(t), v(t), t).

Which is more effective is often a matter of taste. The latter is shown in Figure 5.
The 3D plots show the interplay of all three variables. However, some people find
them difficult to understand. Often they become clearer simply by changing the
orientation slightly.

Finally, there is the composite plot, shown in Figure 6. In this one figure we see
plots of y and v versus t , the phase plane plot, and the 3D plot. The relationships
among all of these become clearer by looking at this figure. The 3D plot is central
to the figure, and it is shown plotted in blue. This curve will be seen to be the same
as the curve in Figure 5. The plot of the displacement y versus t is shown on the
back. It is the projection of the 3D plot onto the back panel. Similarly, the plot of

0 20
2
0

30

y

t

2−2−

Figure 5 A 3D plot of
t → (y (t ), v (t ), t ).

v versus t is on the right panel, and it too is a projection of the 3D plot. Finally the
phase plane plot is shown on the bottom, and, again, it is the projection of the 3D
plot onto the bottom panel.

0
20

2

0

15

30

y

t

2−
2−

Figure 6 The composite plot of the solution.
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We see that there are many possible ways to represent solutions. In particular
situations, one of these might be much better than the others. There might also be
ad hoc representations that are better than any of those shown here.

................
EXERCISES
In Exercises 1–6, use the substitution v = y′ to write each second-order equation as
a system of two first-order differential equations (planar system).

1. y′′ + 2y′ − 3y = 0 2. 4y′′ + 4y′ + y = 0

3. y′′ + 3y′ + 4y = 2 cos 2t 4. y′′ + 2y′ + 2y = sin 2π t

5. y′′ + µ(t2 − 1)y′ + y = 0 6. y′′+cy′−ay+by3 = A cos ωt

7. Sometimes the physical situation aids in the selection of substitution variables.
For example, in an LRC circuit, the current is the derivative of the charge. In
the LRC circuit governed by the equation

L Q′′ + RQ′ + 1

C
Q = E(t),

show that the substitution I = Q′ transforms the equation into the planar system

Q′ = I,

I ′ = − R

L
I − 1

LC
Q + 1

L
E(t).

8. In general, when changing a second order equation to a planar system, the
choice of variables for substitution is arbitrary. If

y′′ = 2y′ − 3y + 2 cos 3t,

show that the substitutions x1 = y and x2 = y′ lead to the planar system

x ′
1 = x2,

x ′
2 = 2x2 − 3x1 + 2 cos 3t.

In Exercises 9–16, you are given the mass, damping, and spring constants of an
undriven spring-mass system

my′′ + µy′ + ky = 0.

You are also given initial conditions. Use a numerical solver to
(i) provide separate plots of the position versus time (y vs. t) and the velocity

versus time (v vs. t), and
(ii) provide a combined plot of both position and velocity versus time, and

(iii) provide a plot of the velocity versus position (v vs. y) in the yv phase plane.
In each exercise, choose a viewing window that highlights the important features of
the solutions.

9. m = 1 kg, µ = 0 kg/s, k = 4 kg/s, y(0) = −2 m, y′(0) = −2 m/s
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178 Chapter 4 Second-Order Equations

10. m = 1 kg, µ = 0 kg/s, k = 9 kg/s2, y(0) = 3 m, y′(0) = 2 m/s

11. m = 1 kg, µ = 2 kg/s, k = 1 kg/s2, y(0) = −3 m, y′(0) = −2 m/s

12. m = 4 kg, µ = 4 kg/s, k = 1 kg/s2, y(0) = 3 m, y′(0) = 1 m/s

13. m = 1 kg, µ = 0.5 kg/s, k = 4 kg/s2, y(0) = 2 m, y′(0) = 0 m/s

14. m = 1 kg, µ = 2 kg/s, k = 1 kg/s2, y(0) = −1 m, y′(0) = −5 m/s

15. m = 1 kg, µ = 3 kg/s, k = 1 kg/s2, y(0) = −1 m, y′(0) = −5 m/s

16. m = 1 kg, µ = 0.2 kg/s, k = 1 kg/s2, y(0) = −3 m, y′(0) = −2 m/s

17. Consider carefully the graphs of v and y versus t , pictured in Figure 3.

(a) Why do the peaks of the curve t → v(t) occur where the curve t → y(t)
crosses the t-axis? What is the physical significance of this fact?

(b) Why do the peaks of the curve t → y(t) occur where the curve t → v(t)
crosses the t-axis? What is the physical significance of this fact?

18. Consider carefully the phase plane plot of the spring-mass system given in Fig-
ure 4.

(a) What physical configuration of the spring-mass system is represented by
the points where the solution curve t → (y(t), v(t)) crosses the y-axis?

(b) What physical configuration of the spring-mass system is represented by
the points where the solution curve t → (y(t), v(t)) crosses the v-axis?

(c) What physical significance can be attached to the fact that the solution curve
t → (y(t), v(t)) spirals towards the origin with the passage of time?

If your software supports 3D capability, sketch the solution curve t → (y(t), v(t), t)
for the spring-mass system with constants and initial conditions given in the indi-
cated exercise.

19. Exercise 9 20. Exercise 10

21. Exercise 15 22. Exercise 16

In Exercises 23–28, you are given the inductance, resistance, and capacitance of a
driven LRC circuit

L Q′′ + RQ′ + 1

C
Q = 2 cos 2t.

You are also given initial conditions. Use a numerical solver to
(i) provide separate plots of the charge on the capacitor versus time (Q vs. t) and

the current in the circuit versus time (I vs. t), and
(ii) provide a combined plot of both charge and the current versus time, and

(iii) provide a plot of the current versus the charge (I vs. Q) in the Q I phase plane.
See Exercise 7 for aid in setting up the system. In each exercise, choose a viewing
window that highlights the important features of the solutions.

23. L = 1 H, R = 0 �, C = 1 F, Q(0) = −3 C, I (0) = −2 A

24. L = 1 H, R = 0 �, C = 1/4 F, Q(0) = 1 C, I (0) = 2 A

25. L = 1 H, R = 5 �, C = 1 F, Q(0) = 1 C, I (0) = 2 A
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26. L = 2 H, R = 4 �, C = 1 F, Q(0) = −1 C, I (0) = −2 A

27. L = 1 H, R = 0.5 �, C = 1 F, Q(0) = 1 C, I (0) = 2 A

28. L = 1 H, R = 0.2 �, C = 1 F, Q(0) = −11 C, I (0) = −1 A

If your software supports 3D capability, sketch the solution curve t → (Q(t), I (t), t)
for the LRC circuit with constants and initial conditions given in the indicated exer-
cise.

29. Exercise 23 30. Exercise 24

31. Exercise 27 32. Exercise 28

4.3 Linear, Homogeneous Equations with Constant Coefficients
This a class of equations which we can solve easily. They are equations of the form

y′′ + py′ + qy = 0, (3.1)

where p and q are constants. If p ≥ 0 and q > 0, this is the equation for unforced
harmonic motion, which we will discuss in the next section. We show there that it
includes the equation for the unforced motion of a vibrating spring, and the equation
for the behavior of an RLC circuit.

Remember the solution strategy we devised in the previous section using The-
orem 1.21. It is only necessary to find two linearly independent solutions, which
we call a fundamental set of solutions. The general solution is the general linear
combination of these.

The key idea
The analogous first-order, linear, homogeneous equation with constant coefficients
is the equation

y′ + px = 0.

This is the exponential equation. It is separable and easily solved. Its general solu-
tion is

y(t) = Ce−pt ,

where C is an arbitrary constant.
Motivated by the fact that the first-order equation has an exponential solution,

let’s see if we can find an exponential solution to the second-order equation (3.1).
We will look for a solution of the type

y(t) = eλt ,

where λ is a constant, as yet unknown. Inserting this function into our differential
equation, we obtain

y′′ + py′ + qy = λ2eλt + pλeλt + qeλt

= (λ2 + pλ + q)eλt .

Since eλt �= 0, we will have solution to 3.1 if and only if

λ2 + pλ + q = 0. (3.2)
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This is called the characteristic equation for the differential equation in (3.1). The
polynomial λ2 + pλ + q is called the characteristic polynomial for the equation. A
root of the characteristic equation is called a characteristic root. If λ is a character-
istic root, then y = eλt is a solution to the differential equation.

It is illuminating to write the differential equation and its characteristic equation
in proximity,

y′′ + py′ + qy = 0,

λ2 + pλ + q = 0.

This indicates clearly how to pass from the differential equation to its characteristic
equation.

Since the characteristic equation is a quadratic equation, its roots are given by
the quadratic formula

λ = −p ± √
p2 − 4q

2
.

Looking at the discriminant p2 − 4q, we see that there are three cases to consider:

1. two distinct real roots if p2 − 4q > 0;

2. two distinct complex roots if p2 − 4q < 0;

3. one repeated real root if p2 − 4q = 0.

We will look at each of these in what follows. Our way will be guided by
Theorem 1.21 in Section 1. We know that if we find a fundamental set of solutions,
then the general solution is the general linear combination of these. Thus we need
to find two linearly independent solutions.

Distinct real roots
If λ1 and λ2 are distinct real roots of the characteristic equation, then y1 = eλ1t

and y2 = eλ2t are both solutions. Since the roots are not equal, the solutions are
not constant multiples of each other. Hence, they are linearly independent, and by
Theorem 1.21 we have the following result.

PROPOSITION 3.3 If the characteristic equation λ2 + pλ + q = 0 has two distinct real roots λ1 and λ2,
then the general solution to y′′ + py′ + qy = 0 is

y(t) = C1eλ1t + C2eλ2t ,

where C1 and C2 are arbitrary constants.

The particular solution for an initial value problem can be found by evaluating
the constants C1 and C2 using the initial conditions.

E X A M P L E 3 . 4 � Find the general solution to the equation

y′′ − 3y′ + 2y = 0.

Find the unique solution corresponding to the initial conditions y(0) = 2 and
y′(0) = 1.
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Letting y = eλt and inserting this into our differential equation, we obtain

0 = y′′ − 3y′ + 2y = (λ2 − 3λ + 2)eλt .

Thus the characteristic equation is

0 = λ2 − 3λ + 2 = (λ − 2)(λ − 1),

with solutions λ1 = 2 and λ2 = 1. According to Proposition 3.3, the general
solution is

y(t) = C1e2t + C2et . (3.5)

To find the particular solution for the initial conditions y(0) = 2 and y′(0) = 1,
we differentiate the general solution,

y′(t) = 2C1e2t + C2et . (3.6)

Then we substitute t = 0 into (3.5) and (3.6) to obtain the system of equations

2 = y(0) = C1 + C2

1 = y′(0) = 2C1 + C2.

The solutions are C1 = −1 and C2 = 3, so the solution to our initial value problem
is

y(t) = −e2t + 3et . �

Complex numbers
Before going into complex roots, let’s spend a little time reviewing complex arith-
metic. A complex number is one of the form z = x + iy, where x and y are real
numbers. The number i satisfies i2 = −1. In the complex number z = x + iy,

the real number x is called the real part of z and is denoted by x = Re z. The real
number y is called the imaginary part of z and is denoted by y = Im z.

Complex addition and multiplication satisfy the usual rules for real numbers.
For example,

(3 + 5i) + (2 − 3i) = (3 + 2) + (5 − 3)i = 5 + 2i.

In multiplication it is necessary to use i2 = −1. For example,

(3 + 5i) · (4 − 2i) = 3(4 − 2i) + 5i(4 − 2i)

= 12 − 6i + 20i − 10i2

= 12 + 14i + 10

= 22 + 14i.

The complex conjugate of the complex number z = x + iy is the number
z = x − iy. Notice that conjugation affects only the imaginary part of the complex
number, replacing the imaginary part with its negative. In particular, we see that

z = z if and only if z is a real number.
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We can solve the two equations z = x + iy and z = x − iy for x and y obtaining

x = Re z = z + z

2
and

y = Im z = z − z

2i
.

(3.7)

The process of conjugation preserves algebraic combinations. Suppose that
z = x + iy and w = u + iv are complex numbers. Then the following facts are
proved directly from the definition of the conjugate.

z + w = z + w

z − w = z − w

zw = z · w( z

w

)
= z

w

The absolute value of a complex number z = x + iy is the real number

|z| =
√

x2 + y2.

The absolute value of a complex number has many uses. It is also called the magni-
tude of the number, and for many purposes that name is highly illuminating. Notice
that

zz = |z|2. (3.8)

Formula (3.8) provides the secret to computing the reciprocal of a complex number.
We have

1

z
= 1

z
· z

z
= z

zz
= z

|z|2 . (3.9)

For example,
1

4 − 3i
= 4 + 3i

|4 − 3i |2 = 4 + 3i

25
.

Knowing how to compute reciprocals and products, we can also compute quotients.
Thus, using (3.9) we have

w

z
= w · 1

z
= wz

|z|2 .

Other important properties of the absolute value follow most easily from (3.8).
If z and w are two complex numbers, then

|zw| = |z||w| and
∣∣∣ z

w

∣∣∣ = |z|
|w| . (3.10)

Most people feel more comfortable with complex numbers when they are rep-
resented as points in the complex plane. We will identify the complex number
z = x + iy with the point in the plane having cartesian coordinates (x, y). This
identification is illustrated in Figure 1. Under this identification the x-axis contains
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i y

x

z = x + i y

i

1

−i y
z = x − i y

Figure 1 The complex number z = x + iy
and its conjugate z = x – iy.

1

i

z
w

z + w

Figure 2 The sum of two complex
numbers.

the real numbers and is therefore called the real axis. Similarly the y-axis is called
the imaginary axis. Figure 1 also shows the complex conjugate z = x − iy. This is
the reflection of z in the real axis.

Figure 2 provides the geometric interpretation of complex addition. If z and w

are complex numbers, then the sum z + w corresponds to the fourth vertex of the
parallelogram with the other three vertices at the origin 0, z, and w.

Polar coordinates have an especially appealing interpretation for complex num-
bers. (See Figure 3.) The complex number z = x + iy has polar coordinates r ≥ 0
and θ , with −π < θ ≤ π, defined by the standard equations

x = r cos θ and y = r sin θ.

Then
r =

√
x2 + y2 = |z| and tan θ = y

x
.

Hence we can identify r with |z|. The angle θ is called the argument of z. Using
the polar coordinates we can write

z = r cos θ + ir sin θ = r [cos θ + i sin θ ]. (3.11)

Equation (3.11) takes on a different character after we introduce the complex

1

i

z

r

x

iy

θ

Figure 3 Polar coordinates for the
complex number z = x + iy.

exponential. For a real number θ we define

eiθ = cos θ + i sin θ. (3.12)

We will refer to this formula as Euler’s formula. The definition is motivated by the
Taylor series for the function

ex = 1 + x

1! + x2

2! + x3

3! + x4

4! + . . . .

Inserting x = iθ , and using i2 = −1, i3 = −i , i4 = 1 and so forth, we obtain

eiθ = 1 + (iθ)

1! + (iθ)2

2! + (iθ)3

3! + (iθ)4

4! + . . .

=
(

1 − θ2

2! + θ4

4! + . . .

)
+ i

(
θ − θ3

3! + . . .

)
.
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The real part is the Taylor series for cos θ and the imaginary part is the Taylor series
for sin θ . Thus eiθ = cos θ + i sin θ .

As a result of Euler’s formula, we can rewrite equation (3.11) as

z = reiθ . (3.13)

This very concise formula expresses the polar coordinates of a complex number.
Its usefulness is enhanced after we learn about the full complex exponential and its
properties. We define the exponential of a complex number by assuming that the
addition formula for the exponential is still valid. The exponential of the complex
number z = x + iy is defined to be

ez = ex+iy = ex eiy = ex(cos y + i sin y). (3.14)

Thus ex+iy is the complex number with real part ex cos y and imaginary part ex sin y.
The complex exponential satisfies all the familiar rules for real exponents. We

set these rules down in the following proposition. The proof is left to the exercises.

PROPOSITION 3.15 The complex exponential satisfies the following properties:

1. ez1+z2 = ez1ez2

2. ez1−z2 = ez1/ez2

3. (ez)r = erz for any real number r

4. ez = ez

5. |ez| = eRe z

6.
d

dt
{eλt} = λeλt for any complex number λ

Proof As we said previously, the complete proof will be in the exercises. For
now we will only verify the last property in the special case when λ = i . The
derivative of such a complex valued function is computed by differentiating the real
and imaginary parts in the ordinary way. We have

d

dt
{eit} = d

dt
{cos t + i sin t} by definition of eit

= d

dt
cos t + i

d

dt
sin t

= − sin t + i cos t

= i(cos t + i sin t)

= ieit .

Proposition 3.15 allows us to make a geometric interpretation of the product of
two complex numbers. Suppose that in polar coordinates we have z = reiθ and
w = ρeiφ. Then by Part (1) of Proposition 3.15, the product is

zw = reiθ · ρeiφ = rρei(θ+φ).

We automatically get the polar coordinates of the product. We see that |zw| = rρ
and that the argument of zw is θ + φ, the sum of the arguments of z and w. This
means that the effect of multiplying z by w = ρeiφ is to multiply the absolute value
of z by ρ = |w|, and to rotate z by φ, the argument of w. See Figure 4.

1

i

zw = r e i ( + )

w = e i

z = re i

φ

θ

ρ

θ

φ

θ φρ

Figure 4 The product of two
complex numbers.
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4.3 Linear, Homogeneous Equations with Constant Coefficients 185

Complex roots
If the roots to the characteristic equation (3.2) are complex, then, since the coeffi-
cients of the characteristic polynomial are real, the roots are complex conjugates.
They have the form λ = a + ib and λ = a − ib. The corresponding solutions are

z(t) = e(a+ib)t = eat (cos(bt) + i sin(bt)) , and

z(t) = e(a−ib)t = eat (cos(bt) − i sin(bt)) .
(3.16)

Clearly the solutions z and z are not multiples of each other, so they are linearly
independent. Hence using Theorem 1.21, we see that the general solution is

y(t) = C1z(t) + C2z(t). (3.17)

The solutions z and z are complex valued. Such solutions are often preferred (for
example, in circuit analysis). However, we are aiming for real valued solutions.

Notice from (3.16) that z and z are complex conjugates. Written in terms of
their real and imaginary parts, we have

z(t) = y1(t) + iy2(t) and z(t) = y1(t) − iy2(t), (3.18)

where

y1(t) = Re z(t) = eat cos(bt) and y2(t) = Im z(t) = eat sin(bt). (3.19)

From (3.7), we have

y1(t) = 1

2
(z(t) + z(t)) and y2(t) = 1

2i
(z(t) − z(t)) .

Thus by Proposition 1.18, y1(t) and y2(t), the real and imaginary parts of z(t), are
solutions. Furthermore, these are real valued solutions. Clearly they are not constant
multiples of each other, so they are linearly independent. Hence by Theorem 1.21,
they form a fundamental set of solutions, and the general solution can be written as

y(t) = A1 y1(t) + A2 y2(t) = A1eat cos(bt) + A2eat sin(bt),

where A1 and A2 are arbitrary constants.
We summarize our discussion in the following proposition.

PROPOSITION 3.20 Suppose the characteristic equation λ2 + pλ + q = 0 has two complex conjugate
roots, λ = a + ib and λ = a − ib.

1. The functions
z(t) = e(a+ib)t and z(t) = e(a−ib)t

form a complex valued fundamental set of solutions, so the general solution is

y(t) = C1e(a+ib)t + C2e(a−ib)t ,

where C1 and C2 are arbitrary complex constants.
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186 Chapter 4 Second-Order Equations

2. The functions

y1(t) = eat cos(bt) and y2(t) = eat sin(bt)

form a real valued fundamental set of solutions, so the general solution is

y(t) = eat(A1 cos bt + A2 sin bt),

where A1 and A2 are constants.

In either case, the constants can be determined in the usual way to find the
solution to an initial value problem.

E X A M P L E 3 . 2 1 � Find the general solution to the system

y′′ + 2y′ + 2y = 0.

Find the solution corresponding to the initial conditions y(0) = 2 and y′(0) = 3.

The characteristic equation is λ2 + 2λ + 2 = 0. Its roots are λ = −1 ± i . The
corresponding solutions (given in (3.19) with a = −1 and b = 1) are

y1(t) = e−t cos t and y2(t) = e−t sin t.

By Proposition 3.20, the general solution is given by

y(t) = C1 y1(t) + C2 y2(t) = e−t(C1 cos t + C2 sin t). (3.22)

To find the solution with the initial conditions y(0) = 2 and y′(0) = 3, we
differentiate (3.22),

y′(t) = −e−t(C1 cos t + C2 sin t) + e−t(−C1 sin t + C2 cos t). (3.23)

At t = 0, equations (3.22) and (3.23) become

2 = y(0) = C1

3 = y′(0) = −C1 + C2.

This system has solutions C1 = 2 and C2 = 5. Therefore, the solution to the initial
value problem is

y(t) = e−t(2 cos t + 5 sin t). �
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4.3 Linear, Homogeneous Equations with Constant Coefficients 187

Repeated roots
If the roots of the characteristic equation (3.2) are repeated, then it becomes

0 = λ2 + pλ + q = (λ − λ1)
2

where λ1 is the repeated root. By the quadratic formula,

λ1 =
(
−p ±

√
p2 − 4q

)
/2 = −p/2. (3.24)

In order for λ1 to be a double root, we must have p2 −4q = 0. This value of λ gives
one solution to the differential equation, namely

y1 = eλ1t .

To use Theorem 1.21, we need to find another solution that is not a constant
multiple of this one. We will use a method of finding the second solution that can be
used in many other circumstances when multiple roots give rise to cases that need
to be handled separately.

First we point out that in terms of the characteristic roots, the characteristic
polynomial can be written as

λ2 + pλ + q = (λ − λ1)(λ − λ2)

= λ2 − (λ1 + λ2)λ + λ1λ2.

Thus p = −(λ1 + λ2) and q = λ1λ2. This means that the characteristic roots deter-
mine the differential equation. The key to our method is to perturb the differential
equation slightly. Instead of looking at our case where λ2 = λ1, we look at the
equation where λ2 = λ1 + s, for s a small real number.

The equation with these characteristic roots is

y′′ + (p − s)y′ + (q + λ1s)y = 0, (3.25)

where p = 2λ1 and q = λ2
1. The characteristic roots for this equation are λ1 and

λ1 + s, so the functions eλ1t and e(λ1+s)t are solutions. In particular, for s �= 0 the
function

us(t) = 1

s

[
e(λ1+s)t − eλ1t

]
is a solution to (3.25). Let’s rewrite that as

u′′
s + (p − s)u′

s + (q + λ1s)us = 0. (3.26)

We now let s tend to 0 in (3.26). Assuming for the moment that everything makes
sense, and in particular that u(t) = lims→0 us(t) exists, then in the limit (3.26)
becomes

u′′ + pu′ + qu = 0. (3.27)

If everything makes sense, we have discovered a solution to our original equa-
tion. Let’s find out what u is by computing the limit

u(t) = lim
s→0

us(t) = lim
s→0

1

s

[
e(λ1+s)t − eλ1t

]
.
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188 Chapter 4 Second-Order Equations

The limit can be computed using either the limit quotient definition of the derivative
or l’Hôpital’s rule to get

u(t) = teλ1t .

We suspect that u is actually a solution to (3.27), but that needs verification.
There are two ways to do this. The easy way is simply to verify it by direct substi-
tution. The harder way is to show that the limit in (3.26) does make sense, and that
the limit is (3.27). We will leave both of these as exercises.

Thus our second solution is

y2(t) = u(t) = teλ1t .

Since y2 = t y1 and t is not a constant, y2 is not a constant multiple of y1. They are
linearly independent. Theorem 1.21 now gives us the form of the general solution,
and we summarize our discussion in the following proposition.

PROPOSITION 3.28 If the characteristic equation λ2 + pλ+ q = 0 has only one double root λ1, then the
general solution to y′′ + py′ + qy = 0 is

y(t) = (C1 + C2t) eλ1t ,

where C1 and C2 are arbitrary constants.

The constants C1 and C2 can be found from initial conditions to solve initial
value problems.

E X A M P L E 3 . 2 9 � Find the general solution to

y′′ − 2y′ + y = 0.

Find the solution corresponding to the initial conditions y(0) = 2 and y′(0) = −1.

The characteristic equation is

0 = λ2 − 2λ + 1 = (λ − 1)2,

so λ = 1 is a double root. Hence, et and tet form a fundamental set of solutions to
this differential equation, and the general solution is

y(t) = C1et + C2tet . (3.30)

To find the solution corresponding to the initial conditions y(0) = 2 and
y′(0) = −1, we differentiate y,

y′(t) = C1et + C2tet + C2et . (3.31)

At t = 0, equations (3.30) and (3.31) become

2 = y(0) = C1

−1 = y′(0) = C1 + C2.

This system has solutions C1 = 2 and C2 = −3, so the solution to the initial value
problem is

y = 2et − 3tet . �
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................
EXERCISES
The equations in Exercises 1–6 have distinct, real, characteristic roots. Find the
general solution in each case.

1. y′′ − y′ − 2y = 0 2. y′′ + 5y′ + 6y = 0

3. y′′ + y′ − 12y = 0 4. 2y′′ − y′ − y = 0

5. 6y′′ + y′ − y = 0 6. 6y′′ + 5y′ − 6y = 0

The equations in Exercises 7–12 have complex characteristic roots. Find the general
solution in each case.

7. y′′ + y = 0 8. y′′ + 4y = 0

9. y′′ + 4y′ + 5y = 0 10. y′′ + 2y′ + 17y = 0

11. y′′ + 2y = 0 12. y′′ + 2y′ + 2y = 0

The equations in Exercises 13–18 have repeated, real, characteristic roots. Find the
general solution in each case.

13. y′′ − 4y′ + 4y = 0 14. y′′ − 6y′ + 9y = 0

15. 4y′′ + 4y′ + y = 0 16. 4y′′ + 12y′ + 9y = 0

17. 16y′′ + 8y′ + y = 0 18. y′′ + 8y′ + 16y = 0

In Exercises 19–28, find the solution of the given initial value problem.

19. y′′ − y′ − 2y = 0, y(0) = −1, y′(0) = 2

20. y′′ − 2y′ + 17y = 0, y(0) = −2, y′(0) = 3

21. y′′ + 25y = 0, y(0) = 1, y′(0) = −1

22. y′′ + 10y′ + 25y = 0, y(0) = 2, y′(0) = −1

23. y′′ − 2y′ − 3y = 0, y(0) = 2, y′(0) = −3

24. y′′ − 4y′ − 5y = 0, y(1) = −1, y′(1) = −1

25. 8y′′ + 2y′ − y = 0, y(−1) = 1, y′(−1) = 0

26. 4y′′ + y = 0, y(1) = 0, y′(1) = −2

27. y′′ + 12y′ + 36y = 0, y(1) = 0, y′(1) = −1

28. y′′ − 4y′ + 13y = 0, y(0) = 4, y′(0) = 0

29. Given that the characteristic equation λ2+pλ+q = 0 has a double root, λ = λ1,
show, by direct substitution, that y = teλ1t is a solution of y′′ + py′ + qy = 0.

30. We need to complete some details in the proof of Proposition (3.28). Recall
that we made the following definition.

us(t) = 1

s

[
e(λ1+s)t − eλ1t

]
(3.32)

(a) Use l’Hôpital’s rule to show that u(t) = lims→0 us(t) = teλ1t .

(b) Show that u′(t) = lims→0 u′
s(t). Again, l’Hôpital’s rule is helpful.
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190 Chapter 4 Second-Order Equations

(c) Show that u′′(t) = lims→0 u′′
s (t).

(d) Show that the limit of equation (3.26) is equation (3.27), so that u really is
a solution to (3.27).

31. Use Euler’s identity to prove that

cos θ = eiθ + e−iθ

2
and sin θ = eiθ − e−iθ

2i
.

32. Verify equation 3.10. That is, show that if z and w are complex numbers, then

|zw| = |z||w| and
∣∣∣ z

w

∣∣∣ = |z|
|w| .

33. Prove property (1) of Proposition 3.15. The addition formulas for the sine and
cosine will be useful.

34. Prove property (2) of Proposition 3.15. This will be easy if you use what you
learned in the previous exercise.

35. Prove property (4) of Proposition 3.15.

36. Prove property (5) of Proposition 3.15.

37. Prove property (6) of Proposition 3.15. Remember that λ = µ+iν is a complex
number.

4.4 Harmonic Motion
In Section 4.1 we derived the equation for the motion of a vibrating spring. It is (see
equation (1.13))

my′′ + µy′ + ky = F(t), (4.1)

where the constant coefficients are m, the mass, µ, the damping constant, and k, the
spring constant, and the function F(t) is an external force.

In Section 3.4 of Chapter 3 we derived differential equations that modeled sim-
ple RLC circuits. If the circuit consisted of a resistor of resistance R, a condenser of
capacitance C , and an inductor of inductance L and had a source voltage E(t), then
the current I satisfies the equation

L
d2 I

dt2
+ R

d I

dt
+ 1

C
I = d E

dt
. (4.2)

The coefficients R, C , and L are all constants.
It is interesting to compare equations (4.1) and (4.2). They are almost identical,

differing only in the letters chosen to represent the coefficients and the unknown
functions. If we compare the coefficients, we see that the inductance L acts like the
mass m, the resistance R like the damping constant, and the reciprocal of the capac-
itance 1/C like the spring constant. Finally, the derivative of the source voltage acts
like the external force on the spring.

It is important to keep these analogies in mind. Physically it means that the two
phenomena have similar behavior. Mathematically it means that when we discover
facts about solutions to one of these equations, we also have related facts about the
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4.4 Harmonic Motion 191

others. For example, if we have a circuit without resistance (R = 0) and no source
voltage, then equation (4.2) simplifies to

L
d2 I

dt2
+ 1

C
I = 0. (4.3)

This corresponds to the equation for an unforced, undamped spring. Earlier we dis-
covered solutions to that equation (see equation (1.15)). Replacing the mass m with
the inductance L , and the spring constant k with the reciprocal of the capacitance
1/C , we see that any function of the form

I (t) = a cos(t/
√

LC) + b sin(t/
√

LC)

is a solution to (4.3).
If we divide equations (4.1) and (4.2) by their leading coefficient (L or m), they

become

d2 y

dt2
+ µ

m

dy

dt
+ k

m
y = 1

m
F(t), and

d2 I

dt2
+ R

L

d I

dt
+ 1

LC
I = 1

L

d E

dt
.

If we make the identifications c = µ/2m, ω0 = √
k/m, f (t) = F(t)/m, and x = y

in the first equation, or c = R/2L , ω0 = √
1/LC, f (t) = (d E/dt)/L , and x = I

in the second, we get the equation

x ′′ + 2cx ′ + ω2
0 y = f (t), (4.4)

where c ≥ 0 and ω0 > 0 are constants. We will refer to this equation as the equation
for harmonic motion. It includes the vibrating spring and the arbitrary RLC circuit,
but there are many other phenomena that lead to this equation.

It is common to use the terminology of the vibrating spring when discussing
harmonic motion. In particular, c is called the damping constant, and f is the
forcing term.

In this section we will study unforced harmonic motion. This means that f (t) =
0 in (4.4), so we will be studying the homogeneous equation

x ′′ + 2cx ′ + ω2
0x = 0, (4.5)

where c ≥ 0 and ω0 > 0 are constants. This is the type of equation we considered in
the previous section, so we are in a position to analyze unforced harmonic motion.

Simple harmonic motion
In the special case when there is no damping (so c = 0) the motion is called simple
harmonic motion. Equation (4.5) simplifies to

x ′′ + ω2
0x = 0. (4.6)

The characteristic equation is

λ2 + ω2
0 = 0.

Polking/Boggess/Arnold: Differential Equations 1/E [Second Pages] 1/25/97 11:35 Page 29

John C Polking
Change "\omega_0^2 y" to 

\omega^2 x



192 Chapter 4 Second-Order Equations

The characteristic roots are λ = ±iω0. According to Proposition 3.20, the general
solution is

x(t) = a cos ω0t + b sin ω0t, (4.7)

where a and b are constants.
If we define T = 2π/ω0, so that ω0T = 2π , then the periodicity of the trigono-

metric functions implies that x(t + T ) = x(t) for all t . Thus, the solution x is itself
periodic with period T . For this reason, ω0 is called the natural frequency of the
spring. We will continue with this terminology even in the damped case.

E X A M P L E 4 . 8 � Suppose we have simple harmonic motion with a natural frequency ω0 = 4. Find
the solution with initial values x(0) = 1 and x ′(0) = 0.

From (4.7) we see that the general solution is

0 4 8

−1

0

1

y

Figure 1 The undamped
oscillation in Example 4.8.

x = a cos 4t + b sin 4t.

The initial condition x(0) = 1 becomes a = 1, and x ′(0) = 0 becomes 4b = 0.
Hence the solution to the initial value problem is x(t) = cos 4t. The graph of x is
given in Figure 1. �

In the case of a vibrating spring without friction, we see that the mass on the
spring oscillates up and down with the natural frequency ω0 = √

k/m. Note that
the natural frequency increases as the spring constant increases, and it decreases as
the mass increases.

Amplitude and phase angle
It is frequently convenient to put the solutions in (4.7) into another form that is more
convenient and more revealing of the nature of the solution.

Consider the vector (a, b) in the plane (see Figure 2). We will write this in polar

x

y

A

(a, b)

φ

Figure 2 Polar coordinates.

coordinates. Assuming that (a, b) �= (0, 0), there is a positive number A, which is
the length of (a, b), and an angle φ in the interval (−π, π ], called the polar angle,
such that

a = A cos φ and b = A sin φ. (4.9)

Examples are shown in Figure 5.
If we substitute these equations into (4.7), it becomes

x(t) = a cos(ω0t) + b sin(ω0t)

= A cos φ cos(ω0t) + A sin φ sin(ω0t)

= A cos(ω0t − φ).

(4.10)

Thus we see that the general solution to the second-order equation (4.6) can be
written as

x(t) = A cos(ω0t − φ). (4.11)

This expression for the solution makes it clear that undamped harmonic motion is
a pure sinusoidal oscillation. The parameter A is the amplitude of the oscillation.
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4.4 Harmonic Motion 193

Since the cosine term oscillates between ±1, the limits of the oscillation in (4.11)
are ±A. The parameter φ represents the phase of the oscillation. A positive phase
shifts the graph of the cosine to the right. This effect is shown in Figure 3. It can
best be understood by writing (4.11) as

x(t) = A cos

(
ω0

(
t − φ

ω0

))
.

Notice that there are still two undetermined constants in (4.11). Now they are the
amplitude A and the phase φ.

This is all very well and good, but it is not very useful unless we can find the

t

x

−A

A

ω0
0x (t) = A cos ω t

2
ω0

x (t) = A cos(ω0t )−

φ

φ

π

Figure 3 The phase angle shifts
the graph of the cosine

constants A and φ when we know a and b. Equations (4.9) tell us how to compute a
and b if we know A and φ. They also can be solved for A and φ. First, if we square
each equation and add, we get

A2 = a2 + b2 or A =
√

a2 + b2. (4.12)

Next, if we divide the second equation by the first, we get

tan φ = b

a
. (4.13)

While it is tempting to “solve” this last equation for φ and write φ =
arctan(b/a), this would be a mistake. As Figure 4 shows, the arctan takes val-
ues between −π/2 and π/2, whereas we know that φ can be any angle between
−π and π . The range −π/2 < φ < π/2 corresponds to the points (a, b) where
a = A cos φ > 0. These are points (a, b) in the right half-plane. How do we
compute φ when a < 0?

When (a, b) is in the left half-plane, then (−a, −b) is in the right half-plane,

/2

−

−20 −10 0 10 20

−2

−1

0

1

2
y = arctan(x)

π

/2π

Figure 4 The arctangent takes
values between −π /2 and π /2.

and clearly arctan(b/a) = arctan(−b/ − a). Thus arctan(b/a) is measuring the
polar angle of (−a, −b), which differs by ±π from the polar angle of (a, b) (see
Figure 5). There are three cases depending on the signs of a and b, as shown in
Figure 5. Following the angles in Figure 5, we see that the polar angle is given by

φ =




arctan(b/a), if a > 0;
arctan(b/a) + π, if a < 0 and b > 0;
arctan(b/a) − π, if a < 0 and b < 0.

E X A M P L E 4 . 1 4 � A mass of 4 kg is attached to a spring with a spring constant of k = 169 kg/s2.
It is then stretched 10 cm from the spring-mass equilibrium and set to oscillating
with an initial velocity of 130 cm/s. Assuming it oscillates without damping, find
the frequency, amplitude, and phase of the vibration.

The differential equation is

4y′′ + 169y = 0 or y′′ + 42.25y = 0.

The natural frequency is ω0 = √
42.25 = 6.5 and the general solution is

y(t) = C1 cos 6.5t + C2 sin 6.5t.
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x

y

x

y

x

y

= (b/a) = (b/a) + = (b/a) −φ φ π φ π

(a, b)

φ

(a, b)

(a, b)

(−a, −b)

−φ π

(−a, −b)

+φ π

(i) (ii) (iii)a > 0 a < 0 and b > 0 a < 0 and b 0

φ

φ

arctan arctan arctan

<

Figure 5 Polar coordinates. There are three cases for finding the angle.

The initial conditions are y(0) = 0.1 m and y′(0) = 1.3 m/s. The specific
solution satisfying these initial conditions is

y = 0.1 cos 6.5t + 0.2 sin 6.5t.

The amplitude of vibration is

A = √
0.01 + 0.04 =

√
5

10
≈ 0.2236 m.

The phase is φ = arctan(2) ≈ 1.1071. Hence we can write the solution as y(t) =√
5/10 cos(6.5t − φ).

The solution is plotted in Figure 6. �

t

y
0.3

6

0.3−

Figure 6 The undamped motion
in Example 4.14.

Damped harmonic motion
Now c > 0. The differential equation

x ′′ + 2cx ′ + ω2
0x = 0

has the characteristic equation

λ2 + 2cλ + ω2
0 = 0.

The roots are

λ1 = −c −
√

c2 − ω2
0 and λ2 = −c +

√
c2 − ω2

0. (4.15)

We have three cases to consider depending on the sign of the discriminant c2 − ω2
0.

1. c < ω0. This is the underdamped case. The roots in (4.15) are distinct complex
numbers. Hence the general solution is

x(t) = e−ct [C1 cos ωt + C2 sin ωt] ,

where

ω =
√

ω2
0 − c2.
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4.4 Harmonic Motion 195

2. c > ω0. This is the overdamped case. Now the roots in (4.15) are distinct and

real. Further, since
√

c2 − ω2
0 <

√
c2 = c, we have λ1 < λ2 < 0. The general

solution is
x(t) = C1eλ1t + C2eλ2t .

3. c = ω0. This is the critically damped case, and in this case, the root in (4.15) is
a double root,

λ = −c.

The general solution is

x(t) = C1e−ct + C2te−ct .

In all of the cases the solution decays to zero as t → ∞ due to the exponential
term in the solution, and the coefficient c > 0. In the critically damped case, this
follows since, for r > 0, limt→∞ t/ert = 0 by l’Hôpital’s rule.

In the underdamped case the cosine and sine terms cause the solution to oscil-
late with frequency ω as it converges to zero. Notice that this frequency is always
smaller than the natural frequency of the spring. In the other two cases there is no
oscillation.

Let’s look at specific examples of damping phenomena.

E X A M P L E 4 . 1 6 � Consider the spring in Example 4.14 with damping constant µ = 12.8 kg/s. Find
the solution with initial conditions y(0) = 0.1 m and y′(0) = 1.3 m/s.

Since m = 4, k = 169 and µ = 12.8, the differential equation is

4y′′ + 12.8y′ + 169y = 0 or y′′ + 3.2y′ + 42.25y = 0.

The characteristic polynomial λ2 + 3.2λ + 42.25 has roots −1.6 ± i
√

42.25 − 1.62

= −1.6 ± 6.3i . Thus, ω = 6.3 and the general solution is

y(t) = e−1.6t(C1 cos 6.3t + C2 sin 6.3t).

For the initial conditions we have

0.1 = y(0) = C1

1.3 = y′(0) = −1.6 C1 + 6.3 C2.

Hence C1 = 0.1 and C2 = 1.46/6.3 ≈ 0.2317. The solution is

y(t) = e−1.6 t(0.1 cos 6.3t + 0.2317 sin 6.3t).

This can also be written as

y(t) = 0.2524e−1.6t cos(6.3t − 1.1634).

The underdamped motion in Example 4.16 is plotted in Figure 7. The decaying
oscillatory motion that is seen there is typical of underdamped motion. As an ex-
ample, consider the springs of a car, which are damped by shock absorbers. If the
shocks are very old, when you press the front of the car down and release it, the car
will bounce up and down for a while with decreasing amplitude until it reaches equi-
librium. This is because as the shocks wear out, the damping constant decreases.
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Figure 7 The underdamped
motion in Example 4.16.

When it decreases to the point that the motion is underdamped, the front end will
bounce. �
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196 Chapter 4 Second-Order Equations

E X A M P L E 4 . 1 7 � Consider the spring in Example 4.14 with damping constant µ = 77.6 kg/s. Find
the solution with initial conditions y(0) = 0.1 m and y′(0) = 1.3 m/s.

Since m = 4, k = 169 and µ = 77.6, the differential equation is

4y′′ + 77.6y′ + 169y = 0 or y′′ + 19.4y′ + 42.25y = 0.

The characteristic polynomial λ2 + 19.4λ + 42.25 has roots

−9.7 ±
√

9.72 − 42.25 = −9.7 ± 7.2.

Set λ1 = −16.9 and λ2 = −2.5. This is the overdamped case. The general solution
is

y(t) = C1e−16.9t + C2e−2.5t .

For the initial conditions we have

0.1 = y(0) = C1 + C2

1.3 = y′(0) = −16.9C1 − 2.5C2.

Hence C1 = −31/288, and C2 = 299/1440. The solution is given by

y(t) = − 31

288
e−16.9t + 299

1440
e−2.5t .

The overdamped motion in Example 4.17 is plotted in Figure 8. Typical of such
behavior, the displacement decreases to its equilibrium without the oscillation we
see in Example 4.16. It is possible with properly chosen initial conditions that the
displacement passes through the equilibrium just once before decaying to it. An
example of overdamped motion is provided by the springs of a car with brand new
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Figure 8 The overdamped motion
in Example 4.17.

shock absorbers. When you press the front of the car down and release it, the car
simply rises to its original position without any oscillation. �

E X A M P L E 4 . 1 8 � For the spring in Example 4.14, find the value of the damping constant µ for which
there is critical damping. Find the solution with initial conditions y(0) = 0.1 m and
y′(0) = 1.3 m/s.

Critical damping occurs when c = ω0. Since c = µ/2m and ω0 = √
k/m,

we need µ = 2m
√

k/m = 2
√

mk = 52 kg/s With this value of µ, the equation
becomes

4y′′ + 52y′ + 169y = 0 or y′′ + 13y′ + 42.25y = 0.

The characteristic polynomial is λ2 + 13λ + 42.25 = (λ + 6.5)2. The general
solution is

y(t) = C1e−6.5 t + C2te−6.5 t .

For the initial conditions we have

0.1 = y(0) = C1

1.3 = y′(0) = −6.5 C1 + C2.
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4.4 Harmonic Motion 197

Hence C1 = 0.1, and C2 = 1.95. The solution is

y(t) = 0.1e−6.5t + 1.95te−6.5t .

The critically damped motion in Example 4.18 is plotted in Figure 9. By its defi-
nition, the damping constant for critical damping is the dividing line that separates
underdamping from overdamping. The motion itself looks very similar to over-
damping. It simply decays to its equilibrium. Once more it is possible that it will
cross the equilibrium just once. �

Designers of shock absorbers aim for a damping constant that is just a little
larger than critical damping. If the damping constant is too large, the shocks prevent
the springs from absorbing bounces, and the ride becomes bumpy. If the damping
constant gets below critical damping, the car oscillates. So just a little above critical
damping is the right goal. This prevents the oscillations of the underdamped case,
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Figure 9 The critically damped
motion in Example 4.18.

and it allows the springs to absorb the bounces. In addition it allows for the damping
constant to decrease a little before it becomes underdamped.
................
EXERCISES
In Exercises 1–6,
(i) use a computer or calculator to plot the graph of the given function, and

(ii) place the solution in the form y = A cos(ωt − φ) and compare the graph of
your answer with the plot found in part (i).

1. y = cos 2t + sin 2t 2. y = cos t − sin t

3. y = cos 4t + √
3 sin 4t 4. y = −√

3 cos 2t + sin 2t

5. y = 0.2 cos 2.5t − 0.1 sin 2.5t 6. y = 0.2 cos 6.3t − 0.5 sin 6.3t

In Exercises 7–10, place each equation in the form y = Ae−ct cos(ωt −φ), then, on
one plot, place the graphs of y = Ae−ct cos(ωt − φ), y = Ae−ct , and y = −Ae−ct ,
the last two using a different linestyle and/or color than the first.

7. y = e−t/2(cos 5t + sin 5t) 8. y = e−t/4(
√

3 cos 4t − sin 4t)

9. y = e−0.1t(0.2 cos 2t + 0.1 sin 2t) 10. y = e−0.2t(cos 4.2t − 1.2 sin 4.2t)

11. A 0.2 kg mass is attached to a spring having a spring constant 5 kg/s. The
system is displaced 0.5 m from its equilibrium position and released from rest.
If there is no damping present, find the amplitude, frequency, and phase of the
resulting motion. Plot the solution.

12. A 0.1 kg mass is attached to a spring having a spring constant 3.6 kg/s. The
system is allowed to come to rest. Then the mass is given a sharp tap, im-
parting an instantaneous downward velocity of 0.4 m/s. If there is no damping
present, find the amplitude, frequency, and phase of the resulting motion. Plot
the solution.

13. The undamped system

2

5
x ′′ + kx = 0, x(0) = 2, x ′(0) = v0

is observed to have period π/2 and amplitude 2. Find k and v0.
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14. Consider the undamped oscillator

mx ′′ + kx = 0, x(0) = x0, x ′(0) = v0.

Show that the amplitude of the resulting motion is
√

x2
0 + mv2

0/k.

15. A 2 µF capacitor (1 µF = 1 × 10−6 F) is charged to 20 V and then connected
across a 6 µH inductor (1 µH = 1 × 10−6 H), forming an LC circuit.

(a) Find the initial charge on the capacitor.
(b) At the time of connection, the initial current is zero. Assuming no resis-

tance, find the amplitude, frequency, and phase of the current. Plot the
graph of the current versus time. [Use equations (4.2) and (4.3) in Section
3.4.]

16. A 1 kg mass, when attached to a large spring, stretches the spring a distance of
4.9 m.

(a) Calculate the spring constant.
(b) The system is placed in a viscous medium that supplies a damping constant

µ = 3 kg/s. The system is allowed to come to rest. Then the mass is
displaced 1 m in the downward direction and given a sharp tap, imparting
an instantaneous velocity of 1 m/s in the downward direction. Find the
position of the mass as a function of time and plot the solution.

17. Prove that an overdamped solution of my′′ + µy′ + ky = 0 can cross the time
axis no more than once, regardless of the initial conditions. Use a numerical
solver to create a plot of an overdamped system that crosses the time axis one
time and a second plot where the plot does not cross the time axis.

18. A 50 g mass (1 kg = 1000 g) stretches a spring 20 cm (1 m = 100 cm). Find
a damping constant µ so that the system is critically damped. If the mass is
displaced 15 cm from its equilibrium position and released from rest, find the
position of the mass as a function of time and plot the solution.

19. Prove that a critically damped solution of my′′ + µy′ + ky = 0 can cross the
time axis no more than once, regardless of the initial conditions. Use a numer-
ical solver to create a plot of an overdamped system that crosses the time axis
one time and a second plot where the plot does not cross the time axis.

20. A spring mass system is modeled by the equation

x ′′ + µx ′ + 4x = 0.

(a) Show that the system is critically damped when µ = 4 kg/s.
(b) Suppose that the mass is displaced upward 2 m and given an initial velocity

of 1 m/s. Use a numerical solver to plot the solution for c = 3.0, 3.5, 4.0,

. . . , 4.5, 5.0. Plot all solution curves on one figure. What is special about
the critically damped solution in comparison to the other solutions? Why
would you want to adjust the spring on a screen door so that it was critically
damped?

21. If µ > 2
√

km, the system mx ′′ + µx ′ + kx = 0 is overdamped. The system is
allowed to come to equilibrium. Then the mass is given a sharp tap, imparting
an instantaneous downward velocity v0.
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4.5 Inhomogeneous Equations; the Method of Undetermined Coefficients 199

(a) Show that the position of the mass is given by

x(t) = v0

γ
e−µt/(2m) sinh γ t, where γ =

√
µ2 − 4mk

2m
.

(b) Show that the mass reaches its lowest point at

t = 1

γ
tanh−1 2mγ

µ
,

a time independent of the initial conditions.

(c) Show that, in the critically damped case, the time it takes the mass to reach
its lowest point is given by t = 2m/µ.

22. A 100 g mass (1 kg = 1000 g) is hung from a spring having spring constant
9.8 kg/s2. The system is placed in a viscous medium that imparts a force of
0.3 N when the mass is moving at 0.2 m/s. Assume that the force applied by
the medium is proportional, but opposite, the mass’s velocity. The mass is
displaced 10 cm from its equilibrium position and released from rest. Find the
amplitude, frequency, and phase of the resulting motion. Plot the solution.

23. A capacitor (0.008 F) is charged to 50 V then connected in series with an induc-
tor (4 H) and a resistor (20 �). Initially, there is no current in the circuit. Find
the amplitude, frequency, and phase of the current and plot its graph.

24. A 10 kg mass stretches a spring 1 m. The system is placed in a viscous medium
that provides a damping constant µ = 20 kg/s. The system is allowed to attain
equilibrium. Then a sharp tap to the mass imparts an instantaneous downward
velocity of 1.2 m/s. Find the amplitude, frequency, and phase of the resulting
motion. Plot the solution.

25. A capacitor (0.02 F) is charged to 1 V then connected in series with an inductor
(10 H) and a resistor (40 �). Initially, there is no current in the circuit. Find the
amplitude, frequency, and phase of the current and plot its graph.

4.5 Inhomogeneous Equations; the Method of Undetermined Coefficients
We now turn to the solution of inhomogeneous linear equations. These are equations
of the form

y′′ + py′ + qy = f, (5.1)

where p = p(t), q = q(t), and f = f (t) are functions of the independent variable.
Remember that f is called the inhomogeneous term, or the forcing term.

Our solution strategy comes from the understanding of the structure of the gen-
eral solution, which is contained in the next theorem.

THEOREM 5.2 Suppose that yp is a particular solution to the inhomogeneous equation (5.1), and
that y1 and y2 form a fundamental set of solutions to the associated homogeneous
equation

y′′ + py′ + qy = 0. (5.3)
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200 Chapter 4 Second-Order Equations

Then the general solution to the inhomogeneous equation (5.1) is given by

y = yp + C1 y1 + C2 y2

where C1 and C2 are arbitrary constants.

Notice that the general solution can be written as y = yp + yh , where yh =
C1 y1 + C2 y2 is the general solution to the corresponding homogeneous equation.
Thus, to find the general solution to the inhomogeneous equation (5.1) we first find
the general solution, yh , to the corresponding homogeneous equation (5.3). Next,
we find a particular solution, yp, to the inhomogeneous equation. The general solu-
tion to the inhomogeneous equation is then y = yp + yh .

Proof Suppose that y is a solution to (5.1). We are given that yp is also a solution,
so we have the two equations

y′′ + py′ + qy = f, and

y′′
p + py′

p + qyp = f,

Subtracting we get

(y − yp)
′′ + p(y − yp)

′ + q(y − yp) = 0.

Therefore, y − yp is a solution to the associated homogeneous equation (5.3). Since
y1 and y2 form a fundamental set of solutions, there are constants C1 and C2 such
that

y − yp = C1 y1 + C2 y2.

Consequently,
y = yp + C1 y1 + C2 y2

as promised.

For equations with constant coefficients, we already know how to solve the ho-
mogeneous equation, so in this section we will concentrate on finding one particular
solution to the inhomogeneous equation.

The method of undetermined coefficients
We will be looking at the inhomogeneous equation

y′′ + py′ + qy = f, (5.4)

where p and q are constants and f = f (t) is a function of the independent variable.
The method of undetermined coefficients only works if the coefficients are con-
stants. Second-order equations are the most important applications of the method,
but the method works for higher-order equations in exactly the same way that it does
for second-order equations. For simplicity and convenience we will emphasize the
second-order case.

The method of undetermined coefficients is based on the fact that there are some
situations where the form of the forcing term in (5.4) allows us to almost guess the
form of a particular solution. Let’s highlight the key idea.
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4.5 Inhomogeneous Equations; the Method of Undetermined Coefficients 201

If the forcing term f has a form that is replicated under differen-
tiation, then look for a solution with the same general form as the
forcing term.

Exponential forcing terms
The easiest example of such a forcing term is an exponential function f (t) = eat .
Then f ′(t) = aeat , which is also an exponential function. The method is illustrated
by our first example.

E X A M P L E 5 . 5 � Find a particular solution to the equation

y′′ − y′ − 2y = 2e−2t . (5.6)

The forcing term is f (t) = 2e−2t . We look for a particular solution with the
same form as f , or

y(t) = ae−2t ,

where a is an as yet undetermined coefficient. Its derivatives are

y′(t) = −2ae−2t and y′′(t) = 4ae−2t .

If we insert these expressions into the left-hand side of (5.6), we get

y′′ − y′ − 2y = 4ae−2t − (−2ae−2t) − 2(ae−2t) = 4ae−2t .

In order for y to be a solution of (5.6), we must have

4ae−2t = 2e−2t .

Equating the coefficients of e−2t gives 4a = 2, or a = 1/2. Consequently,

y(t) = e−2t/2

is a particular solution to (5.6). We encourage the readers to check by direct substi-
tution that y is a solution to (5.6). �

Trigonometric forcing terms
Next, consider a forcing term of the form

f (t) = A cos ωt + B sin ωt.

The derivative of f has the same general form, so we will look for solutions of the
form

y(t) = a cos ωt + b sin ωt,

where a and b are as yet undetermined coefficients.

E X A M P L E 5 . 7 � Compute a particular solution to the equation

y′′ + 2y′ − 3y = 5 sin 3t. (5.8)
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202 Chapter 4 Second-Order Equations

We look for a particular solution of the form

y = a cos 3t + b sin 3t.

As we will see, we will need both the cosine and the sine terms, even though only a
sine term appears in the forcing term.

The derivatives of y are

y′ = −3a sin 3t + 3b cos 3t and

y′′ = −9a cos 3t − 9b sin 3t.

Insert these expressions into the left-hand side of (5.8).

y′′ + 2y′ − 3y = (−9a cos 3t − 9b sin 3t) + 2(−3a sin 3t + 3b cos 3t)

− 3(a cos 3t + b sin 3t)

= (−12a + 6b) cos 3t + (−6a − 12b) sin 3t.

(5.9)

Equating the coefficients of the sine and cosine terms in (5.8) and (5.9) gives two
equations for a and b,

−12a + 6b = 0

−6a − 12b = 5,

with solutions a = −1/6 and b = −1/3. Hence, a particular solution is

y = −1

6
cos 3t − 1

3
sin 3t. (5.10)

�

The complex method
There is another way to find a particular solution in situations where the forcing
function contains a trigonometric term. We will illustrate the method by solving the
same equation as we did in Example 5.7.

E X A M P L E 5 . 1 1 � Use the complex method to find a particular solution to the equation

y′′ + 2y′ − 3y = 5 sin 3t. (5.12)

Notice that the right-hand side of (5.12) is 5 sin 3t = Im(5e3i t). Instead of
solving (5.12) directly as we did in Example 5.7, we will look for a solution to

z′′ + 2z′ − 3z = 5e3i t (5.13)

using the techniques of Example 5.5. If z(t) = x(t) + iy(t) is that solution, then
formally we have

z′′ + 2z′ − 3z = (x + iy)′′ + 2(x + iy)′ − 3(x + iy)

= (x ′′ + 2x ′ − 3x) + i(y′′ + 2y′ − 3y).
(5.14)
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On the other hand, expanding the right-hand side of (5.13) using Euler’s formula,
we get

z′′ + 2z′ − 3z = 5e3i t = 5[cos 3t + i sin 3t]. (5.15)

Equating the imaginary parts of (5.14) and (5.15), we see that y(t) = Im z(t) is
a solution to (5.12). We notice in passing that x(t) = Re z(t) is a solution to the
equation

x ′′ + 2x ′ − 3x = 5 cos 3t.

Our solution to (5.13) should have the same form as the forcing term, so we try
z(t) = ae3i t . Substituting this into the left-hand side of (5.13), we get

z′′ + 2z′ − 3z = (3i)2ae3i t + 2(3i)ae3i t − 3ae3i t = −6(2 − i)ae(3i)t .

For z to be a solution of (5.13) we must have −6(2 − i)a = 5. Therefore,

a = −1

6

5

2 − i
= −1

6

5

2 − i

2 + i

2 + i
= −1

6

10 + 5i

5
= −2 + i

6
.

Hence the complex solution is

z(t) = −2 + i

6
e3i t

= −1

6
(2 + i)(cos 3t + i sin 3t)

= −1

6
{[2 cos 3t − sin 3t] + i[cos 3t + 2 sin 3t]} .

The solution y to (5.12) is the imaginary part of z, or

y(t) = −1

6
[cos 3t + 2 sin 3t],

which agrees with (5.10). �

It is up to the individual to decide which of these methods is preferable. If
you are comfortable with complex arithmetic, then the complex method is probably
quicker. The complex method is preferred by some engineers and physicists because
of the insight the answers provide.

Polynomial forcing terms
The derivative of a polynomial is another polynomial of lower degree. Conse-
quently, a polynomial forcing term

f (t) = a0tn + a1tn−1 + · · · + an−1t + an

has a form which is replicated under differentiation. We can find a particular solu-
tion by the method of undetermined coefficients.
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E X A M P L E 5 . 1 6 � Find a particular solution to the differential equation

y′′ + 2y′ − 3y = 3t + 4. (5.17)

The right-hand side is a polynomial of degree 1, so we look for a particular
solution of the same form. In this case that means a polynomial of the same degree,
or

y = at + b,

where a and b are constants to be determined. The derivatives of y are

y′ = a and y′′ = 0.

Inserting these into our differential equation gives

y′′ + 2y′ − 3y = 0 + 2a − 3(at + b) = −3at + (2a − 3b). (5.18)

Equating the coefficient of t and the constant term in (5.17) and (5.18) gives two
equations for a and b

−3a = 3,

2a − 3b = 4.

The solutions are a = −1 and b = −2, and our particular solution is

y = −t − 2.

We encourage the reader to check that y is indeed a solution. �

Exceptional cases
The method of undetermined coefficients looks straightforward. There are, however,
some exceptional cases to look out for. Suppose we change the forcing term in
equation (5.6) in Example 5.5 to 3e−t , getting the equation

y′′ − y′ − 2y = 3e−t .

If we look for a solution of the indicated form, y(t) = ae−t , we run into trouble. To
see this, let’s insert y into the left-hand side of the differential equation. We get

y′′ − y′ − 2y = ae−t + ae−t − 2ae−t = 0.

There is no choice of the constant a which will make this equal to 3e−t .
The problem arises because the forcing term, and hence the proposed solution,

is a solution to the associated homogeneous equation. This is the source of the
difficulty in all exceptional cases. However, even if the solution to the homogeneous
equation is only a part of the forcing term, we can have an exceptional case. As we
will see, exceptional cases do arise in applications, and they are often the most
interesting cases.

What do we do? In this case we look for a solution of the form y(t) = ate−t .
We multiply the usual general form by t . This is the way to find a solution whenever
the usual form does not work. If this method does not work, multiply by t once more
and try again.
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E X A M P L E 5 . 1 9 � Find a particular solution to the equation

y′′ − y′ − 2y = 3e−t . (5.20)

We know from the preceding discussion that the forcing term is a solution to
the homogeneous equation, so we look for a solution of the form y(t) = ate−t .
Substituting into the left-hand side of the equation, we get

y′′ − y′ − 2y = a(t − 2)e−t − a(1 − t)e−t − 2ate−t = −3ae−t .

This will give a solution to (5.20) provided that

−3ae−t = 3e−t .

Therefore, we need a = −1, and our particular solution is y(t) = −te−t . �

Typically, we do not notice that the forcing function is exceptional. The first
indication that arises is when we are presented with equations for the undetermined
coefficients that are inconsistent. At this point apply the remedy—multiply the trial
solution by t and try again. If that still leads to inconsistent equations, multiply
by t2.

Combination forcing terms
The method we just used can be used whenever the forcing term is a linear combi-
nation of expressions of the forms we have already handled.

E X A M P L E 5 . 2 1 � Find a particular solution to the equation

y′′ − y′ − 2y = e−2t − 3e−t . (5.22)

The forcing term is a sum, f (t) = f1(t) + f2(t), where f1(t) = e−2t , and
f2(t) = −3e−t . Suppose we break up the equation and solve the equations sepa-
rately for each part of the forcing term. This means that we find functions y1 and y2

such that

y′′
1 − y′

1 − 2y1 = e−2t , and

y′′
2 − y′

2 − 2y2 = −3e−t .
(5.23)

Adding these two equations, we get

(y1 + y2)
′′ − (y1 + y2)

′ − 2(y1 + y2) = e−2t − 3e−t ,

so y = y1 + y2 is a solution to (5.22).
It remains to solve the two equations in (5.23). The first is solved using the

method in Example 5.5. We find that y1(t) = e−2t/4. In the second equation we
have an exceptional case, so we use the method of Example 5.19. The solution is
y2(t) = te−t . Hence the solution to (5.22) is

y(t) = y1(t) + y2(t) = 1

4
e−2t + te−t . �
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206 Chapter 4 Second-Order Equations

As the example illustrates, when the forcing term is a linear combination of the
terms, we need only solve the equation for each individual term and take the linear
combination of the solutions.

Let’s look at one more example.

E X A M P L E 5 . 2 4 � Find a particular solution to the equation

y′′ + 4y = cos 2t − 2 sin 2t. (5.25)

We will use the complex method. It is easiest to treat the two summands in
the forcing term separately. This means that we look for solutions y1 and y2 to the
equations

y′′
1 + 4y1 = cos 2t and

y′′
2 + 4y2 = −2 sin 2t.

(5.26)

Then it is easily seen that y = y1 + y2 is a solution to (5.25).
To solve the first equation in (5.26), we notice that cos 2t = Re(e2i t), so we

solve the complex equation

z′′ + 4z = e2i t . (5.27)

The forcing term is a solution to the homogeneous equation, so we look for a solu-
tion of the form z(t) = ate2i t . In the usual way we find that the solution is

z(t) = − i t

4
e2i t .

The solution to the first equation in (5.26) is

y1(t) = Re z(t) = Re

(
− i t

4
e2i t

)
= t sin 2t

4
.

Notice that the imaginary part of z,

u(t) = Im z(t) = Im

(
− i t

4
e2i t

)
= − t cos 2t

4
,

is a solution to the equation

u′′ + 4u = Im e2i t = sin 2t.

The similarity between this equation and the second equation in (5.26) allows us to
conclude that

y2(t) = −2u(t) = t cos 2t

2
.

The solution to (5.25) is

y(t) = y1(t) + y2(t) = t sin 2t

4
+ t cos 2t

2
. �
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4.5 Inhomogeneous Equations; the Method of Undetermined Coefficients 207

More complicated forcing terms
In addition to the three cases we have considered so far, we could have forcing terms
which are products of two of these, or of all three. The most general situation would
be a forcing term of the form

f (t) = ert P(t) cos ωt + ert Q(t) sin ωt,

where P(t) and Q(t) are polynomials. Again f ′(t) has the same form, so we can
use undetermined coefficients.

The method of undetermined coefficients is summarized in Table 1, which
shows the allowed forcing functions and the type of particular solution to be used.
Even for the most general case the method works in the way we have indicated in
our examples.

Table 1 The method of undetermined coefficients

Forcing function f (t) Trial solution yp(t) Comments

ert aert

cos ωt or sin ωt a cos ωt + b sin ωt

P(t) p(t) P is a polynomial;
p is a polynomial

of the same degree

P(t) cos ωt or p(t) cos ωt+ P is a polynomial;
P(t) sin ωt q(t) sin ωt p & q are polynomials

of the same degree

ert cos ωt or ert [a cos ωt+
ert sin ωt b sin ωt]

ert P(t) cos ωt or ert [p(t) cos ωt+ P is a polynomial;
ert P(t) sin ωt q(t) sin ωt] p & q are polynomials

of the same degree

................
EXERCISES

In Exercises1–4, use the technique demonstrated in Example 5.5 to find a particular
solution for the given differential equation.

1. y′′ + 3y′ + 2y = 4e−3t 2. y′′ + 6y′ + 8y = −3e−t

3. y′′ + 2y′ + 5y = 12e−t 4. y′′ + 3y′ − 18y = 18e2t

In Exercises 5–8, use the form yp = a cos ωt + b sin ωt , as in Example 5.7, to help
find a particular solution for the given differential equation.

5. y′′ + 4y = cos 3t 6. y′′ + 9y = sin 2t

7. y′′ + 7y′ + 6y = 3 sin 2t 8. y′′ + 7y′ + 10y = −4 sin 3t
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208 Chapter 4 Second-Order Equations

9. Suppose that z(t) = x(t) + iy(t) is a solution of

z′′ + pz′ + qz = Aeiωt . (5.28)

Substitute z(t) into equation (5.28), then compare the real and imaginary parts
of each side of the resulting equation to prove two facts:

x ′′ + px ′ + qx = A cos ωt,

y′′ + py′ + qy = A sin ωt.

Write a short paragraph summarizing the significance of this result.

In Exercises 10–13, use the complex method, as in Example 5.11, to find a particular
solution for the differential equation.

10. Exercise 5 11. Exercise 6

12. Exercise 7 13. Exercise 8

In Exercises 14–17, use the technique shown in Example 5.16 to find a particular
solution for the given differential equation.

14. y′′ + 5y′ + 4y = 2 + 3t 15. y′′ + 6y′ + 8y = 2t − 3

16. y′′ + 5y′ + 6y = 4 − t2 17. y′′ + 3y′ + 4y = t3

In Exercises 18–23, use the technique of Section 4.3 to find a solution of the as-
sociated homogeneous equation, then use the technique of this section to find a
particular solution. Use Theorem 5.2 to form the general solution. Then find the
solution satisfying the given initial conditions.

18. y′′ + 3y′ + 2y = 3e−t , y(0) = 1, y′(0) = 0

19. y′′ − 4y′ − 5y = 4e−2t , y(0) = 0, y′(0) = −1

20. y′′ + 2y′ + 2y = 2 cos 2t , y(0) = −2, y′(0) = 0

21. y′′ − 2y′ + 5y = 3 cos t , y(0) = 0, y′(0) = −2

22. y′′ + 4y′ + 4y = 4 − t , y(0) = −1, y′(0) = 0

23. y′′ − 2y′ + y = t3, y(0) = 1, y′(0) = 0

In Exercises 24–29, the forcing term is also a solution of the associated homoge-
neous solution. Use the technique of Example 5.19 to find a particular solution.

24. y′′ − 3y′ − 10y = 3e−2t 25. y′′ − y′ − 2y = 2e−t

26. y′′ + 4y = 4 cos 2t 27. y′′ + 9y = sin 3t

28. y′′ + 4y′ + 4y = 2e−2t 29. y′′ + 6y′ + 9y = 5e−3t

30. If y f (t) is a solution of

y′′ + py′ + qy = f (t)

and yg(t) is a solution of

y′′ + py′ + qy = g(t),

Polking/Boggess/Arnold: Differential Equations 1/E [Second Pages] 1/25/97 11:35 Page 46



4.6 Variation of Parameters 209

show that z(t) = αy f (t) + βyg(t) is a solution of

y′′ + py′ + qy = α f (t) + βg(t),

where α and β are any real numbers.

Use the technique suggested by Examples 5.21 and 5.24, as well as Exercise 30, to
help find particular solutions for the differential equations in Exercises 31–38.

31. y′′ + 2y′ + 2y = 2 + cos 2t 32. y′′ − y = t − e−t

33. y′′ + 25y = 2 + 3t + cos 5t 34. y′′ + 2y′ + y = 3 − e−t

35. y′′ + 4y′ + 3y = cos 2t + 3 sin 2t 36. y′′ + 2y′ + 2y = 3 cos t − sin t

37. y′′ + 4y′ + 4y = e−2t + sin 2t 38. y′′ + 16y = e−4t + 3 sin 4t

39. Use the form yp(t) = (at + b)e−4t in an attempt to find a particular solution of
the equation y′′ + 3y′ + 2y = te−4t .

Use an approach similar to that in Exercise 39 to find particular solutions of the
equations in Exercises 40–43.

40. y′′ − 3y′ + 2y = te−3t 41. y′′ + 2y′ + y = t2e−2t

42. y′′ + 5y′ + 4y = te−t 43. y′′ + 3y′ + 2y = t2e−2t

44. Use the form yp = e−2t(a cos t + b sin t) in an attempt to find a particular
solution of y′′ + 2y′ + 2y = e−2t sin t .

45. If z(t) = x(t) + iy(t) is a solution of

z′′ + pz′ + qz = Ae(a+bi)t ,

show that x(t) and y(t) are solutions of

x ′′ + px ′ + qx = Aeat cos bt and y′′ + py′ + qy = Aeat sin bt,

respectively.

46. Use the technique suggested by Exercise 45 to find a particular solution of the
equation in Exercise 44.

47. Prove that the imaginary part of the solution of z′′ + z′ + z = teit is a solution of
y′′ + y′ + y = t sin t . Use this idea to find a particular solution of y′′ + y′ + y =
t sin t .

4.6 Variation of Parameters
In this section we introduce a technique called variation of parameters. This tech-
nique is used to find a particular solution to more general higher-order equations,
provided we know a fundamental set of solutions to the associated homogeneous
equation. As we did in the previous section, we will illustrate the method for second-
order equations. The method also works for higher-order equations, but it is usually
more efficient to solve the associated first-order system using variation of parame-
ters. This will be discussed in a later chapter.
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210 Chapter 4 Second-Order Equations

We are interested in solving the equation

y′′ + p(t)y′ + q(t)y = g(t). (6.1)

Notice that we are allowing the coefficients p(t) and q(t) to be functions of t . In
particular, we are not restricting them to be constants. This might seem to be a great
increase in generality, but there is a rather strong constraint. We will have to assume
that we have computed a fundamental set of solutions y1 and y2 to the associated
homogeneous equation

y′′ + p(t)y′ + q(t)y = 0. (6.2)

Then the general solution to the homogeneous equation is

yh = C1 y1 + C2 y2, (6.3)

where C1 and C2 are arbitrary constants.
The idea behind variation of parameters is to replace the constants C1 and C2

in (6.3) by unknown functions v1(t) and v2(t) and look for a particular solution to
the inhomogeneous equation (6.1) of the form

yp = v1 y1 + v2 y2. (6.4)

You will notice the similarity with the method of variation of parameters as it was
used to solve first-order linear equations in Chapter 2.

E X A M P L E 6 . 5 � Find a particular solution to the equation

y′′ + y = tan t. (6.6)

The right side, tan t , is not one of the forms that can be handled with undeter-
mined coefficients. We will find a solution by the method of variation of parameters.
First, note that y1(t) = cos t and y2(t) = sin t are a fundamental set of solutions
to the associated homogeneous equation y′′ + y = 0. So we look for a particular
solution of the form

yp = v1 cos t + v2 sin t. (6.7)

We start by computing the first derivative of yp.

y′
p = v′

1 cos t − v1 sin t + v′
2 sin t + v2 cos t

= (v′
1 cos t + v′

2 sin t) − v1 sin t + v2 cos t
(6.8)

The differential equation (6.6) puts only one constraint on the two functions v1

and v2. We can impose one more constraint. Notice that if we set the term in
parentheses on the right in (6.8) equal to zero, then the expression simplifies, and
we will eliminate the first derivatives of v1 and v2. Then when we compute y′′

p no
second derivatives of v1 and v2 will appear. Hence we set

v′
1 cos t + v′

2 sin t = 0. (6.9)
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4.6 Variation of Parameters 211

Now (6.8) simplifies to
y′

p = −v1 sin t + v2 cos t.

Differentiating this equation gives

y′′
p = −v′

1 sin t − v1 cos t + v′
2 cos t − v2 sin t

= −v′
1 sin t + v′

2 cos t − v1 cos t − v2 sin t.

Inserting these expressions for yp and y′′
p into the left-hand side of our differential

equation, we obtain

y′′
p + yp = (−v′

1 sin t + v′
2 cos t − v1 cos t − v2 sin t

) + (v1 cos t + v2 sin t)

= −v′
1 sin t + v′

2 cos t.

Comparing this with (6.6), we see that yp is a solution to (6.6) provided −v′
1 sin t +

v′
2 cos t = tan t. This is our second equation for v′

1 and v′
2. Let’s restate it along

with (6.9).

v′
1 cos t + v′

2 sin t = 0

−v′
1 sin t + v′

2 cos t = tan t

This is a system of two linear equations for the unknowns v′
1 and v′

2. The
coefficient matrix is (

cos t sin t
− sin t cos t

)
.

The system can be solved provided the determinant of this matrix is nonzero. Since
the determinant is cos2 t +sin2 t = 1, we can solve. Let’s solve them by elimination.
Multiply the first by sin t and the second by cos t to get

sin t (v′
1 cos t + v′

2 sin t) = 0

cos t (−v′
1 sin t + v′

2 cos t) = sin t.

When added together, the term involving v′
1 is eliminated:

v′
2(sin2 t + cos2 t) = sin t or v′

2 = sin t.

Similarly, if we multiply the first equation by cos t and the second by sin t and then
subtract the second from the first, we get

v′
1(cos2 t + sin2 t) = v′

1 = − sin t tan t or v′
1 = −sin2 t

cos t
.

When we integrate the equations for v′
1 and v′

2, we get

v1(t) = − ln | sec t + tan t | + sin t and v2(t) = − cos t. (6.10)

Notice that we have left off the constants of integration. Since we are after one
particular solution, we can set the constants equal to zero.

Substituting the formulas for v1 and v2 into 6.7 gives our particular solution

yp(t) = (− ln | sec t + tan t | + sin t) cos t − cos t sin t

= −(cos t) ln | sec t + tan t |. �
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212 Chapter 4 Second-Order Equations

The general case
Does this procedure always work? Let’s examine the general case and see what
happens. To find a particular solution to

y′′ + p(t)y′ + q(t)y = g(t), (6.11)

we look for a solution of the form

yp = v1 y1 + v2 y2, (6.12)

where v1 and v2 are functions that are yet to be determined, and y1 and y2 are a
fundamental set of solutions to the associated homogeneous equation

y′′ + p(t)y′ + q(t)y = 0. (6.13)

We compute the derivative of yp,

y′
p = v′

1 y1 + v1 y′
1 + v′

2 y2 + v2 y′
2 = [v′

1 y1 + v′
2 y2] + v1 y′

1 + v2 y′
2.

As in Example 6.5, we set the expression in the square brackets equal to zero, or

v′
1 y1 + v′

2 y2 = 0. (6.14)

The first derivative then simplifies to

y′
p = v1 y′

1 + v2 y′
2.

Differentiating again, we obtain

y′′
p = v′

1 y′
1 + v′

2 y′
2 + v1 y′′

1 + v2 y′′
2 .

Inserting yp, y′
p, and y′′

p into the left-hand side of equation (6.11), we get

y′′
p + p(t)y′

p + q(t)yp = (
v′

1 y′
1 + v′

2 y′
2 + v1 y′′

1 + v2 y′′
2

)
+ p(t)

(
v1 y′

1 + v2 y′
2

) + q(t)(v1 y1 + v2 y2)

= v1(y′′
1 + p(t)y′

1 + q(t)y1)

+ v2(y′′
2 + p(t)y′

2 + q(t)y2)

+ v′
1 y′

1 + v′
2 y′

2.

Since y1 and y2 are solutions to the homogeneous equation (6.13), this simplifies to

y′′
p + p(t)y′

p + q(t)yp = v′
1 y′

1 + v′
2 y′

2.

Now we see that yp is a solution to (6.11) provided that

v′
1 y′

1 + v′
2 y′

2 = g(t).

This is our second equation for v1 and v2. We restate it along with Equation (6.14):

v′
1 y1 + v′

2 y2 = 0

v′
1 y′

1 + v′
2 y′

2 = g(t).
(6.15)
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This is a system of two linear equations for v′
1 and v′

2. The coefficient matrix is(
y1 y2

y′
1 y′

2

)
.

The system can be solved provided that the determinant of this matrix is nonzero.
The determinant will be recognized as the Wronskian of y1 and y2,

W = y1 y′
2 − y2 y′

1.

Since y1 and y2 form a fundamental set of solutions to the homogeneous equation,
they are linearly independent and we know by Proposition 1.26 that the Wronskian
W (t) �= 0.

These equations can be solved by elimination (multiply the first by y′
1 and the

second by y1 and then subtract) to obtain

v′
2 = y1g

y1 y′
2 − y′

1 y2
and v′

1 = −y2g

y1 y′
2 − y′

1 y2
.

Notice that the denominator in the above expressions is the Wronskian of y1 and y2

and is always nonzero.
We can integrate these equations:

v1(t) =
∫ −y2(t)g(t) dt

y1(t)y′
2(t) − y′

1(t)y2(t)
, and

v2(t) =
∫

y1(t)g(t) dt

y1(t)y′
2(t) − y′

1(t)y2(t)
.

(6.16)

When they are inserted into (6.12), we get a particular solution.

Summary
To find a particular solution to the inhomogeneous equation y′′ + py′ + qy = g,
follow these steps.

1. Find a fundamental set of solutions y1, y2 to the associated homogeneous equa-
tion y′′ + py′ + qy = 0.

2. Form yp = v1 y1 + v2 y2 where v1 and v2 are functions to be determined.

3. Find v1 and v2. Here there are two possible ways to proceed. The first way is to
use the formulas in (6.16). This requires that you remember these formulas or
that you have the use of a book that contains the formulas.

The second way is to follow the procedure of the method of variation of param-
eters. The procedure has the following steps:
(a) Differentiate yp:

y′
p = (v′

1 y1 + v′
2 y2) + v1 y′

1 + v2 y′
2

and set the first term on the right equal to zero.

v′
1 y1 + v′

2 y2 = 0 (6.17)
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214 Chapter 4 Second-Order Equations

(b) Take the second derivative of yp and insert yp, y′
p, and y′′

p into the differen-
tial equation. After simplifying, a second equation will appear:

v′
1 y′

1 + v′
2 y′

2 = g(t). (6.18)

(c) Solve (6.17) and (6.18) for v′
1 and v′

2 by elimination.

(d) Integrate to find v1 and v2.

4. Substitute v1 and v2 into yp = v1 y1 + v2 y2.

It is up to the reader to decide which of the methods to use in step 3.
Although variation of parameters always works theoretically, its success re-

quires a fundamental set of solutions to the homogeneous equation and the ability
to compute the integrals in (6.16). The method is of significant theoretical impor-
tance, however.

................
EXERCISES

For Exercises 1–12, find a particular solution to the given second-order differential
equation.

1. y′′ + 9y = tan(3t) 2. y′′ + 4y = sec(2t)

3. y′′ − y = t + 3 4. x ′′ − 2x ′ − 3x = 4e3t

5. y′′ − 2y′ + y = et 6. x ′′ − 4x ′ + 4x = e2t

7. x ′′ + x = tan2 t 8. x ′′ + x = sec2 t

9. x ′′ + x = tan3 t 10. x ′′ + x = sec3 t

11. y′′ + y = tan t + sin t + 1 12. y′′ + y = sec t + cos t − 1

13. Verify that y1(t) = t and y2(t) = t−3 are solutions to the homogeneous equa-
tion

t2 y′′(t) + 3t y′(t) − 3y(t) = 0.

Use variation of parameters to find the general solution to

t2 y′′(t) + 3t y′(t) − 3y(t) = 1

t
.

14. Verify that y1(t) = t−1 and y2(t) = t−1 ln t are solutions to the homogeneous
equation

t2 y′′(t) + 3t y′(t) + y(t) = 0, for t > 0.

Use variation of parameters to find the general solution to

t2 y′′(t) + 3t y′(t) + y(t) = 1

t
, for t > 0.
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4.7 Forced Harmonic Motion 215

4.7 Forced Harmonic Motion
In this section, we apply the technique of undetermined coefficients to analyze har-
monic motion with an external sinusoidal forcing term. We derived the model in
Section 4.4, and with a sinusoidal forcing term, equation (4.4) becomes

x ′′ + 2cx ′ + ω2
0x = A cos ωt. (7.1)

The constant A is the amplitude of the driving force, and ω is the driving frequency.
To focus our thinking, we may suppose that we have an iron mass m suspended

on a spring, with the top of the spring attached to a motor that moves the top of
the spring up and down. We can also consider an RLC circuit in which the source
voltage is sinusoidal.

We will first treat the case with no damping.

Forced undamped harmonic motion
The equation we will deal with here comes from (7.1) with c = 0 or

x ′′ + ω2
0x = A cos ωt. (7.2)

The associated homogeneous equation is

x ′′ + ω2
0x = 0, (7.3)

with general solution
xh = C1 cos ω0t + C2 sin ω0t.

We have to consider separately the cases when the driving frequency ω is equal
to the natural frequency and when it is not.

Case 1: ω �= ω0. If the driving frequency is not equal to the natural frequency, we
look for a particular solution of the form

x p = a cos ωt + b sin ωt, (7.4)

where a and b are undetermined constants. Substituting x p into the left-hand side
of the inhomogeneous differential equation (7.2) gives

x ′′
p + ω2

0x p = a(ω2
0 − ω2) cos ωt + b(ω2

0 − ω2) sin ωt.

Comparing this with (7.2), we see that we have a solution provided that

a = A

ω2
0 − ω2

and b = 0.

So our particular solution is

x p(t) = A

ω2
0 − ω2

cos ωt.
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216 Chapter 4 Second-Order Equations

Notice that x p is oscillatory, with the same frequency as the driving force. The
amplitude of this oscillation also depends on the driving frequency and gets larger
as the driving frequency approaches the natural frequency of the spring. This is our
first indication of resonance. We will have more to say about that shortly.

The general solution to the inhomogeneous equation is

x(t) = xh(t) + x p(t) = C1 cos ω0t + C2 sin ω0t + A

ω2
0 − ω2

cos ωt.

Let’s look at the solution where the motion starts at equilibrium. This means the
initial conditions are x(0) = x ′(0) = 0. It is easily seen that C1 = −A/(ω2

0 − ω2),

and C2 = 0. Hence the solution is

x(t) = A

ω2
0 − ω2

(cos ωt − cos ω0t). (7.5)

This is a superposition of two oscillations with different frequencies. The result is
interesting.

E X A M P L E 7 . 6 � Suppose A = 23, ω0 = 11, and ω = 12. With these values of the parameters the
solution (7.5) becomes

x(t) = cos 11t − cos 12t.

The graph is shown in Figure 1. This figure shows the phenomenon called beats. It
occurs whenever two frequencies that are almost equal interfere with each other as
we see in (7.5). �
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Figure 1 Beats in forced, undamped, harmonic motion.
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4.7 Forced Harmonic Motion 217

We can understand the phenomenon of beats better after a little algebra. We
introduce ω = (ω0 + ω)/2, which is the mean frequency, and δ = (ω0 − ω)/2, the
half difference. Then

ω = ω − δ and ω0 = ω + δ.

The relationship between these variables is shown in Figure 2. If we substitute these
equations into (7.5) and use the addition law for the cosine, we get

x(t) = A sin δt

2ωδ
sin ωt. (7.7)

In Example 7.6, δ = −1/2 and ω = 23/2. In that case the factor sin δt =
sin(−t/2) oscillates very slowly, especially in comparison with the faster oscillation

ω ω ω0

δ δ

Figure 2 The relationship of ω

and ω0 to ω and δ.

with frequency ω = 23/2. Thus the solution in (7.7) can be seen to be a fast
oscillation with a frequency ω and an amplitude∣∣∣∣ A sin δt

2ωδ

∣∣∣∣ , (7.8)

which oscillates much more slowly. If we were to superimpose a graph of this slow
oscillating amplitude on the graph in Figure 1, it would appear as a curve through the
maxima of the faster oscillation. This is called the envelope of the faster oscillation.
(See Exercise 2.)

The phenomenon of beats illustrated in Figure 1 occurs in many situations. For
example, it is used by a piano tuner to be sure that particular piano strings are prop-
erly tuned. The tuner strikes a tuning fork, which vibrates at the correct frequency.
He next hits the poorly tuned piano key, which vibrates at a slightly different fre-
quency. The two sounds interfere in a way modeled by (7.5), and therefore by (7.7).
The tuner hears the mean frequency with an amplitude that is modulated by the dif-
ference frequency, as shown in Figure 1. This modulation gives rise to beats in the
tone that are readily audible. When the string is properly tuned, the beats go away.

Case 2: ω = ω0. In this case, the particular solution given in (7.4) is a solution to
the homogeneous equation. Therefore, we look for a particular solution of the form

x p = t (a cos ω0t + b sin ω0t).

Inserting x p into the left-hand side of the differential equation in 7.2, we get

x ′′
p + ω2

0x p = [
2ω0(−a sin ω0t + b cos ω0t) + tω2

0(−a cos ω0t − b sin ω0t)
]

+ ω2
0t (a cos ω0t + b sin ω0t)

= 2ω0(−a sin ω0t + b cos ω0t).

Setting the right side equal to A cos ω0t , we see that we have a solution provided
that

b = A

2ω0
and a = 0.

The particular solution is

x p = A

2ω0
t sin ω0t,
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218 Chapter 4 Second-Order Equations

and the general solution to the inhomogeneous equation is

x(t) = xh(t) + x p(t) = C1 cos ω0t + C2 sin ω0t + A

2ω0
t sin ω0t.

In the special case where x(0) = C1 = 0, x ′(0) = C2 = 0, A = 8, and ω0 = 4,
this reduces to

x(t) = t sin 4t.

The graph of this function is shown in Figure 3. Notice how the solution grows
with time. This growth is due to the fact that the frequency of the forcing term
equals the natural vibrating frequency of the spring. The force pulls and pushes
at a frequency equal to the natural frequency of the spring. Thus the amplitude
of the oscillatory motion of the mass increases. This type of behavior is called
resonance, and engineers try to eliminate it in the design of mechanical systems,
since oscillations that grow in amplitude can eventually cause the system to break.
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−15
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0

5

10

15

t

x

Figure 3 Forced, undamped, harmonic motion where the
driving frequency equals the natural frequency.

In reality, mechanical systems always have some damping (friction) that will
keep the solution from getting infinitely large. However, resonance can still cause
mechanical motions to become large enough to cause major structural damage. A
common example of the destructiveness of resonance is the shattering of a glass by
the voice of a singer. The singer has to sing a note at a frequency that is very close
to the natural frequency of the glass in order to cause it to resonate and eventually
shatter. Another example involves the behavior of a troop of soldiers marching over
a bridge. If they were to continue to march in perfect step, they might be marching
at the natural frequency of some component of the bridge and cause it to resonate
and eventually break. Consequently, since time immemorial troops of soldiers have
broken ranks when marching over a bridge.

On the other hand, resonance is exploited in electrical systems that are governed
by the same model as (7.2) in order to tune radios, for example.
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4.7 Forced Harmonic Motion 219

Forced damped harmonic motion
If we add a damping term to the system, interesting things happen. Now we are
dealing with the equation in (7.1),

x ′′ + 2cx ′ + ω2
0x = A cos ωt. (7.9)

The associated homogeneous equation is

x ′′ + 2cx ′ + ω2
0x = 0. (7.10)

The characteristic roots are

λ = −c ±
√

c2 − ω2
0.

Let’s suppose that we are in the underdamped case, where c < ω0. We found in
Section 4.4 that the general solution is

xh = e−ct (C1 cos(ηt) + C2 sin(ηt)) ,

where

η =
√

ω2
0 − c2.

To find a particular solution to the inhomogeneous equation, we use undeter-
mined coefficients, but this time it is easier to use the complex method. This means
we look for a solution z(t) = aeiωt to the equation

z′′ + 2cz′ + ω2
0z = Aeiωt (7.11)

and then set x p = Re(z). Let’s substitute z(t) into the left side of (7.11). We get

z′′ + 2cz′ + ω2
0z = [

(iω)2 + 2c(iω) + ω2
0

]
aeiωt = P(iω)z,

where the polynomial
P(λ) = λ2 + 2cλ + ω2

0

is the characteristic polynomial of the differential equation in (7.11) or (7.10). Thus
equation (7.11) becomes

P(iω)z(t) = Aeiωt .

The solution is

z(t) = 1

P(iω)
Aeiωt = H(iω)Aeiωt , (7.12)

where we have set

H(iω) = 1

P(iω)
.

The function H(iω) is called the transfer function. To see what it is like, we
look at its reciprocal

P(iω) = (iω)2 + 2c(iω) + ω2
0 = (ω2

0 − ω2) + 2icω.
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220 Chapter 4 Second-Order Equations

We want to write this complex number in polar form, which means that we want to
find a positive number R and an angle φ such that

P(iω) = Reiφ = R[cos φ + i sin φ].
We need

R cos φ = ω2
0 − ω2 and R sin φ = 2cω.

This is just polar coordinates, so

R =
√

(ω2
0 − ω2)2 + 4c2ω2,

while the angle φ is defined by the pair of equations

cos φ = ω2
0 − ω2√

(ω2
0 − ω2)2 + 4c2ω2

and sin φ = 2cω√
(ω2

0 − ω2)2 + 4c2ω2
.

(See the discussion of amplitude and phase in Section 4.4.) Notice that 2cω > 0, so
sin φ > 0. This means that the phase always satisfies 0 < φ < π . Furthermore, we
have

cot φ = ω2
0 − ω2

2cω
or φ = φ(ω) = arccot

(
ω2

0 − ω2

2cω

)
. (7.13)

The last equation defines φ uniquely because 0 < φ < π .
Now we see that the transfer function can be written as

H(iω) = 1

P(iω)
= 1

R
e−iφ.

We will define the gain G by

G(ω) = 1

R
= 1√

(ω2
0 − ω2)2 + 4c2ω2

, (7.14)

and then the transfer function is

H(iω) = G(ω)e−iφ(ω). (7.15)

From (7.12) we see that the solution to (7.11) is

z(t) = H(iω)Aeiωt = G(ω)Aei(ωt−φ).

Finally, the solution to (7.9) is

x p(t) = Re z(t) = G(ω)A cos(ωt − φ). (7.16)

This form makes it clear that x p is sinusoidal with the same frequency as the driving
force. It also shows that the amplitude of x p is the product of the gain G(ω) times
the amplitude of the driving force. In addition, x p is out of phase with the driving
force by the amount φ = φ(ω), given in (7.13).
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4.7 Forced Harmonic Motion 221

The general solution to the inhomogeneous equation is

x = xh + x p

= e−ct (C1 cos(ηt) + C2 sin(ηt)) + G(ω)A cos(ωt − φ).
(7.17)

Notice that xh has the factor e−ct , which quickly decays to 0 as t → ∞. For this
reason, this term is called the transient term. The rate of the decay of the transient
term is governed by the exponential factor e−ct . After the passage of time equal to
Tc = 1/c, this decreases to e−1 ≈ 0.3679, and the amplitude of the transient term
has decreased to e−1 times its original value. Tc is called the time constant, and it
is defined by this property. Notice that after the passage of time equal to 4Tc the
amplitude of the transient is reduced to e−4 ≈ 0.0183 times its original value, after
which the effect of the transient term is usually negligible.

The particular solution x p in (7.16) does not decay. It is therefore called the
steady-state term. It is this term that is driven by the external force A cos ωt . After
the passage of time equal to a few time constants, it is the only term that is important.

E X A M P L E 7 . 1 8 � Consider a forced vibrating spring where m = 5kg, µ = 7 kg/s, and k = 3 kg/s2,
with a forcing term 2 cos 4t . Suppose the initial conditions are such that the con-
stants in (7.17) are C1 = 0 and C2 = 1. Find the amplitude and the phase of the
steady-state solution. Plot the displacement of the resulting oscillation versus time.
Add a plot of the steady-state oscillation.

The equation for the vibrating spring with the given parameters is

5x ′′ + 7x ′ + 3x = 2 cos 4t.

Dividing by the mass 5, we get

x ′′ + 7

5
x ′ + 3

5
x = 2

5
cos 4t.

This is the form of the equation for the forced harmonic oscillator. The natural
frequency is ω0 = √

3/5 ≈ 0.7746. In addition, c = 7/10. With the assumptions of
the example, the transient solution is

xh(t) = e−ct sin ηt,

where η =
√

ω2
0 − c2 ≈ 0.3317. The gain is computed from (7.14) to be G(4) ≈

0.0610. Hence the amplitude of the steady-state solution is G(4)× (2/5) ≈ 0.0244.

Finally, we compute the phase from (7.13) and get φ = φ(4) = 2.7928. A plot of
the solution together with its steady-state term is given in Figure 4. Note how the
solution x converges to the steady-state solution as t gets large. �

Transient solutions can be quite large in comparison to the steady-state solution,
as we have seen in Example 7.18, as shown in Figure 4. Such large transient currents
in electrical circuits can be destructive. It is almost certain that you have experienced
this. Transients arise whenever an electrical circuit is turned on or off. How often
have you turned on a light and one of the bulbs burned out immediately? This is
caused by a large transient current flowing through an already weakened bulb. How
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Figure 4 The motion of a forced spring. The steady-state
solution is in blue.

often have you turned on a light and one of the bulbs was burned out, although it
had been working fine the last time you used the light? This time the bulb most
likely burned out when the lights were turned out, and again it was a large transient
caused by the shutdown that did the job.

The destructive effect of transients is the reason why it is often a good idea to
leave electrical equipment running even when it is not being used. For example, it is
highly recommended that computers be always left on, unless it is known that they
will not be used for a couple of days at the minimum. Transients are particularly
harmful to hard disks.

We now examine the steady-state term (7.16) more closely. We will concentrate
on the amplitude. We will examine how the gain G depends on the driving frequency
ω. There are too many terms in the formula (7.14) for G to easily understand what
will happen for all possible values of the parameters. We remedy this by lumping
parameters. First, we will want to see how G changes as the driving frequency
changes relative to the natural frequency, so we will introduce s = ω/ω0 by setting
ω = sω0 and consider G as a function of s. Then we introduce D = 2c/ω0, by
substituting c = Dω0/2. The new constant D measures the effect of the damping
force. When these changes are introduced, the gain takes the simpler form

G = 1

ω2
0

√
(1 − s2)2 + D2s2

, where s = ω

ω0
and D = 2c

ω0
.

While still somewhat complicated, this expression for the gain is much easier to
understand than (7.14). It allows us to easily see how the gain varies as the quotient
s = ω/ω0 varies. Because the natural frequency is fixed, let’s look at the quantity

ω2
0G = 1√

(1 − s2)2 + D2s2
.

The behavior of ω2
0G as a function of s and D is shown in Figure 5. If the natural

frequency ω0 is also fixed, then D = 2c/(mω0) is proportional to the damping con-
stant. Notice that for small damping constants, the gain has a significant maximum
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4.7 Forced Harmonic Motion 223

for a driving frequency that is close to the natural frequency (when s = ω/ω0 is
near 1). The maximum gets larger as the damping constant decreases. This is an-
other example of resonance. As we see in Figure 5, the resonance increases as the
damping constant decreases.

0
0.5

1
1.5

2
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1
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5

10

D
s

ω
2 0
G

Figure 5 The gain of a forced harmonic oscillator with damping.
s = ω/ω0 and D = 2c/ω0.

Notice from Figure 5 that the maximum gain is at a frequency that is slightly
smaller than the natural frequency. We will leave it as an exercise to determine the
precise frequency at which the maximum gain occurs.

................
EXERCISES

1. In the narrative (Case 1), the substitution x p = a cos ωt + b sin ωt produced

x p = A

ω2
0 − ω2

cos ωt

as a particular solution of x ′′ + ω2
0x = A cos ωt , when ω �= ω0.

(a) Use the substitution x p = a cos ωt to produce the same result.

(b) Use the complex method to produce the same result.

2. The function x = cos 6t − cos 7t has mean frequency ω = 13/2 and half
difference δ = 1/2. Thus,

cos 6t − cos 7t = cos

(
13

2
− 1

2

)
t − cos

(
13

2
+ 1

2

)
t,

= 2 sin
1

2
t sin

13

2
t.
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224 Chapter 4 Second-Order Equations

Plot the graph of x , and superimpose the “envelope” of the beats, which is the
slow frequency oscillation y(t) = ±2 sin(1/2)t . Use different line styles or
colors to differentiate the curves.

In Exercises 3–6, plot the given graph on on an appropriate time interval. Use the
technique of Exercise 2 to superimpose the plot of the envelope of the beats in a
different linestyle and/or color.

3. cos 10t − cos 11t 4. cos 9t − cos 10t

5. sin 12t − sin 11t 6. sin 11t − sin 10t

7. Use a computer to plot the graph of the solution

x(t) = cos 11t − cos ωt (7.19)

for ω = 9, 10, 10.5, 10.9, and 10.99 on the time interval [0, 24]. Is the last
case (ω = 10.99) an example of resonance? Hint: Use the suggestions in the
narrative to place equation (7.19) in the form x(t) = A sin δt sin ωt . Use this
result to justify your conclusion.

8. If the system doesn’t start from equilibrium, the beats might not be as pro-
nounced, but they are still there. Use a numerical solver to plot the solution
of

y′′ + 144y = cos 11t, y(0) = y0, y′(0) = 0,

for each y0 = 0, 0.1, 0.2, 0.3, 0.4, and 0.5. Plot the solutions on the same time
interval [0, 4π ] and compare the plots. Are the “slow” and “fast” frequencies
still present?

9. A 1 kg mass is attached to a spring (k = 4 kg/s2) and the system is allowed
to come to rest. The spring mass system is attached to a machine that supplies
an external driving force f (t) = 4 cos ωt Newtons. The system is started from
equilibrium, the mass having no initial displacement nor velocity. Ignore any
damping forces.

(a) Find the position of the mass as a function of time.

(b) Place your answer in the form x(t) = A sin δt sin ωt . Select an ω near the
natural frequency of the system to demonstrate the “beating” of the system.
Sketch a plot that shows the “beats” and include the envelope of the beating
motion in your plot (see Exercise 2).

10. An undamped spring-mass system with external driving force is modeled with

x ′′ + 25x = 4 cos 5t.

The parameters of this equation are “tuned” so that the frequency of the driving
force equals the natural frequency of the undriven system. Suppose that the
mass is displaced one positive unit and released from rest.

(a) Find the position of the mass as a function of time. What part of the solution
guarantees that this solution resonates, rather than showing the “beating”
character of previous exercises?

(b) Sketch the solution found in part (a).
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4.7 Forced Harmonic Motion 225

11. An inductor (1 H) and a capacitor (0.25 F) are connected in series with a signal
generator that provides an emf E(t) = 12 cos ωt . Assume that the system is
started from equilibrium (no initial charge on the capacitor, no initial current)
and ignore any damping effects.

(a) Find the current in the system as a function of time, assuming that the signal
generator provides a driving force at near resonant frequency. Plot a sample
solution, including the “envelope” of the beats.

(b) Find the current in the system as a function of time, this time assuming that
the signal generator provides a driving force at resonant frequency. Plot
your solution.

In Exercises 12–15, place the transfer function in the form

H(iw) = 1

R
e−iφ.

Use this result to find the steady state solution of the given equation.

12. x ′′ + x ′ + 4x = 3 cos 2t 13. x ′′ + 2x ′ + 2x = 3 sin 4t

14. x ′′ + 2x ′ + 4x = 2 sin 2π t 15. x ′′ + 4x ′ + 8x = 3 cos 2π t

In Exercises 16–19, sketch the solution of the given spring-mass system and super-
impose the plot of the transient response and the steady state solution. Use different
line styles or colors to differentiate the curves.

16. x ′′ + 5x ′ + 4x = 2 sin 2t , x(0) = 1, x ′(0) = 0

17. x ′′ + 7x ′ + 10x = 3 cos 3t , x(0) = −1, x ′(0) = 0

18. x ′′ + 2x ′ + 2x = cos 2t , x(0) = 0, x ′(0) = 2

19. x ′′ + 4x ′ + 5x = 3 sin t , x(0) = 0, x ′(0) = −3

For each equation in Exercises 20–23, calculate the time constant Tc. Plot the tran-
sient response over [0, 4Tc], showing that this response dies out in 4Tc, as advertised
in the narrative.

20. The equation in Exercise 16 21. The equation in Exercise 17

22. The equation in Exercise 18 23. The equation in Exercise 19

An underdamped, driven, spring-mass system is modeled with the equations in Ex-
ercises 24–25.
(i) Find the steady-state solution and place your answer in the form x p(t) =

A cos(ωt − φ). Use a computer to plot this solution.
(ii) Use a numerical solver to plot solutions of the model with initial conditions

(x(0), x ′(0)) = (−2, 0), (−1, 0), (0, 0), (1, 0), and (2, 0). Select a time in-
terval that shows all of these solutions approaching the steady-state solution as
t → ∞.

24. x ′′ + 2x ′ + 4x = 3 cos t 25. x ′′ + 2x ′ + 5x = 2 cos 3t

Polking/Boggess/Arnold: Differential Equations 1/E [Second Pages] 1/25/97 11:35 Page 63

Betsy Williams
hyphenate steady-state solution in instruction before 12

ea

John C Polking
Change the instructions before Exercise 16 to:

In Exercises~\ref{exer4.7.3}--\ref{exer4.7.4}, find a particular
solution to the differential equation using undetermined
coefficients as in Examples~\ref{e4.udc3} or \ref{e4.udc6}.  Find and
plot the solution of the initial value problem.  Superimpose the
plots of the transient response and the steady-state solution.  Use
different line styles or colors to differentiate the curves.

My calculation is that this will add one line to the text.  I hope that it will be possible to fit it in.

The four references are to 

	Exercises 16--23

and to 

	Examples 5.7 or 5.11



226 Chapter 4 Second-Order Equations

Consider the equations in Exercises 26–27. Find the transfer function, the gain, the
phase, and the steady-state response. Plot the driving function cos t and the steady-
state response on the same graph. Explain how one can read the gain and phase
from this graph.

26. x ′′ + 0.4x ′ + x = cos t 27. x ′′ + 0.4x ′ + 2x = cos t

Use a numerical solver to plot the solution of each equation in Exercises 28–29. Be-
ing mindful of the time constant, select a time interval where the transient response
has died out and superimpose the graph of the forcing function on this interval.
Estimate the gain and phase from the resulting graph.

28. x ′′ + 0.2x ′ + 1.44x = cos t 29. x ′′ + 0.4x ′ + 1.69x = cos t

30. In Figure 6, the solution of x ′′ +2cx ′ +ω2
0 = cos t is drawn in blue. The driving

force, cos t , is drawn in black. The initial conditions are unimportant, as you
have seen that all solutions eventually approach the steady-state response when
c2 < ω2

0, which you may assume is the case here. Estimate the gain and the
phase, then use equations (7.14) and (7.13) to calculate the values of c and ω2

0.
Use these computed values of c and ω and your numerical solver to reproduce
the image in Figure 6 (use x(0) = 3 and x ′(0) = 0).
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Figure 6 The response to cos t.

Find the gain for each equation in Exercises 31–34 as a function of ω. Plot the
graph of the gain versus the driving frequency ω and use the graph to estimate the
maximum gain and the frequency at which it occurs.

31. y′′ + 0.01y′ + 49y = A cos ωt 32. y′′ + 0.5y′ + 4y = A sin ωt

33. y′′ + 0.05y′ + 25y = A sin ωt 34. y′′ + 0.25y′ + y = A cos ωt

Find the gain of
x ′′ + 2cx ′ + ω2

0x = A cos ωt
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as a function of ω. If ω2
0 > 2c2, show that the maximum gain occurs at

ωres =
√

ω2
0 − 2c2 (7.20)

known as the resonant frequency of the driven oscillator. In Exercises 35–38, use
formula (7.20) to calculate the resonant frequency and compare with an estimate
found from the plot of the steady-state solution.

35. Exercise 31 36. Exercise 32

37. Exercise 33 38. Exercise 34

In Exercises 39–42, plot the gain versus the frequency ω and estimate the resonant
frequency from the graph. Use equation (7.20) to verify this estimate. Use a nu-
merical solver to plot solutions of the given oscillator for selections of the driving
frequency ω both near and far from the resonant frequency. Write a short paragraph
describing what you learned from this exercise.

39. y′′ + 0.1y′ + 25y = cos ωt , y(0) = 0, y′(0) = 0

40. y′′ + 0.2y′ + 4y = cos ωt , y(0) = 0, y′(0) = 0

41. y′′ + 0.2y′ + 49y = cos ωt , y(0) = 0, y′(0) = 0

42. y′′ + 0.2y′ + 9y = cos ωt , y(0) = 0, y′(0) = 0

43. A driven LRC circuit is modeled by the equation

L I ′ + RI + 1

C
Q = A cos ωt.

Assume the underdamped case.

(a) Show that the charge on the capacitor (once transients have died) will
achieve a maximum when the driving frequency is

ω =
√

1

LC
− R2

2L2
.

(b) Show that the current will achieve a maximum (again, after transients have
disappeared) when the driving frequency is

ω = 1√
LC

.

44. An inductor (0.1 H), resistor (100 �), and capacitor (10−3 F) are connected in
series with an emf E(t) = 100 sin 120π t volts. At time t = 0, there is no
charge on the capacitor nor any current in the system. Find the current in the
system as a function of time.

45. A 50 g mass (1000 g = 1 kg) stretches a spring 10 cm (100 cm = 1 m). As
the system moves through the air, a resistive force is supplied that is pro-
portional to, but opposite the velocity, with magnitude 0.01v. The system is
hooked to a machine that applies a driving force to the mass that is equal to
F(t) = 5 cos 4.4t Newtons. If the system is started from equilibrium (no dis-
placement, no velocity), find the position of the mass as a function of time.
Hint: Remember that 1000 g = 1 kg and 100 cm = 1 m.
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Project 4.8 Nonlinear Oscillators

Hooke’s law (see equation (1.6) in Section 4.1) says that the magnitude of the restor-
ing force of a spring is proportional to the displacement. While this is often valid,
it is not always so, and even when it is, it is only valid for small values of the
displacement. Here we will discuss springs that do not obey Hooke’s law.

To be precise, we will study oscillators that are modeled by the equation

x ′′ + cx ′ + kx + lx3 = f (t). (8.1)

The implication of this equation is that the restoring force of the oscillator has the
form

R(x) = −kx − lx3,

where x is the displacement from the equilibrium of the oscillator. Once we give up
Hooke’s law, there is a wide variety of possible restoring forces. This is just one of
many possible choices. Notice that Hooke’s law is being assumed if l = 0. If l > 0
the oscillator is said to be hard and if l < 0 it is soft. With l �= 0, equation (8.1) is
called Duffing’s equation.

If an oscillator is hard or soft, it is said to be nonlinear, simply because in
these cases the differential equation (8.1) is nonlinear. The purpose of this project
is to discover differences between the behaviors of nonlinear and linear oscillators.
The nonlinear equation (8.1) cannot be solved explicitly, so we will have to rely on
numerical solutions.

The period of undamped unforced oscillation
For a linear oscillator, modelled by equation (8.1) with l = 0, the natural frequency
is ω0 = √

k. This is the frequency of undamped, unforced oscillations. The period
of the oscillation is T = 2π/ω0. Notice that the period is completely independent
of the amplitude of the oscillation. Is the same true for a hard oscillator?

1. Use the parameters k = 3 and l = 1. Since the motion is undamped, we have
c = 0, and since it is unforced, f (t) = 0. For several values of the amplitude
A between 0.1 and 10, compute the solution to (8.1) with initial conditions
x(0) = A and x ′(0) = 0. In each case, discover the period of the oscillation.
Make a graph of the period T versus the amplitude A.

2. Write a short paragraph summarizing your results, emphasizing how the motion
of the nonlinear oscillator differs from that of the linear oscillator. In particular
describe what is happening to the period as the amplitude approaches 0, and as
it gets very large.

Some comments are in order about how to perform this numerical experiment.
Perhaps the easiest way to determine the period is to estimate it from the graph of
the solution. You can use the graph of the displacement to do this, but then you will
have to estimate where on the graph of the displacement a maximum occurs. If you
use the velocity v = x ′ instead, then it is necessary to estimate the time of a zero
crossing, since v = x ′ = 0 at a maximum. It is much easier to be precise about
the location of a zero crossing than that of a maximum. However, x ′ = v = 0 at
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a minimum as well, so care will have to be taken to insure that the measurement is
done at a maximum.

If the period is determined by graphical estimation, there is a way to decrease
the measurement error. Instead of measuring one period, measure the time required
for a number of periods, say 3 or 4. Then divide by the number of periods to find
the period itself.

Depending on what software you are using, it might be possible to have the
computer compute the period. If your computer has a routine that computes the
zeros of functions, you might be able to define a function, using your differential
equation solver, that returns the velocity v(t) as a function of t for the oscillation.
Of course, this function has to be defined in a format that is compatible with the
zero finding routine, but this is possible in many mathematical software systems.

Frequency response of a hard oscillator

We examined the frequency response of a linear harmonic oscillator in Section 4.7.
We discovered that the total response was the sum of a transient response and a
steady-state response. The steady-state response was affected only by the driving
force, and in no way depended on the initial conditions. (See equation (7.17) and
the discussion that follows it.) We discovered in particular that the amplitude of the
steady-state response has the form G(ω)A, where A is the amplitude of the driving
force and G(ω) is the gain given in (7.14). It is the graph of the gain G(ω) versus ω

that we call the frequency response. Here we will see if the frequency response in
the nonlinear case has behavior similar to the linear case.

1. Use the parameters c = 1, k = 1, and l = 3 in (8.1). We will use the sinusoidal
forcing term f (t) = 20 cos ωt. Experiment by solving the differential equation
numerically with a number of values of ω and various initial conditions until
you are convinced that the motion settles into a steady-state solution after some
time. It is important for what follows that you take notice of about how long
it takes to reach steady-state.1 Submit the plot of one solution that shows the
emergence of the steady-state solution.

2. Use the initial conditions x(0) = 0 and v(0) = x ′(0) = 0 for several different
driving frequencies ω between 2 and 6. Be sure that ω = 4 is one of those
values. In each case find the amplitude of the steady-state solution. Plot the
amplitude versus the frequency.

3. Do the same for the initial conditions x(0) = 6 and v(0) = x ′(0) = 0.

4. Plot the frequency response curves from steps 2 and 3 together on one figure,
using different line types or colors to distinguish them. The phenomenon that
you see illustrated is called Duffing’s hysteresis.

5. Write a short paragraph describing what you have discovered. Emphasize how
the frequency response for the nonlinear oscillator is different from that of a
linear oscillator.

1 Although the steady-state solution is periodic, it will be more complicated than a simple trigonometric
function. In general it is not possible to compute the steady-state solution exactly.
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230 Chapter 4 Second-Order Equations

The amplitude of the steady-state solution can be estimated from a plot of the
solution, or by examining the numerical data. However, in many computing circum-
stances, it will be possible to have the computer do this for you. This can be done by
removing all values of the computed displacement that might still have a significant
transient content, and then finding the remaining value with the largest magnitude.
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