
Mapping the sphere

It is not possible to map a portion of the sphere into the plane without introducing
some distortion. There is a lot of evidence for this. For one thing you can do a simple
experiment. Cut a grapefruit in half and eat one of the halves. Now try to flatten the
remaining peel without the peel tearing. If that is not convincing enough, there are
mathematical proofs. One of the nicest uses the formulas for thesum of the anglesof a
triangle on the sphere and in the plane. The fact that these are different shows that it is
not possible to find a map from the sphere to the plane which sends great circles to lines
and preserves the angles between them. The question then arises as to what is possible.
That is the subject of these pages.

We will present a variety of maps and discuss the advantages and disadvantages
of each. The easiest such maps are the central projections. Two are presented, the
gnomonicprojection and thestereographicprojection. Although many people think so,
the most important map in navigation, theMercatorprojection, is not a central pro-
jection, and it will be discussed next. Finally we will talk briefly about a map from
the sphere to the plane whichpreserves area,a fact which was observed already by
Archimedes and used by him to discover the area of a sphere. All of these maps are
currently used in mapping the earth. The reader should consult an atlas, such as those
published by Rand Macnally, or the London Times. On each of the charts in such an
atlas the name of the projection used will be indicated. The variety of projections used
may be surprising.

There is a quantitative way of measuring distortion, and how it changes from place
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to place on the sphere. Thedistortion ellipseprovides a way of graphically displaying
this information. We will compute and display the distortion ellipse for each of the maps
we discuss.



Properties of the sphere

We will specify the location of a point on the sphere in terms of latitude and longi-
tude. These must be defined with respect to some reference pointR on a fixed reference
great circleE called theequator. Corresponding toE there are two poles which we will
label with N and S and refer to as thenorth and south poles. The equator splits the
sphere into two hemispheres, called thenorthern and southern hemispheres.
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Figure 1. Latitude and longitude.

Given any pointP on the sphere, which is different from the poles, there is a unique
great circle throughP and the two poles. The half of that great circle containingP and



terminated by the poles is called themeridian of P. The angle measured at the center of
the sphere along the meridian fromP to the intersection of the meridian and the equator
is called thelatitude of P. We will consider latitude to be positive (or north) in the
northern hemisphere and negative (south) in the southern hemisphere. Look at Figure 1,
where the latitude is the angleφ. The meridian through our reference pointR is called
theprime meridian.

The locus of points having a constant latitude is called aparallel of latitude. It
is actually a (small) spherical circle with center at one of the poles. The only parallel
which is a great circle is the equator itself. Figure 1 shows the parallel of latitude and
the meridian for the pointP.

The counter-clockwise direction along the equatorE from R when viewed from the
north pole is called the positive (or eastern) direction. For our pointP, the angle along
the equator as measured from the center of the sphere fromR to the intersection of the
meridan ofP is called thelongitude of P. In Figure 1 the longitude ofP is the angle
θ . Longitude is postive (east) or negative (west) depending on the direction the angle is
measured fromR.

On the earth, by international agreements going back to 1894, the prime meridian is
the meridian which passes through the center of the transit at the observatory in Green-
wich, England. The reference pointR is the intersection of the equator with the prime
meridian. Longitude and latitude are measured in degrees. Longitude is denoted as east
or west depending on whether the location in question is east or west of the prime merid-
ian. Similarly latitude is designated to be either north or south. With these conventions
Salt Lake City is located at 40◦ 46′N, and 111◦ 53′W. The meridian located at 180◦E is
the same as that at 180◦W. This meridian runs almost entirely through the Pacific Ocean,
and coincides for the most part with the international date line.
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Figure 2. A great circle.

There are two classes of special curves on the sphere. The first is the class of
geodesics , i.e., the curves of shortest length connecting two points. It turns out that a



geodesic on the sphere is a segment of agreat circle , i.e., the intersection of a plane
through the center of the sphere with the sphere itself (see Figure 3). The importance
of such curves for navigation is therefore clear. To get from one point to another in the
shortest time we should follow a great circle. This is what airplanes do when traveling
long distances such as from America to europe.
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Figure 3. A rhumb line.

The second important type of curve is therhumb line or loxodrome. A rhumb
line is a curve which intersects all of the meridians of longitude at the same angle. For
example, if two points have the same latitude, then the rhumb line connecting them is



the parallel of that latitude. This example makes it clear that rhumb lines are not the
same as great circles. A more typical example of a rhumb line is shown in Figure 3.
For ships equipped with compasses, the easiest course to steer is one with a constant
compass direction. Such courses are precisely the rhumb lines. On the other hand,
steering a course along a great circle requires constant course changes, unless the great
circle happens to be a rhumb line. Consequently rhumb lines are also very important
to navigators. When steering a ship across an ocean, a navigator will plot a great circle
to minimize distance, but he will then approximate the great circle with rhumb line
segments to make it easy on the helmsman.

Exercise: Describe all great circles which are rhumblines.



The planar gnomonic projection

The maps of the sphere which are easiest to understand are the central projections.
For these we choose a point called the center of the projection and an image plane,
which is usually tangent to the sphere at some point. Then to find the image of a point
we simply take the line through the center and the point and find where it intersects the
plane. This process can be likened to taking a photograph of the sphere.
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Figure 4. The gnomonic projection.

We should say a word about nomenclature. In cartography, the wordprojection is
used synonymously with the word map. Central projections are a special type of maps
defined as in the previous paragraph. This may seem confusing. Central projections
clearly deserve the name projection, since they may be considered to be formed by



projecting light from the center of projection, and collecting the image of the sphere on
the image plane. However, we will see other maps (also called projections) which are
not central projections.

For our first projection, thegnomonic projection , we will take the center of the
projection to be the center of the sphere, and the image plane to be the plane tangent to
the sphere at some point. Usually this will be the north pole, but it really does not have
to be. The gnomonic projection is illustrated in Figure 4. The image of a point on the
sphere is the intersection of the line through the point and the center of the sphere with
the image plane. In Figure 4 the images are shown in red.
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Figure 5. The image of a great circle is a straight line.

By definition, a great circle is the intersection of a plane through the center of the
sphere with the sphere. Every line through the center of the sphere and a point on the



great circle lies in that plane. Hence the image of the great circle under the projection
is the intersection of the same plane with the image plane (see Figure 5). So we see
that great circles on the sphere are mapped by the gnomonic projection into straight
lines. This is the most important property of the gnomonic projection, and it is why the
gnomonic projection has become increasingly important as long distance airplane travel
has become more common.

We will analyse the case where the image plane is tangent at the north pole,N. In
this case the projection will map the northern hemisphere onto the entire tangent plane,
and it is not defined for points that are not in the northern hemisphere. Notice that if
we look at the image plane from above, it will have North America on the bottom, and
Eurasia on the top, with the north pole in the middle.

You can find out more about the gnomonic projection and an examplehere.

http://www.lib.utexas.edu/Libs/PCL/Map_collection/gnomonic.jpg


Distortion in maps

The inevitable distortion in a map differs from point to point on the sphere, and
from map to map. Here we will discuss this in a general framework. However, since we
have introduced the gnomonic projection in the previous section, we will be able to use
it as an example of what we will ultimately do for each of the maps that we discuss.

The best way to discuss distortion is to use the calculus. We want to avoid the use
of the calculus for the time being. Instead we will rely on a geometric analysis. the basic
idea is to see what the map does to a disk which is tangent to the sphere at the point in
question. (The discerning reader will notice in our analysis the point where we invoke
the use of the terms “very small” or “tangent,” which signal that we are using the ideas
of the calculus.) For any map there is a direction of maximal expansion and another of
minimal expansion. The image of the disk will be an ellipse with these directions as the
major and minor axes. This ellipse is called thedistortion ellipse.

For the maps we consider, the axes of the distortion ellipse are in the north/south
and the east/west directions. This makes the analysis somewhat easier. We will illustrate
the geometric process first for the gnomonic projection.

For a pointA on the sphere with latitudeφ and longitudeθ , let A′ denote the image
under the projection. The plane containing the center of the sphere 0,A, A′, and the
north poleN is shown in Figure 6 and from this figure we see that the distance|O A′ |
between 0 andA′ is |O A′ | = 1/ sinφ.

Next consider a diskD of very small radiusr which is tangent to the sphere at
A. We will analyse the distortion by examining what happens to this disk under the
projection. We will consider the projection as occuring in two steps. In the first step,
which might be called the expansion phase, the diskD is subjected to a central projection
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Figure 6. Expansion in the gnomonic projection.

from O onto the plane throughA′ which is parallel to the diskD. The image is again a
disk, D′ of radiusr ′ . By the similar triangles in Figure 7, we see that

r ′/r = |O A′ |/1.

Thusr ′ = r/ sinφ.
The second step projects the diskD′ onto the image planeP. This time we expect

that the disk will be distorted. The image will no longer be a disk. In fact in the east/west
direction, the diskD′ intersects the image plane, so there is no change under this last
projection. In the north/south direction, we have the situation in Figure 8. Since the
radiusr ′ is very small in comparison to the distance to the center of projection, the angle
A′BC is close to a right angle. Thus ifr ′′ is the distance betweenA′ andC, we have
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Figure 7. Expansion phase for the gnomonic projection.

r ′′ = r ′/ sinφ = r/ sin2 φ.

Thus the imageD′′ of D is not a disk, but an ellipse with semi-axesr/ sinφ and
r/ sin2 φ (see Figure 9).

What we have just done with the gnomonic projection we will do with the other
projections that we will consider. We will find that a small tangent disk is mapped into
an ellipse, and we will be able to determine the semi-axes of this ellipse. The picture for
any of the projections which we will study is very much like Figure 9. The ratio of the
semiaxisr ′′ to r will measure the expansion in the north/south direction, and the ratio of
r ′ to r will measure that in the east/west direction.

The information about distortion is summed up in the ellipse at the right in Figure
9. This ellipse is therefore called thedistortion ellipse. Notice that this ellipse varies
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Figure 8. Distortion phase for the gnomonic projection.
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Figure 9. Distortion in the gnomonic projection.
r ′ = r/ sinφ andr ′′ = r/ sin2φ

from point to point on the sphere. It might be a circle at some points and very elongated
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Figure 10. The effect of distortion on angles.

at others.
Now let’s examine what the distortion does to the angles between curves. Consider

the case of the angleα in the diskD and its imageα′ in D′′, as indicated in Figure 10.
We have

tanα = a/b and tanα′ = a′/b′.

Because the expansion is different in different directions we see that

a′ = a
r ′′

r
and b′ = b

r ′

r
.

Hence

tanα′ = r ′′

r ′
tanα.



Thus all such angles will be the same in the image if and only ifr ′′ = r ′, i.e., when
the semi-axes of the image ellipse are equal. This happens when the image ellipse is
actually a circle. In general the image ellipse will not be a circle, and we will be able
to conclude that the mapping does not preserve the angles between curves. On the other
hand, if the ellipse is a circle at every point, then the mapping does preserve the angles
between curves. Such a mapping will be called aconformal mapping.

In the case of the gnomonic projection, we have

r ′′

r ′
= 1/ sinφ,

and we conclude that in general the image of the angleα is not equal toα. Thus the
gnomonic projection is not conformal. Thenext mapwe consider will have this property.

Look again at Figure 9. The area of the circle isπr 2, and the area of the image
ellipse isπr ′r ′′. These two will be the same if and only if

r ′r ′′ = r 2.

It takes some doing, but it can be shown that if this condition is true at every point, then
the image of any set is equal to the area of the set itself. Such a projection is called an
equi-area projection , or anarea preserving projection .

Since for the gnomonic projection

r ′r ′′ = r 2/ sin3φ,

we see that the gnomonic projection is not area preserving. We willlater look at a
projection which is area preserving.



The stereographic projection

Like the gnomonic projection, the stereographic projection is a central projection.
However, this time the center of the projection is a point on the sphere and the image
plane is the tangent plane through the point which is antipodal to the center of the pro-
jection. We will consider the case when the center of the projection is the north poleN.
Then the image plane is the plane tangent to the sphere at the south pole. See Figure
11. The stereographic projection maps the sphere with the north pole deleted onto this
plane.
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Figure 11. The stereographic projection.

To determine the distortion inherent in the stereographic projection we proceed
exactly as we did with the gnomonic projection. We break the effect of the mapping on



a small tangent disk into an expansion phase and a distortion phase. LetA be a point
on the sphere with latitudeφ and longitudeθ . Let A′ denote the image ofA under the
stereographic projection. The plane through the center of the sphere containingA and
A′ is shown in Figure 12.
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Figure 12. The stereographic projection.

From this figure we see that the triangleN O A is isoceles, with two sides of length
1. Thus the anglesO N A and O AN are equal. If we denote this angle byψ , then the
sum of the angles formula becomes

ψ + ψ + (π/2− φ) = π.
Thusψ = φ/2+ π/4. In terms of this angle we find that the distance|N A| betweenN
andA is given by

|N A| = 2 cosψ.



Much easier is the fact that the distance|N A′ | betweenN andA′ satisfies|N A′ | cosψ =
2. Thus

|N A′ | = 2/ cosψ.
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Figure 13. Expansion phase for the stereographic projection.

Now we can examine the expansion phase using Figure 13. We see that a diskD
of radiusr which is tangent to the sphere atA is sent into a parallel diskD′ throughA′

of radiusr ′, and similar triangles show immediately thatr ′/r = |N A′ |/|N A|. Thus

r ′ = r/ cos2ψ = r sec2(φ/2+ π/4).
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Figure 14. Distortion phase for the stereographic projection.

The distortion phase is illustrated in Figure 14. First a look at Figure 11 convinces
us that6 S A′N = π/2− ψ , and it is so labeled in Figure 14. The diskD′ with radius
r ′ is projected onto the image plane. Again in the east/west direction, the plane of the
disk D′ and the image plane intersect, so there is no change. In the north/south direction
we have the situation illustrated in Figure 14. The radiusr ′ of D′ is the segmentA′B′.
Considering thatr ′ is very small in comparison to the distance|N A′ |, we may assume
that the projection is parallel. Then the segmentA′B′ is projected into the segmentA′C,
and the segmentB′C is parallel toN A′ . Using this fact we see that6 A′B′C = π/2−ψ ,
and that6 A′CB′ = π/2− ψ . This means that the triangleB′A′C is isoceles, and that
|A′C| = |A′B′| = r ′ .

Consequently the stereographic projection expands a tangent disk of radiusr into
a disk of radiusr ′ = r sec2(φ/2+ π/4) (see Figure 15). Thus the distortion ellipse is
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Figure 15. Distortion in the stereographic projection.
r ′ = r ′′ = r sec2(φ/2+ π/4).

a disk, and by the argument given at the end of the previous section, we know that the
stereographic projection is conformal. This property makes the stereographic projection
very important mathematically. It is occasionally used in cartography as well, although
it is not used as frequently as other types of maps, especially the one to be described
next.



The Mercator projection

The Mercator projection is probably the map that is most familiar to all of us. It was
invented by the Dutch mathematican and cartographer Gerhardus Mercator in 1569. Its
basic properties made it very useful to navigators, and it became popular immediately.
These properties are three in number:
• The Mercator projection maps the meridians of longitude into parallel straight lines.
• It maps the parallels of latitude into parallel straight lines which meet the meridians

at right angles.
• the map is conformal.

The immediate result of these three properties is that the Mercator projection maps
rhumb lineson the sphere into straight lines, and vice versa. As a result if a navigator
wants to find the course to steer to get from pointA to point B, he needs only to find
these points on his Mercator projection, and to draw the straight line between them. The
Mercator projection is still the most important map for navigational purposes.

Mercator never published a mathematical description of his projection. He simply
published and sold the maps. The first mathematical description was published in 1599
by Edward Wright, a mathematican at Caius College, Cambridge, in a book entitled
Certaine Errors in Navigation . His description is quite intuitive and easily displays the
major features of the map. Imagine that the sphere is a balloon, contained in a cylinder
which is tangent to the sphere at the equator. Now blow up the balloon. As the balloon
expands, its expansion is limited by the cylinder. As each part of the balloon expands
enough so that it reaches the cylinder, the expansion of that part stops. After enough of
the balloon has been applied to the cylinder, it is cut along a meridian, and unrolled onto
a plane. The result is the Mercator projection.



While Wright’s description is graphic, we will have to do some work to put it to
use. Following Wright, we will discuss the distortion first and use that to figure out
how to make a Mercator projection. Consider what happens under the projection to a
small disk tangent to a point of the sphere at latitudeφ. Since as the balloon expands, it
expands the same in every direction, the disk is expanded, but it always remains a disk.
Then when the center of the disk hits the cylinder the expansion stops immediately. Thus
under the Mercator projection, a tangent disk is sent into a disk. Consequently the map
is conformal.
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Figure 16. Expansion in the Mercator projection.



We have yet to determine the expansion factor. To determine how much the tangent
disk is expanded, notice that the parallel of latitudeφ is a circle in space. The radius
of this circle can be found using Figure 16 to ber = cosφ. Thus each distance along
the parallel must be multiplied by 1/ cosφ = secφ. By the conformality, this is the
expansion factor for the tangent disk. The distortion ellipse is a circle, as indicated in
Figure 17.
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Figure 17. Distortion in the Mercator projection.
r ′ = r ′′ = r secφ.

Because of the conformality, the tangent disk is expanded by the factor secφ in all
directions. In particular this is true in the north/south direction, and this means that if1φ

is a small increment of latitude beginning at the latitude ofφ, then the image under the
projection of this increment has length1y, which is approximately equal to1φ · secφ,
i.e.

1y ≈ 1φ · secφ. (1)

In Figure 18A is a point with latitudeφ andB has latitudeφ +1φ. Their images are
A′ andB′, and the difference in the the north/south direction is1y.
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Figure 18. Expansion of latitude in the Mercator projection.

Wright used equation (1) to construct a table of what he calledmeridional parts .
He divided the meridian into a large number of very small pieces, each of the same size
1φ (he used1φ = 1′ = (1/60)◦). For each of these increments, he calculated the
corresponding approximate increment iny using equation (1) . Then to calculate the
proper position for a particular latitudeφ he simply added together all of the increments
corresponding to latitudes between 0 andφ. In his book he published a table of the
resulting values. With this information anyone could construct a Mercator projection.

In the introduction to his book, Wright is very careful to say that Mercator’s chart
inspired him, but that neither Mercator nor anyone else had previously shown how
to construct the projection. He goes on to tell about a Dutch cartographer (Jodocus



Hondius) who had visited and worked with him in Cambridge. During his stay Wright
told him of his discovery of the secret to the Mercator projection. Hondius returned to
Holland and promptly published it himself without giving any credit to Wright.



An area preserving map

The area of a sphere was first computed by Archimedes. He did it by examining
the map that we will discuss next. According to legend, He was so proud of this accom-
plishment, he directed that a diagram much like Figure 19 should be inscribed on his
tomb. We will therefore call it the Archimedes projection. It also goes by the name of
the Lambert equal-area projection.
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Figure 19. Archimedes projection.

The Archimedes projection is again a cylindrical projection, i.e. the image is a
cylinder which encloses the sphere, and touches it along the equator. Like the Mercator



projection, this one is not a central projection. Rather it is the projection from the line
connecting the poles, and parallel to the equatorial plane. Thus a point on the sphere
with latitudeφ and longitudeθ , is mapped into the point on the cylinder with the same
longitudinal angleθ and the same height above or below the equatorial plane. Clearly
this height is sinφ.

Notice that our map is defined on the sphere with the poles deleted and maps that
set onto a cylinderC of height 1, and radius 1. It is no accident that the area ofC is
4π, the same as that of the sphere. Our new map has the very interesting property that
it maps any region on the sphere into a region in the plane which has exactly the same
area.

Now let’s check the distortion. Consider a small diskD of radiusδ which is tangent
to the sphere at a pointA at latitudeφ. It should be clear that the distortion does not
depend on the longitude. Along the parallel of latitudeφ, the stretching is the same as it
was in the Mercator projection. I.e., the semiaxis of the distortion ellipse in the east/west
direction isr ′ = r secφ.

In the north/south direction we use the fact the projection is parallel to the equatorial
plane. See Figure 20. By elementary trigonometry, the semi-axis ofD′ in the north/south
direction must ber ′′ = r · cosφ. Figure 21 shows the distortion ellipse for this case.
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Figure 21. Distortion in the Archimedes projection.
r ′ = r secφ andr ′′ = r cosφ.
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Figure 20. Distortion in the north/south direction in the Archimedes projection.

Notice that we have

r ′r ′′ = (r secφ)(r cosφ) = r 2.

Thus by theprevious discussionwe know that our map is area preserving. The area ofthe
image of a more general region on the sphere is equal to the area of the region itself. This
is probably the simplest map with this property, but it is not the only one. The London
Times Atlas is particularly fond of area preserving maps, or equal-area maps, as they are
called in that atlas.

Exercise:Suppose thatT is a triangle with one vertex at a pole and the other two vertices



on the equator. Show by direct calculation thatT and its image under this map have the
same area.
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