Math 211
Lecture #4
Separable Equations

September 3, 2003

Autonomous Equations

- General equation: \(\frac{dy}{dt} = f(t, y) \)
- Autonomous equation: \(\frac{dy}{dt} = f(y) \)

Examples:
- \(\frac{dy}{dt} = t - y^2 \) is not autonomous.
- \(\frac{dy}{dt} = y(1 - y) \) is autonomous.

In an autonomous equation the right-hand side has no explicit dependence on the independent variable.

Equilibrium Points

- An equilibrium point for the autonomous equation \(\frac{dy}{dt} = f(y) \) is a point \(y_0 \) such that \(f(y_0) = 0 \).
- Corresponding to the equilibrium point \(y_0 \), there is the constant equilibrium solution \(y(t) = y_0 \).
- Example: \(\frac{dy}{dt} = y(2 - y)/3 \) is an autonomous equation.
 - The equilibrium points are \(y_1 = 0 \) and \(y_2 = 2 \).
 - The corresponding equilibrium solutions are \(y_1(t) = 0 \) and \(y_2(t) = 2 \).
Between Equilibrium Points

- The graphs of solutions to first order equations cannot cross (uniqueness theorem).
- \(\frac{dy}{dt} = f(y) > 0 \Rightarrow y(t) \) is increasing.
- \(\frac{dy}{dt} = f(y) < 0 \Rightarrow y(t) \) is decreasing.
- Example: \(\frac{dy}{dt} = y(2-y)/3 \)

Separable Equations

- General differential equation: \(\frac{dy}{dt} = f(t, y) \)
- Separable differential equation: \(\frac{dy}{dt} = g(y)h(t) \)
- In a separable equation the right-hand side is a product of a function \(h(t) \) of the independent variable \(t \) and a function \(g(y) \) of the unknown function \(y \).
- Examples:
 - \(\frac{dy}{dt} = t - y^2 \) is not separable.
 - \(\frac{dy}{dt} = t \sec y \) is separable.
 - Any autonomous equation \(y' = f(y) \) is separable.

Solving Separable Equations

Example: \(y' = \frac{dy}{dt} = t \sec y \)

- Step 1: Separate the variables:
 \[
 \frac{dy}{\sec y} = t \ dt \quad \text{or} \quad \cos y \ dy = t \ dt
 \]
- We have to worry about dividing by 0, but in this case \(\sec y \) is never equal to 0.
• Step 2: Integrate both sides of \(\cos y \, dy = t \, dt \)

\[
\int \cos y \, dy = \int t \, dt
\]

\[
\sin y + C_1 = \frac{1}{2} t^2 + C_2 \quad \text{or} \quad \sin(y(t)) = \frac{1}{2} t^2 + C
\]

where \(C = C_2 - C_1 \).

• Step 3: Solve \(\sin(y(t)) = \frac{1}{2} t^2 + C \) for \(y(t) \)

- We get

\[
y(t) = \arcsin \left(C + \frac{1}{2} t^2 \right).
\]

- This is the general solution to \(\frac{dy}{dt} = t \sec y \).

Solving Separable Equations

\[
\frac{dy}{dt} = g(y)h(t)
\]

The three step solution process:

1. Separate the variables. \(\frac{dy}{g(y)} = h(t) \, dt \) if \(g(y) \neq 0 \).
2. Integrate both sides. \(\int \frac{dy}{g(y)} = \int h(t) \, dt \)
3. Solve for \(y(t) \).
Examples

- $y' = ry$ with $y(0) = -2, 0, 3$
- $y' = 2ty$ with $y(0) = -1, 0, 2$
- $R' = \frac{\sin t}{1 + R}$ with $R(0) = 1, -2, -1$
- $x' = \frac{3x^2}{1 + 2x^2}$ with $x(0) = 1, 0$
- $y' = 1 + y^2$ with $y(0) = -1, 0, 1$

Why the Method Works

\[
\frac{dy}{dt} = g(y)h(t)
\]

\[
\frac{1}{g(y)} \frac{dy}{dt} = h(t) \quad \text{if } g(y) \neq 0
\]

\[
\int \frac{1}{g(y)} \frac{dy}{dt} \, dt = \int h(t) \, dt
\]

\[
\int \frac{1}{g(y)} \, dy = \int h(t) \, dt
\]