So at the end of class today, we wanted to compute some horizontal asymptotes. I told you that there are two main tricks that will get the job done - but I didn’t do the best job of showing you either! So... here are a few examples to fill in the gaps.

Example 1: Find \(\lim_{x \to \infty} f(x) \) where \(f(x) = \frac{3x^5 + 4}{2x^6 - 7x + 3} \)

This is a rational function, and we see that if \(g(x) = 3x^5 + 4 \) and \(h(x) = 2x^6 - 7x + 3 \), then the long term behavior of the function is dictated by the highest power. The highest power of \(x \) runs the show. This is because as \(x \) gets very large, the difference between \(x^n \) and \(x^{n-1} \) for \(n > 0 \) is very big (to prove this to yourself, try \(n = 2 \) and \(x = 100 \)). So we can deduce that \(\lim_{x \to \infty} g(x) \) only depends on \(\lim_{x \to \infty} x^5 \). Since given any (very big) value \(L \), we can find some \(x \) such that \(x^5 \) is close to \(L \), \(\lim_{x \to \infty} x^5 = \infty \).

The argument is exactly the same for \(h(x) \), giving \(\lim_{x \to \infty} h(x) = \infty \).

Side note: that if we were concerned with \(\lim_{x \to -\infty} f(x) \), we’d have to look at \(\lim_{x \to -\infty} g(x) \), which depends on \(\lim_{x \to -\infty} x^5 = -\infty \). Hence \(\lim_{x \to -\infty} g(x) = -\infty \). On the other hand Since \((-1)^{\text{even power}} = 1\) raised to an even power is positive, we get \(\lim_{x \to -\infty} h(x) = \infty \).

We know that the limits as \(x \to \infty \) of both \(g(x) \) and \(h(x) \) exist by the above argument, so we can use the limit laws we learned in section 2.3.

Now, as I said above, the biggest power determines the behavior of the function. So we want to make the little, inconsequential powers “go away.” To do this, we use the first trick I mentioned in class: divide the numerator and denominator by the biggest power of \(x \) found in the denominator.

\[
\lim_{x \to \infty} f(x) = \lim_{x \to \infty} \frac{\frac{1}{x^5}(3x^5 + 4)}{\frac{1}{x^6}(2x^6 - 7x + 3)}
\]

Simplifying, we obtain

\[
= \lim_{x \to \infty} \frac{3x^5 + 4}{2x^6 - 7x + 3}
\]

\[
= \lim_{x \to \infty} \frac{3x/ x^5 + 4/ x^6}{2x^6 - 7x/ x^5 + 3/ x^5}
\]

\[
= \lim_{x \to \infty} \frac{3/x + 4/x^6}{2 - 7/x^5}
\]
Now we can use the quotient law
\[\lim_{x \to \infty} f(x) = \frac{\lim_{x \to \infty} 3/x + 4/x^6}{\lim_{x \to \infty} 2 - 7/x^5} \]

Then the sum law tells us
\[\lim_{x \to \infty} f(x) = \frac{\lim_{x \to \infty} 3/x + \lim_{x \to \infty} 4/x^6}{\lim_{x \to \infty} 2 - \lim_{x \to \infty} 7/x^5} \]

By the constant multiple law, we have
\[= \frac{3 \lim_{x \to \infty} 1/x + 4 \lim_{x \to \infty} x^6}{\lim_{x \to \infty} 2 - 7 \lim_{x \to \infty} 1/x^5} \]

Now we need the following theorem: If \(r > 0 \) is a rational number, then \(\lim_{x \to \infty} 1/x^r = 0 \). In the equation above, we note that \(r = 1, 6, 5 \) are all rational numbers, so we get
\[\lim_{x \to \infty} f(x) = \frac{3 \cdot 0 + 4 \cdot 0}{2 - 7 \cdot 0} = \frac{0}{2} = 0 \]

This concludes our first example.

Example 2: Find \(\lim_{x \to -\infty} s(x) \) where \(s(x) = \frac{(x^6-3)^{1/2}}{x^3+x} \).

Convince yourself by the analysis above that we know that the limits of the numerator and denominator exist for all "large negative" numbers (remember...we only care about long-term behavior, not what's going on close to \(x = 0 \).) Then...we want to use the trick that we used above. The highest power in the denominator is \(x^3 \), so we want divide the top and the bottom by \(x^3 \).
\[\lim_{x \to -\infty} \frac{(x^6-3)^{1/2}}{x^3+x} = \lim_{x \to -\infty} \frac{\frac{1}{x^3}(x^6-3)^{1/2}}{\frac{1}{x^3}(x^3+x)} \]

Now remember, if \(n \) is even, we can't take the \(n \)-the root of a negative number. So, if \(w \) is some number with \(w < 0 \), \((w^{1/2}) = |w| = -w \). Thus,
\[(x^6)^{1/2} = (((x^3)^2)^{1/2}) = |x^3| = -x^3 \]
(here we set \(w = x^3 \)). Rearranging, we get \(-(x^6)^{1/2} = x^3 \). Thus,
\[\lim_{x \to -\infty} \frac{\frac{1}{x^3}(x^6-3)^{1/2}}{\frac{1}{x^3}(x^3+x)} = \lim_{x \to -\infty} \frac{-\frac{1}{x^6/2}(x^6-3)^{1/2}}{\frac{1}{x^3}(x^3+x)} \]

Now we simplify:
\[\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} \left(-1 \cdot \frac{x^6/x^6 - 3/x^6}{x^3/x^3 + x/x^3} \right) \]

I’ll let you fill in some in between steps, but using the quotient rule and sum rule, we get

\[= (-1) \left(\lim_{x \to -\infty} (1) - \lim_{x \to -\infty} \frac{3}{x^6} \right)^{1/2} \]

now \(x^6 \) and \(x^2 \) are defined for negative numbers, so we can use our important fact from class today: if \(r > 0 \) is a rational number, and \(x^r \) is defined for all \(x \), then \(\lim_{x \to -\infty} \frac{1}{x^r} = 0 \). Substituting for 0 in the appropriate places we get

\[\lim_{x \to -\infty} f(x) = (-1)(1)^{1/2} = (-1)(1) = -1 \]

You should try finding \(\lim_{x \to \infty} f(x) \) and the horizontal asymptotes of \(g(x) = \frac{x^8 + 3x^7}{3x^4 + x^2} \). Let me know if you have questions!

Example 3: In this example, I want to demonstrate what I mean by *clever multiplication by 1*. Let’s look at the long-term behavior of the function \(h(x) = (16x^2 + x)^{1/2} - 4x \). Above, the highest power of \(x \) controlled the behavior of the function. Here, it’s hard to say what the highest power is - we have to compare \((16x^2 + x)^{1/2} \) with \(4x \). So we’re going to algebraically manipulate \(h(x) \) into a more useful form: We know that \(1 = \frac{(16x^2 + x)^{1/2} + 4x}{(16x^2 + x)^{1/2} + 4x} \) (the number \((16x^2 + x)^{1/2} + 4x \) is called the **conjugate** of \((16x^2 + x)^{1/2} - 4x \)).

\[
\begin{align*}
\frac{(16x^2 + x)^{1/2} + 4x}{(16x^2 + x)^{1/2} + 4x} & = \frac{x}{(16x^2 + x)^{1/2} + 4x} \\
\end{align*}
\]

\[
\begin{align*}
\frac{x}{(16x^2 + x)^{1/2} + 4x} & = \frac{x}{(16x^2 + x)^{1/2} + 4x} \\
\end{align*}
\]

So now suppose that we care about \(\lim_{x \to \infty} h(x) \). By the above calculation, we’re looking at

\[\lim_{x \to \infty} h(x) = \lim_{x \to \infty} \frac{x}{(16x^2 + x)^{1/2} + 4x} \]

Now we can use our first trick, since it’s easy to say that \(\lim_{x \to \infty} (16x^2 + x)^{1/2} + 4x = \infty \) and \(\lim_{x \to \infty} x = \infty \). We multiply the top and the bottom by \(1/x \), obtaining
\[\lim_{x \to \infty} h(x) = \lim_{x \to \infty} \frac{(1/x) \cdot x}{(1/x^2)16x^2 + (1/x^2)x^{1/2} + (1/x)4x} \]

\[= \lim_{x \to \infty} \frac{1}{(16 + 1/x)^{1/2} + 4/x} \]

And an application of our theorem on \(1/x^r\) for \(r > 0\) rational gives

\[\lim_{x \to \infty} h(x) = \frac{1}{(16)^{1/2}} = \frac{1}{4} \]

To see if you really understand, you should (and I really really mean this!!!) try problems 25, 26, and 27 on page 141 in your book.