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Abstract

Some basic aspects of smooth functions and distributions on open

subsets of R
n are briefly discussed.
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1 Smooth functions

Let U be a nonempty open set in Rn for some positive integer n, and let f(x)
be a continuous real or complex-valued function on U . Remember that f is said
to be continuously differentiable on U if the first partial derivatives

∂f

∂x1
, . . . ,

∂f

∂xn
(1.1)

exist at every point in U and are continuous on U . Similarly, if the first partial
derivatives (1.1) of f are also continuously-differentiable on U , then f is said
to be twice continuously-differentiable on U . If k is a positive integer, and all
derivatives of f of order up to and including k exist on U and are continuous on
U , then f is said to be k times continuously-differentiable on U . If derivatives
of f of all orders exist and are continuous on U , then f is said to be infinitely-

differentiable on U , or simply smooth. Let Ck(U) be the space of k times
continuously-differentiable functions on U for each positive integer k. This can
be extended to k = 0 by letting C0(U) be the space C(U) of continuous functions
on U . Similarly, C∞(U) denotes the space of smooth functions on U . These are
all vector spaces with respect to pointwise addition and scalar multiplication,
and commutative algebras with respect to pointwise multiplication of functions.

A multi-index is an n-tuple α = (α1, . . . αn) of nonnegative integers. The
sum of two multi-indices is defined coordinatewise, and we put

|α| =

n∑

j=1

αj(1.2)

for each multi-index α. If x = (x1, . . . , xn) ∈ Rn and α is a multi-index, then
the corresponding monomial xα is defined by

xα = xα1

1 · · ·xαn
n .(1.3)
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More precisely, x
αj

j is interpreted as being equal to 1 when αj = 0, even when
xj = 0, so that xα = 1 for every x ∈ Rn when α = 0. Note that a polynomial
on Rn is a finite linear combination of monomials.

If f is a continuously-differentiable function on U and j = 1, . . . , n, then
let ∂jf or Djf denote the partial derivative ∂f/∂xj of f in the direction xj .
Thus Dj defines a linear mapping from C1(U) into C(U) for each j, which maps
Ck(U) into Ck−1(U) for each positive integer k. In particular, Dj maps C∞(U)
into itself, which is one of the advantages of working with smooth functions. If
f ∈ Ck(U) for some k ∈ Z+ and α is a multi-index with |α| ≤ k, then let

∂αf = Dαf =
∂|α|f

∂xα
(1.4)

be the corresponding derivative of f of order |α|, which is equal to f when
α = 0. Thus Dα is a linear mapping from Ck(U) into Ck−|α|(U), and Dα maps
C∞(U) into itself for each α.

2 Supremum seminorms

Let U be a nonempty open set in Rn, let K be a nonempty compact subset
of U , and let f be a continuous real or complex-valued function on U . The
corresponding supremum seminorm of f is defined by

‖f‖K = sup
x∈K

|f(x)|.(2.1)

The collection of these seminorms defines a topology on C(U) in a standard way,
so that C(U) becomes a locally convex topological vector space. A sequence
{fj}

∞
j=1 of continuous functions on U converges to a continuous function f on

U with respect to this topology if and only if

lim
j→∞

‖fj − f‖K = 0(2.2)

for each nonempty compact set K ⊆ U , which is the same as saying that {fj}∞j=1

converges to f uniformly on compact subsets of U .
Now let K be a nonempty compact subset of U , let k be a positive integer,

and let α be a multi-index with |α| ≤ k. It is easy to see that

‖f‖K,α = ‖Dαf‖K = sup
x∈K

|Dαf(x)|(2.3)

defines a seminorm on Ck(U). As before, Ck(U) is a locally convex topological
vector space with respect to the topology defined by the collection of these
seminorms, using all nonempty compact subsets K of U and all multi-indices α
with |α| ≤ k. A sequence {fj}∞j=1 of Ck functions on U converges to f ∈ Ck(U)
with respect to this topology if and only if

lim
j→∞

‖fj − f‖K,α(2.4)
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for each such K and α, which is the same as saying that {Dαfj}
∞
j=1 converges

to Dαf uniformly on compact subsets of U when |α| ≤ k.
Similarly, C∞(U) is a locally convex topological vector space with respect to

the topology defined by the collection of all seminorms ‖f‖K,α, where K is any
nonempty compact subset of U and α is any multi-index. A sequence {fj}∞j=1 of
C∞ functions on U converges to f ∈ C∞(U) if and only if (2.4) for each K and
α, which is the same as saying that {Dαfj}

∞
j=1 converges to Dαf uniformly on

compact subsets of U for each multi-index α. Of course, C∞(U) ⊆ Ck(U) for
each k ≥ 0, and it is easy to see that the natural inclusion map that sends each
f ∈ C∞(U) to itself as an element of Ck(U) is continuous with respect to these
topologies. If k, l are nonnegative integers with k ≤ l, then Cl(U) ⊆ Ck(U),
and again the natural inclusion of Cl(U) in Ck(U) is continuous with respect
to these topologies.

If α is a multi-index, k is a positive integer, and |α| ≤ k, then Dα is a linear
mapping from Ck(U) into Ck−|α|(U), as in the previous section. It is easy to
see that Dα is also continuous as a mapping from Ck(U) into Ck−|α|(U) with
respect to the corresponding topologies just defined. This basically comes down
to the fact that

‖Dαf‖K,β = ‖f‖K,α+β(2.5)

for every f ∈ Ck(U), every nonempty compact set K ⊆ U , and every multi-
index β such that

|α + β| = |α| + |β| ≤ k,(2.6)

since
Dβ(Dαf) = Dα+βf.(2.7)

Similarly, Dα is a continuous linear mapping from C∞(U) into itself for every
multi-index α.

3 Countably many seminorms

Suppose for the moment that U = Rn, let

|x| =
( n∑

j=1

x2
j

)1/2

(3.1)

be the standard Euclidean norm on Rn, and let

B(x, r) = {y ∈ Rn : |x − y| ≤ r}(3.2)

be the closed ball in Rn with center x ∈ Rn and radius r ≥ 0. Thus B(x, r) is
closed and bounded and hence compact in Rn for every x ∈ Rn and r ≥ 0, and
every compact set in Rn is contained in B(0, r) for some r ≥ 0, because compact
subsets of Rn are bounded. This implies that one can get the same topology
on C(Rn) using the sequence of supremum seminorms associated to the closed
balls B(0, r) with r ∈ Z+. Similarly, one can get the same topology on Ck(U)
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for some positive integer k by using the seminorms associated to B(0, r) with
r ∈ Z+ and multi-indices α with |α| ≤ k, and there are only countably many
of these seminorms. One can also get the same topology on C∞(U) using the
seminorms associated to B(0, r) with r ∈ Z+ and arbitrary multi-indices α,
and there are only countably many of these seminorms, because there are only
countably many multi-indices.

Now let U be a nonempty proper subset of Rn, and put

dist(x,Rn\U) = inf{|x − y| : y ∈ Rn\U}(3.3)

for each x ∈ Rn. Consider

Ar = {x ∈ U : |x| ≤ r, dist(x,Rn\U) ≥ 1/r}(3.4)

for each positive integer r, and observe that Ar is closed and bounded and hence
compact in Rn for each r ∈ Z+. By construction,

⋃∞
r=1 Ar = U , and it is easy

to see that every compact set K ⊆ U is contained in Ar when r is sufficiently
large. Although Ar may be empty for finitely many r, it is nonempty for all
but finitely many r, in which case it can be used to define seminorms as in the
previous section. One can get the same topologies on C(U), Cl(U) for each
k ∈ Z+, and C∞(U) using the seminorms associated to these compact sets Ar

when Ar 6= ∅, and there are only countably many of these seminorms, as before.
Thus these topologies on C(U), Ck(U), and C∞(U) can be defined by only

countably many seminorms on these spaces for every nonempty open set U in
Rn, which implies that there are countable local bases for the topologies of each
of these spaces at 0. This leads to a lot of helpful simplifications, and in fact
this implies that there are translation-invariant metrics on these spaces that
determine the same topologies. In particular, it suffices to use sequences for
many topological properties related to these spaces.

4 Cauchy sequences

Let U be a nonempty open set in Rn. A sequence {fj}∞j=1 of continuous real or
complex-valued functions on U is said to be a Cauchy sequence if

lim
j,l→∞

‖fj − fl‖K = 0(4.1)

for every nonempty compact set K ⊆ U . Equivalently, this means that fj − fl

is contained in any neighborhood of 0 in C(U) for all sufficiently large j, l ∈ Z+.
This is also the same as saying that {fj}

∞
j=1 is a Cauchy sequence with respect

to any translation-invariant metric on C(U) that defines the same topology on
C(U) as before.

At any rate, if {fj}
∞
j=1 is a Cauchy sequence in C(U), then {fj(x)}∞j=1 is

a Cauchy sequence in the real or complex numbers, as appropriate, for each
x ∈ U , since one can apply (4.1) to K = {x}. Because the real and complex
numbers are complete, it follows that {fj(x)}∞j=1 converges for each x ∈ U .
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Thus {fj}
∞
j=1 converges pointwise on to a real or complex-valued function f on

U , as apprpriate, and one can use (4.1) to show that {fj}
∞
j=1 actually converges

to f uniformly on compact subsets of U . This implies that f is also continuous
on U , by standard arguments, and hence that {fj}

∞
j=1 converges to f in C(U).

It follows that C(U) is complete, in the sense that every Cauchy sequence in
C(U) converges, so that C(U) is a Fréchet space, since the topology on C(U)
can be defined by a sequence of seminorms.

Similarly, a sequence {fj}∞j=1 of continuously-differentiable functions on U
if (4.1) holds and

lim
j,l→∞

‖Drfj − Drfl‖K = 0(4.2)

for every nonempty compact set K ⊆ U and r = 1, . . . , n, which is to say that
{fj}

∞
j=1 is a Cauchy sequence in C(U), and that {Drfj}

∞
j=1 is a Cauchy sequence

in C(U) for each r = 1, . . . , n. By the previous argument, this implies that
{fj}

∞
j=1 converges to a continuous function f on U in C(U), and that {Drfj}

∞
j=1

converges to a continuous function gr on U in C(U) for r = 1, . . . , n. Using well-
known results in analysis, it follows that f is also continuously-differentiable on
U , and that Drf = gr for r = 1, . . . , n. One way to see this is to reduce
to the n = 1 case by considering each variable separately, and then use the
fundamental theorem of calculus to derive this from analogous results about
integrals of uniformly convergent sequences of continuous functons on closed
intervals in the real line. Thus {fj}

∞
j=1 converges to f in C1(U).

If k is any positive integer, then a sequence {fj}∞j=1 of Ck functions on U is

said to be a Cauchy sequence in Ck(U) if

lim
j,l→∞

‖fj − fl‖K,α = 0(4.3)

for every nonempty compact set K ⊆ U and every multi-index α with |α| ≤ k.
One can show that every Cauchy sequence in Ck(U) converges in Ck(U), by
repeating the same type of arguments as in the k = 1 case. Thus Ck(U) is also
complete for every k ∈ Z+, and hence is a Fréchet space. A sequence {fj}

∞
j=1

of C∞ functions on U is said to be a Cauchy sequence in C∞(U) if (4.3) holds
for every nonempty compact set K ⊆ U and every multi-index α, in which case
{fj}

∞
j=1 converges in C∞(U) by the same type of argument as before. This

implies that C∞(U) is complete and hence a Fréchet space as well.

5 Compact support

Let U be a nonempty open set in Rn, and let f be a continuous real or complex-
valued function on U . The support of f is defined by

supp f = {x ∈ U : f(x) 6= 0},(5.1)

where more precisely one takes the closure of the set where f(x) 6= 0 relative
to U . We say that f has compact support in U if supp f is a compact set in
U , which implies in particular that supp f is a closed set in Rn. The space of
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continuous functions on U with compact support is denoted Ccom(U), which is
a linear subspace of C(U). Similarly, the space Ck

com(U) of Ck functions on U
with compact support is a linear subspace of Ck(U), and the space C∞

com(U) of
C∞ functions on U with compact support is a linear subspace of C∞(U).

Let η(x) be the real-valued function on the real line defined by η(x) = 0
when x ≤ 0, and

η(x) = exp(−1/x)(5.2)

when x > 0. It is well known and not difficult to check that η is a C∞ function
on R. Of course, η is obviously C∞ on R\{0}, and so the main point is that
the derivatives of η at 0 are all equal to 0, and that the derivatives of η at x > 0
all tend to 0 as x → 0. If a, b ∈ R and a < b, then

ηa,b(x) = η(x − a) η(b − x)(5.3)

is a C∞ function on R such that ηa,b(x) > 0 when a < x < b and ηa,b(x) = 0
otherwise. If a1, b1, . . . , an, bn ∈ R and aj < bj for j = 1, . . . , n, then

n∏

j=1

ηaj ,bj
(xj)(5.4)

is a C∞ function on Rn which is strictly positive when aj < xj < bj for
j = 1, . . . , n and is equal to 0 otherwise. Similarly, if p ∈ Rn and r > 0, then

η(r2 − |x − p|2)(5.5)

is a C∞ function of x on Rn which is positive when |x − p| < r and equal to
0 otherwise. This shows that there are a lot of C∞ functions with compact
support on Rn.

Note that η(x) < 1 for every x ∈ R, η(x) is strictly increasing for x ≥ 0,
and that η(x) → 1 as x → ∞. Put

ξc(x) = 1 − η(c − x)(5.6)

for each x, c ∈ R, so that ξc(x) is a C∞ function of x on R, ξc(x) = 1 when
x ≥ c, 0 < ξc(x) < 1 when x < c, and ξc(x) is strictly increasing in x when
x ≤ c. Suppose now that 0 < c < 1, and consider

ζc(x) = (1 − ξc(0))−1 (ξc(η(x)) − ξc(0)).(5.7)

This is a C∞ function on the real line that satisfies ζc(x) = 0 when x ≤ 0, since
η(x) = 0. If x > 0, then η(x) > 0, which implies that ξc(η(x)) > ξc(0), and
hence ζc(x) > 0. If x > 0 and η(x) ≥ c, then ξc(η(x)) = 1, so that ζc(x) = 1.
Equivalently, ζc(x) = 1 when x ≥ η−1(c) > 0. If x > 0 and η(x) < c, then
ζc(x) < 1, and in fact ζc is strictly increasing on [0, η−1(c)].

Let K be a nonempty compact set in Rn, and let V be an open set in Rn such
that K ⊆ V . By compactness, there are finitely many open balls B1, . . . , Bl in
Rn such that K ⊆

⋃l
j=1 Bl and the closure Bj of Bj is contained in V for each
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j. Let φj be a nonnegative real-valued C∞ function on Rn such that φj(x) > 0
for each x ∈ Bj and φj(x) = 0 when x ∈ Rn\Bj , as in (5.5). If φ =

∑n
j=1 φj ,

then φ is a nonnegative real-valued C∞ function on Rn, φ(x) > 0 for every

x ∈ K, and the support of φ is equal to
⋃l

j=1 Bj , which is a compact subset of
V . Let c be a positive real number, and consider

ψc(x) = (1 − ξc(0))−1 (ξc(φ(x)) − ξc(0)).(5.8)

This is a real-valued C∞ function on Rn such that ψc(x) = 0 when φ(x) = 0,

which happens when x ∈ Rn\
( ⋃l

j=1 Bj

)
. If x ∈

⋃l
j=1 Bj , then φ(x) > 0, and

hence ψc(x) > 0 too. More precisely, 0 < ψc(x) < 1 when 0 < φ(x) < c, and
ψc(x) = 1 when φ(x) ≥ c, since ξc(φ(x)) = 1. In particular, ψc(x) = 1 for every
x ∈ K when c > 0 is sufficiently small, because K is compact and φ > 0 on K.
If c is a bit smaller, then ψc(x) = 1 for every x in a neighborhood of K.

6 Inductive limits

Let U be a nonempty open set in Rn, and let K be a nonempty compact subset
of U . The space CK(U) of continuous real or complex-valued functions on U
with support contained in K is a linear subspace of Ccom(U), and a closed linear
subspace of C(U). Similarly, if k is any positive integer, then the space Ck

K(U) of
Ck functions on U with support contained in K is a linear subspace of Ck

com(U),
and a closed linear subspace of Ck(U). The space C∞

K (U) of C∞ functions on U
with support contained in K is also a linear subspace of C∞

com(U), and a closed
linear subspace of C∞(U). Of course, these subspaces are trivial unless K has
nonempty interior in Rn.

The topologies on CK(U), Ck
K(U), and C∞

K (U) induced by those on C(U),
Ck(U), and C∞(U), respectively, can be described more simply than before.
The restriction of the supremum seminorm ‖f‖K on C(U) to CK(U) is a norm,
and it is easy to see that the topology on CK(U) determined by this norm
is the same as the one induced by the topology on C(U). The topology on
Ck

K(U) induced by the one on Ck(U) is also determined by the finitely many
seminorms ‖f‖K,α with |α| ≤ k, and the sum or maximum of these seminorms is
a norm on Ck

K(U) that defines the same topology. It suffices to use the collection
of seminorms ‖f‖K,α on C∞

K (U), where α is any multi-index, which is still a
countable collection of seminorms.

Note that Ccom(U) is the same as the union of CK(U) over all compact
subsets K of U , and similarly for Ck

com(U) and C∞
com(U). In fact, it is enough

to use a suitable sequence of compact subsets of U , as in Section 3. Let us focus
on C∞

com(U), since that is the case of primary interest here. There is a well-
known construction of an “inductive limit” topology on C∞

com(U), which makes
C∞

com(U) into a locally convex topological vector space with some additional
properties. One of these properties is that the topology on C∞

K (U) induced
by the one on C∞

com(U) is the same as before for each nonempty compact set
K ⊆ U . Another important property is that a linear mapping from C∞

com(U)
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into a locally convex topological vector space is continuous if and only if its
restriction to C∞

K (U) is continuous for each nonempty compact set K ⊆ U . It
is easy to see that this topology on C∞

com(U) is uniquely determined by these
properties, using the continuity of the identity mapping on C∞

com(U) with respect
to any two such topologies to compare them.

In particular, the obvious inclusion mapping of C∞
com(U) in C∞(U) should be

continuous, since its restriction to C∞
K (U) is automatically continuous for each

nonempty compact set K ⊆ U . This implies that C∞
K (U) should be a closed

linear subspace of C∞
com(U), since C∞

K (U) is a closed linear subspace of C∞(U).
However, this topology on C∞

com(U) is much stronger than the one induced on
it by C∞(U), and in fact there is no countable local base for the topology of
C∞

com(U) at 0, for instance.

7 Distributions

By definition, a distribution on a nonempty open set U in Rn is a continuous
linear functional λ on C∞

com(U), with respect to the topology discussed in the
previous section. Because of the properties of this topology, it suffices to check
that the restriction of λ to C∞

K (U) is continuous for every nonempty set K ⊆ U .
Here we shall simply use this as the working definition of continuity of a linear
functional on C∞

com(U), and hence of a distribution on U . Equivalently, a linear
functional λ on C∞

com(U) is continuous if for each compact set K ⊆ U and every
sequence {φj}

∞
j=1 of smooth functions on U supported in K that converges to

a smooth function φ on U in the C∞ topology, we have that

lim
j→∞

λ(φj) = λ(φ).(7.1)

Of course, the support of φ is also contained in K under these conditions, and
we may as well restrict our attention to the case where φ = 0, because λ is
supposed to be linear on C∞

com(U).
As a basic class of examples, let f be a continuous real or complex-valued

function on U , and consider

λf (φ) =

∫

U

φ(x) f(x) dx(7.2)

for each test function φ ∈ C∞
com(U). If the support of φ is contained in a

nonempty compact set K ⊆ U , then we get that

|λf (φ)| ≤

∫

K

|φ(x)| |f(x)| dx ≤ ‖φ‖K

∫

K

|f(x)| dx(7.3)

where ‖φ‖K is the supremum of |φ(x)| over x ∈ K, as in (2.1). This implies
that λf is continuous on C∞

K (U), and hence that λf is a distribution on U . If
f is a locally integrable function on U , then λf defines a distribution on U in
the same way. Now let p be an element of U , and put

δp(φ) = φ(p)(7.4)
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for each φ ∈ C∞
com(U), which is known as the Dirac delta distribution at p. It

is easy to see that this is a distribution on U , since |δp(φ)| ≤ ‖φ‖K when the
support of φ is contained in a compact set K ⊆ U that contains p, and δp(φ) = 0
otherwise. One can also think of the Dirac mass at p as a Borel measure on U ,
and every locally finite Borel measure on U defines a distribution on U .

To be a bit more precise, if one takes C∞
com(U) to be the space of real-

valued smooth functions on U with compact support, then a linear functional on
C∞

com(U) means a real-linear mapping from C∞
com(U) into R, and the continuous

linear functionals on C∞
com(U) may be described as real distributions on U . If

one take Ccom(U) to be the space of complex-valued smooth functions on U
with compact support, then the linear functionals on C∞

com(U) are the complex-
linear mappings from C∞

com(U) into C, and the continuous linear functionals on
C∞

com(U) may be described as complex distributions on U .
Let W be a nonempty open set in Rn which is a subset of U . If φ ∈ C∞

com(W ),
then we can extend φ to a function on U by putting φ(x) = 0 for every x in
U\W , and this extension of φ is a smooth function on U with compact support
contained in W . This defines a natural linear mapping from C∞

com(W ) into
C∞

com(U), and it is easy to see that this linear mapping is continuous with respect
to the corresponding inductive limit topologies, because C∞

K (W ) is essentially
the same as C∞

K (U) for each compact set K ⊆ W , with the same topology. If λ
is a distribution on U , then we can compose λ as a continuous linear functional
on C∞

com(U) with this linear mapping to get a continuous linear functional on
C∞

com(W ), and thus a distribution on W , known as the restriction of λ to W .
If λ = λf is associated to a locally integrable function f on U as in (7.2), for
example, then the restriction of λ to W corresponds exactly to the restriction
of f to W as a locally integrable function.

8 Differentiation of distributions

Let U be a nonempty open set in Rn, let k be a positive integer, and let α be
a multi-index with |α| ≤ k. If f and φ are Ck functions on U , and if φ has
compact support in U , then

∫

U

(Dαf)(x)φ(x) dx = (−1)|α|

∫

U

f(x) (Dαφ)(x) dx.(8.1)

This follows from integration by parts, and is especially clear when U = Rn.
Otherwise, one can use suitable cut-off functions to reduce to that case, for
instance.

If λ is a distribution on U , then we can define Dαλ initially as a linear
functional on C∞

com(U) by

(Dαλ)(φ) = (−1)|α| λ(Dα φ).(8.2)

More precisely, Dα is a linear mapping from C∞
com(U) into itself, and so (8.2)

makes sense as a linear functional on C∞
com(U), since λ is a linear functional on
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C∞
com(U). If λ is a distribution on U , and thus a continuous linear functional

on C∞
com(U), then it is easy to see that Dαλ is also continuous on C∞

com(U),
and hence a distribution on U , because Dα is a continuous linear mapping from
C∞

com(U) into itself. To see that Dα is continuous on C∞
com(U), it suffices to

check that the restriction of Dα is continuous on C∞
K (U) for each nonempty

compact set K ⊆ U . In fact, Dα is a continuous linear mapping from C∞(U)
into itself, as in Section 2, and Dα clearly maps C∞

K (U) into itself for each
nonempty compact set K ⊆ U ,

If f ∈ Ck(U) and λ = λf is the distribution on U corresponding to f as in
(7.2), then Dαλ is the distribution corresponding to Dαf , as in (8.1). If p ∈ U
and δp is the Dirac delta distribution on U at p as in (7.4), then

(Dαδp)(φ) = (−1)|α| (Dαφ)(p)(8.3)

for every test function φ ∈ C∞
com(U). Suppose now that n = 1 and U = R, and

let f(x) be the Heaviside function on R equal to 1 when x > 0 and to 0 when
x ≤ 0. If λ = λf is the distribution on R associated to f as in (7.2), then the
derivative of λ is the Dirac delta distribution δ0 at p = 0. Indeed,

(Dλ)(φ) = −λ(Dφ) = −

∫ ∞

0

(Dφ)(x) dx = φ(0) = δ0(φ)(8.4)

for every φ ∈ C∞
com(U), by the fundamental theorem of calculus.

Note that the space of distributions on U is a vector space over the real
or complex numbers, as appropriate, because the sum of two continuous linear
functionals on C∞

com(U) is also a continuous linear functional on C∞
com(U), and

similarly one can multiply continuous linear functionals on C∞
com(U) by real or

complex numbers. It is easy to see that Dα defines a linear mapping on the
space of distributions on U for each multi-index α, because of the way that Dα

is defined on distributions, and because Dα is linear on C∞
com(U).

9 Multiplication by smooth functions

Let U be a nonempty open set in Rn, and let g be a smooth real or complex-
valued function on U . If φ is a smooth function on U with compact support,
then the product g φ of g and φ is also a smooth function on U with compact
support contained in the support of φ. More precisely, the mapping that sends
φ to g φ is a linear mapping from C∞

com(U) into itself, and one can check that
this mapping is continuous. To see this, it suffices to show that this mapping
is continuous as a mapping from C∞

K (U) into itself for each nonempty compact
set K ⊆ U . Basically, one can use Leibniz’ product rule for derivatives to show
that for each multi-index α, ‖g φ‖K,α = ‖Dα(g φ)‖K is less than or equal to a
constant depending on K, α, and g times the sum of finitely many terms of the
form ‖g‖K,β , where β runs through the multi-indices such that βj ≤ αj for each
j = 1, . . . , n.
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If λ is a distribution on U , then it follows that

λ̃(φ) = λ(g φ)(9.1)

also defines a distribution on U , which is the product of λ by g, and which
may be denoted by g λ. If λ is associated to a continuous or locally-integrable
function f on U as in (7.2), then it is easy to see that g λ is the distribution
on U corresponding to the product f g of f and g on U in the same way. Note
that the mapping that sends λ to g λ is linear as a mapping from the space of
distributions on U into itself for each g ∈ C∞(U). Similarly, the mapping that
sends g to g λ is linear as a mapping from C∞(U) into the space of distributions
on U for each distribution λ on U .

There is a version of the product rule in this context, which states that

Dj(g λ) = (Djg)λ + g (Djλ)(9.2)

for each j = 1, . . . , n. Here Dj(g λ) is the derivative of g λ as a distribution on
U , while Djg is the ordinary derivative of g as a smooth function on U , which
is also a smooth function on U . Thus (Djg)λ is defined as a distribution on U ,
as the product of the smooth function Djg on U and the distribution λ. The
derivative Djλ of λ is defined as a distribution on U as in the previous section,
and then the product g (Djλ) is defined as a distribution on U as before.

In order to verify (9.2), it suffices to check that

(Dj(g λ))(φ) = ((Djg)λ)(φ) + (g (Djλ))(φ)(9.3)

for each test function φ ∈ C∞
com(U). By definitions,

(Dj(g λ))(φ) = −(g λ)(Dj φ) = −λ(g (Djφ)),(9.4)

where Djφ is the ordinary derivative of φ. Similarly,

((Djg)λ)(φ) = λ((Djg)φ),(9.5)

and
(g (Djλ))(φ) = (Djλ)(g φ) = −λ(Dj(g φ)),(9.6)

where Dj(g φ) is the ordinary derivative of g φ. The ordinary product rule
implies that Dj(g φ) = (Djg)φ + g (Djφ), so that (9.6) becomes

(g (Djλ))(φ) = −λ((Djg)φ) − λ(g (Djφ)).(9.7)

Thus (9.3) follows by combining (9.4), (9.5), and (9.7).

10 Partitions of unity

Let K be a nonempty compact set in Rn, and suppose that for each p ∈ K
we have an open ball B(p) in Rn that contains p as an element. Because K
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is compact, there are finitely many elements p1, . . . , pl of K such that K is
contained in V =

⋃l
j=1 B(pj). As in Section 5, there is a real-valued smooth

function θ on Rn with compact support contained in V such that 0 ≤ θ(x) ≤ 1
for every x ∈ Rn and θ(x) = 1 for every x ∈ K. In particular, 1 − θ(x) is a
nonnegative smooth function on Rn that vanishes on K and is positive on the
complement of a compact subset of V , which is all that we shall need here.

Let φj be a nonnegative real-valued smooth function on Rn which is positive
on B(pj) and vanishes on Rn\Bj for each j = 1, . . . , l, as in (5.5). Thus

(1 − θ(x)) +

l∑

k=1

φk(x)(10.1)

is a real valued smooth function on Rn that is positive everywhere, since it is
positive on each Bj and on Rn\V . It follows that

ψj(x) = φj(x)
(
(1 − θ(x)) +

l∑

k=1

φk(x)
)−1

(10.2)

is also a nonnegative smooth function on Rn that is positive on Bj and vanishes
on Rn\Bj for each j = 1, . . . , l. By construction, ψj(x) ≤ 1 for every x ∈ Rn,
and

l∑

j=1

ψj(x) = 1(10.3)

for every x ∈ K, since 1 − θ(x) = 0 when x ∈ K.
Now let λ be a distribution on a nonempty open set U in Rn, and let W

be an open set contained in U . We say that λ vanishes on W , or λ = 0 on W ,
if λ(φ) = 0 for every φ ∈ C∞

com(U) with suppφ ⊆ W . If λ is the distribution
associated to a continuous function f on U as in (7.2), then this is equivalent to
the condition that f(x) = 0 for every x ∈ W . If f is a locally integrable function
on U , then this is equivalent to asking that f(x) = 0 for almost every x ∈ W .
If λ is the Dirac delta distribution δp at some point p ∈ U , or any derivative of
δp, then λ vanishes on U\{p}.

Let {Wα}α∈A be a collection of open subsets of U , and suppose that a
distribution λ vanishes on Wα for each α ∈ A. We would like to show that λ also
vanishes on W =

⋃
α∈A Wα under these conditions. Suppose that φ ∈ C∞

com(U)
satisfies suppφ ⊆ W , and put K = suppφ. If p ∈ K, then p ∈ Wα(p) for some
α(p) ∈ A, and hence there is an open ball B(p) in Rn such that p ∈ B(p)
and B(p) ⊆ Wα(p). Because K is compact, there are finitely many elements

p1, . . . , pl of K such that K ⊆
⋃l

j=1 B(pj), as before. Thus we get smooth

functions ψ1, . . . , ψl on Rn with suppψj = B(pj) ⊆ Wα(pj) for each j and
which satisfy (10.3) for each x ∈ K = suppφ, as in the previous discussion. In
particular, supp(ψj φ) ⊆ Wα(pj) for each j, so that λ(ψj φ) = 0 for each j, since
λ = 0 on Wα for each α ∈ A by hypothesis. This implies that λ(φ) = 0, as

desired, because φ =
∑l

j=1 ψj φ, by (10.3).
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11 Compactly-supported distributions

Let U be a nonempty open set in Rn, and let λ be a distribution on U . As in
the previous section, λ vanishes on an open set W ⊆ U if λ(φ) = 0 for every
φ ∈ C∞

com(U) with suppφ ⊆ W . If V is the union of all of the open sets W ⊆ U
such that λ = 0 on W , then λ = 0 on V , as before. The support suppλ of λ is
defined to be U\V , which is relatively closed in U , since V is an open set.

Suppose that the support of λ is contained in a compact set K ⊆ U , so
that λ = 0 on U\K. This means that λ(φ) = 0 when φ ∈ C∞

com(U) satisfies
suppφ ⊆ U\K, which is the same as saying that φ vanishes on a neighborhood
of K. As in Section 5, there is a smooth function ψK on Rn with compact
support contained in U such that ψK(x) = 1 for every x in a neighborhood of
K. If φ is any smooth function on U with compact support, then (1− ψK)φ is
a smooth function on U with compact support contained in U\K, and hence

λ((1 − ψK)φ) = 0.(11.1)

Equivalently,
λ(φ) = λ(ψK φ)(11.2)

for every φ ∈ C∞
com(U).

If φ is any smooth function on U , then ψK φ is a smooth function on U with
compact support contained in the support of ψK , and hence λ(ψK φ) is defined.
Thus (11.2) can be used to extend λ to a linear functional on C∞(U), and one
can check that this linear functional is continuous with respect to the topology
on C∞(U) described in Section 2. More precisely, if K1 = suppψK , then the
mapping that sends φ ∈ C∞(U) to ψK φ is continuous as a linear mapping from
C∞(U) into C∞

K1
(U). In particular, the mapping that sends φ ∈ C∞(U) to ψK φ

is continuous as a linear mapping from C∞(U) into C∞
com(U). This implies that

λ(ψK φ) is continuous as a linear functional of φ ∈ C∞(U), since λ is supposed
to be continuous on C∞

com(U).
Conversely, suppose now that λ is a continuous linear functional on C∞(U).

Because of the way that the topology on C∞(U) is defined, this means that
there are finitely many nonempty compact subsets K1, . . . ,Kl of U , finitely
many multi-indices α1, . . . , αl, and a nonnegative real number A such that

|λ(φ)| ≤ A

l∑

j=1

‖φ‖Kj ,αj
(11.3)

for every φ ∈ C∞(U), where ‖φ‖K,α is as in (2.3). If K =
⋃l

j=1 Kj , then K is
a compact subset of U , and (11.3) implies that λ(φ) = 0 for every φ ∈ C∞(U)
that vanishes on a neighborhood of K. In particular, the restriction of λ to
C∞

com(U) is a distribution on U with support contained in K. Note that λ is
uniquely determined on C∞(U) by its restriction to C∞

com(U), as in (11.2).

14



12 Nonnegative distributions

Let U be a nonempty open set in Rn. A linear functional λ on C∞
com(U) is said

to be nonnegative if
λ(φ) ≥ 0(12.1)

for every nonnegative real-valued smooth function φ on U with compact support.
More precisely, if λ is complex, then λ(φ) is supposed to be a real number
under these conditions. A distribution on U is said to be nonnegative if it is
nonnegative as a linear functional on C∞

com(U). If f is a nonnegative real-valued
locally-integrable function on U , then the corresponding distribution λf on U
as in (7.2) is nonnegative, for instance.

Let λ be a nonnegative linear functional on C∞
com(U), and let us show that λ

is automatically continuous on C∞
com(U). Let us consider the real case first, so

that λ is a real-linear functional on the space of real-valued smooth functions on
U with compact support. Let K be a nonempty compact subset of U , and let ψK

be a nonnegative real-valued smooth function on U with compact support such
that ψK(x) ≥ 1 for every x ∈ K, as in Section 5. If φ is a real-valued smooth
function on U with compact support contained in K such that ‖φ‖K ≤ 1, where
φK is as in (2.1), then ψK +φ and ψK−φ are both nonnegative smooth functions
on U with compact support. By hypothesis,

λ(ψK + φ), λ(ψK − φ) ≥ 0,(12.2)

which implies that ±λ(φ) ≤ λ(ψK), and hence

|λ(φ)| ≤ λ(ψK).(12.3)

Because of linearity, we get that

|λ(φ)| ≤ λ(ψK) ‖φ‖K(12.4)

for every real-valued smooth function φ on U with compact support contained
in K. This implies that λ is continuous on C∞

com(U), since this works for every
compact set K ⊆ U .

Suppose now that λ is a complex-linear functional on the space of complex-
valued smooth functions on U with compact support, and that λ is nonnegative
as before. Let K be a nonempty compact subset of U again, and let ψK be as
in the preceding paragraph. If φ is a real-valued smooth function on U with
compact support contains in K such that ‖φ‖K ≤ 1, so that ψK ± φ ≥ 0 on
U , then the nonnegativity condition includes the requirement that λ(ψK ± φ)
be a real number, which implies that λ(φ) ∈ R. In particular, it follows that
λ(φ) ∈ R for every real-valued smooth function φ on U with compact support,
since this holds for each compact set K ⊆ U . If φ is a complex-valued smooth
function on U with compact support contained in K, then we can apply the
previous argument to the real part of aφ for every a ∈ C with |a| ≤ 1. This
implies that the real part of λ(aφ) = aλ(φ) is less than or equal to λ(ψK),
as before. It follows that (12.3) still holds in this case, because this works for
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every a ∈ C with |a| ≤ 1. Thus (12.4) also holds for every complex-valued
smooth function φ on U with compact support contained in K, by linearity,
which implies that λ is continuous on C∞

com(U), as before.
Because these continuity conditions only involve supremum seminorms of φ,

and not derivatives of φ, one can show that there is a unique extension of λ to
a nonnegative linear functional on Ccom(U). The Riesz representation theorem
then implies that λ(φ) can be expressed as the integral of φ with respect to a
unique locally-finite nonnegative Borel measure on U . Conversely, any locally
finite nonnegative Borel measure on U determines a nonnegative distribution
on U in this way.

13 Continuity conditions

Let U be a nonempty open set in Rn, and let λ be a distribution on U . This
means that for each nonempty compact set K ⊆ U , the restriction of λ to
C∞

K (U) is continuous, with respect to the topology on C∞
K (U) induced by the

one on C∞(U) discussed in Section 2. Because of the way that this topology
is defined, this implies that there are a nonnegative real number A(K) and a
nonnegative integer N(K) such that

|λ(φ)| ≤ A(K)
∑

|α|≤N(K)

‖φ‖K,α(13.1)

for every φ ∈ C∞
K (U), where ‖φ‖K,α is as in (2.3). More precisely, the sum in

(13.1) is taken over the finite set of all multi-indices α such that |α| ≤ N(K).
Conversely, if λ is a linear functional on C∞

com(U), and if for each nonempty
compact set K ⊆ U there are A(K), N(K) ≥ 0 such that (13.1) holds for every
φ ∈ C∞

K (U), then the restriction of φ to C∞
K (U) is continuous for each nonempty

compact set K ⊆ U , and hence φ is a distribution on U .
If one can take N(K) = 0 for every nonempty compact set K ⊆ U , then λ

is said to be a distribution of order 0 on U . Thus distributions associated to
locally-integrable functions on U as in (7.2) have order 0, as well as nonnegative
distributions on U . In particular, Dirac delta distributions have order 0, but
their derivatives do not.

If λ is a distribution on U and g is a smooth function on U , then their
product g λ is also a distribution on U , as in Section 9. Note that the support
of g λ is contained in the support of g, because (g λ)(φ) = λ(g φ) = 0 whenever
φ ∈ C∞

com(U) satisfies g(x)φ(x) = 0 for every x ∈ U . In particular, g λ has
compact support in U when g has compact support in U . Observe also that g λ
has order 0 on U for every g ∈ C∞(U) when λ has order 0 on U . Thus g λ is
a distribution of order 0 on U with compact support when λ has order 0 on U
and g ∈ C∞

com(U).
If λ is a distribution of order 0 on U with compact support, then one can show

that there is a unique extension of λ to a continuous linear functional on C(U),
and which still has compact support in a suitable sense. Using another version
of the Riesz representation theorem, one can express λ in terms of integration
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with respect to a unique real or complex Borel measure with compact support
on U , as appropriate. Conversely, any real or complex Borel measure on U
defines a distribution of order 0 on U by integration, and this distribution on U
has compact support when the inital measure does.

14 Sequences of distributions

Let U be a nonempty open set in Rn. A sequence {λj}
∞
j=1 of distributions on

U is said to converge to a distribution λ on U if

lim
j→∞

λj(φ) = λ(φ)(14.1)

for every φ ∈ C∞
com(U). More precisely, this is the same as convergence with

respect to the weak∗ topology on the space of distributions on U , as the dual
of C∞

com(U). If {λj}
∞
j=1 converges to λ in this sense and α is any multi-index,

then it is easy to see that {Dαλj}
∞
j=1 converges to Dαλ in the same sense, by

applying (14.1) to Dαφ for each φ ∈ C∞
com(U).

Let {λj}
∞
j=1 be a sequence of distributions on U again, and suppose that for

each nonempty compact set K ⊆ U there are a nonnegative real number A(K)
and a nonnegative integer N(K) such that

|λj(φ)| ≤ A(K)
∑

|α|≤N(K)

‖φ‖K,α(14.2)

for each φ ∈ C∞
K (U) and j ∈ Z+. As usual, ‖φ‖K,α is as in (2.3), and the sum

in (14.2) is taken over all multi-indices α with |α| ≤ N(K). As in the previous
section, λj should satisfy conditions like this for each j, and the point here is to
ask for conditions that are uniform in j, which is to say that A(K) and N(K)
depend on K and not on φ or j. Suppose also that {λj(φ)}∞j=1 converges as
a sequence of real or complex numbers, as appropriate, for each φ ∈ C∞

com(U).
Let λ(φ) be the limit of {λj(φ)}∞j=1 for each φ ∈ C∞

com(U). It is easy to see that
λ is a linear functional on C∞

com(U), since λj is linear for each j. Under these
conditions, λ also satisfies the analogue of (14.2) with the same choices of A(K)
and N(K), which is (13.1). This implies that λ is a distribution on U , so that
{λj}

∞
j=1 converges to λ in the sense described in the previous paragraph.

Suppose now that {λj}
∞
j=1 is a sequence of distributions on U such that

{λj(φ)}∞j=1 is a bounded sequence in R or C, as appropriate, for each φ in
C∞

com(U). In particular, this happens when {λj(φ)}∞j=1 converges in R or C

for each φ ∈ C∞
com(U), since convergent sequences of real or complex numbers

are automatically bounded. Under these conditions, a version of the Banach–
Steinhaus theorem implies that for each nonempty compact set K ⊆ U there are
A(K), N(K) ≥ 0 such that (14.2) holds for all φ ∈ C∞

K (U) and j ∈ Z+. More
precisely, one applies the Banach–Steinhaus theorem to the restrictions of the
λj ’s to C∞

K (U) for each nonempty compact set K ⊆ U , which is possible because
C∞

K (U) is an F -space, since it is a Fréchet space. This means that C∞
K (U) may

be considered as a complete metric space for each K, which permits one to
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use the Baire category theorem. Because the λj ’s are pointwise bounded on
C∞

K (U), the Baire category theorem implies that they are uniformly bounded
on a nonempty open subset of C∞

K (U) for each K. Using linearity, one can check
that the λj ’s are uniformly bounded on an open subset of C∞

K (U) that contains
0 for each K. This implies that there are A(K), N(K) ≥ 0 such that (14.2)
holds for every φ ∈ C∞

K (U) and j ∈ Z+, because of linearity and the way that
the topology on C∞

K (U) is defined.
Suppose that {λj}∞j=1 is a sequence of distributions on U that converges to

a distribution λ on U as before. Let K be a nonempty compact subset of U
again, and suppose also that {φj}

∞
j=1 is a sequence of smooth functions on U

with supports contained in K for each j that converges in the C∞ topology to
a smooth function φ on U , whose support is also contained in K. Under these
conditions, one can check that

lim
j→∞

λj(φj) = φ.(14.3)

To see this, it suffices to show that

lim
j→∞

λj(φj − φ) = 0,(14.4)

since {λj(φ)}∞j=1 converges to λ(φ) by hypothesis. In fact, λl(φj − φ) → 0 as
j → ∞ uniformly in l when {φj}

∞
j=1 converges to φ in C∞

K (U), because of the
uniform boundedness condition (14.2).

15 The Schwartz class

Let us now restrict our attention to U = Rn. A smooth function f on Rn

belongs in the Schwartz class S(Rn) if for each nonnegative integer k and multi-
index α, (1 + |x|)k |Dαf | is a bounded function on Rn. In this case, we put

Nk(f) = sup
x∈Rn

(1 + |x|)k |f(x)|(15.1)

for each nonnegative integer k, and

Nk,α(f) = Nk(Dαf) = sup
x∈Rn

(1 + |x|)k |Dα f(x)|(15.2)

for each k ≥ 0 and multi-index α. The collection of all of the Nk,α’s defines a
topology on S(Rn) in the usual way, so that S(Rn) becomes a locally convex
topological vector space. Because the collection of the Nk,α’s is countable, there
is a countable local base for this topology on S(Rn) at 0, and in particular this
topology can be described by a translation-invariant metric on S(Rn).

Of course, every element of S(Rn) is a smooth function on Rn, and every
smooth function on Rn with compact support satisfies the requirements in the
previous paragraph, so that

C∞
com(Rn) ⊆ S(Rn) ⊆ C∞(Rn).(15.3)
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Note that f(x) = exp(−|x|2) is a smooth function on Rn in S(Rn) that does
not have compact support. If K is any nonempty compact subset of Rn, then

‖f‖K,α ≤ N0,α(f)(15.4)

for every f ∈ S(Rn) and multi-index α, where ‖f‖K,α is as in (2.3). This
implies that the natural inclusion mapping of S(Rn) in C∞(Rn) is continuous
with respect to the topolgies that have been defined on these spaces.

Similarly, if f is a smooth function on Rn with support contained in a
nonempty compact set K ⊆ Rn, then

Nk,α(f) ≤
(

sup
x∈K

(1 + |x|)k
)
‖f‖K,α(15.5)

for every multi-index α. This implies that the natural inclusion of C∞
K (Rn)

in S(Rn) is continuous, using the topology on C∞
K (Rn) induced by the usual

topology on C∞(Rn). It follows that the natural inclusion of C∞
com(Rn) in

S(Rn) is also continuous, since its restriction to C∞
K (Rn) is continuous for each

nonempty compact set K ⊆ Rn.
As usual, a sequence {fj}

∞
j=1 of functions in S(Rn) converges to f ∈ S(Rn)

with respect to the topology on S(Rn) defined by the Nk,α’s if and only if

lim
j→∞

Nk,α(fj − f) = 0(15.6)

for each k ≥ 0 and multi-index α. Similarly, a sequence {fj}
∞
j=1 of functions in

S(Rn) is a Cauchy sequence if

lim
j,l→∞

Nk,α(fj − fl) = 0(15.7)

for each k ≥ 0 and multi-index α. If {fj}
∞
j=1 is a Cauchy sequence in S(Rn),

then {fj}∞j=1 is a Cauchy sequence in C∞(Rn) in particular, which implies that
{fj}

∞
j=1 converges to a smooth function f on Rn in C∞(Rn), as in Section

4. Under these conditions, one can check that f ∈ S(Rn), and that {fj}
∞
j=1

also converges to f in S(Rn) in the sense of (15.6), using (15.7). Thus every
Cauchy sequence in S(Rn) converges, so that S(Rn) is complete, and hence a
Fréchet space, since the topology on S(Rn) is defined by a countable collection
of seminorms.

Let θ be a smooth function on Rn with compact support such that θ(x) = 1
when |x| ≤ 1. Put

θR(x) = θ(x/R)(15.8)

for each R > 0, so that θR is a smooth function on Rn with compact support
such that θR(x) = 1 when |x| ≤ R. If f ∈ S(Rn), then one can check that
θR f → f in S(Rn) as R → ∞, which means that

lim
R→∞

Nk,α(f − θR f) = 0(15.9)

for each k ≥ 0 and multi-index α. This implies that C∞
com(Rn) is dense in

S(Rn), since θR f has compact support in Rn for each R > 0.
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If f ∈ S(Rn) and α is a multi-index, then it is easy to see that Dαf ∈ S(Rn)
too. Moreover, Dα defines a continuous linear mapping from S(Rn) into itself.
This follows from the fact that

Nk,β(Dαf) = Nk,α+β(f)(15.10)

for each k ≥ 0, multi-index β, and f ∈ S(Rn), since Dβ(Dαf) = Dα+βf .
If f ∈ S(Rn) and p(x) is a polynomial on Rn, then one can check that

the product p f is in S(Rn) as well. As an extension of this, let g be a smooth
function on Rn, and suppose that for each multi-index α there are a nonnegative
integer k(α) and a nonnegative real number C(α) such that

|Dαg(x)| ≤ C(α) (1 + |x|)k(α)(15.11)

for every x ∈ Rn. Under these conditions, one can check that the product f g
is also in S(Rn). More precisely, the mapping that sends f ∈ S(Rn) to f g is a
continuous linear mapping from S(Rn) into itself.

16 Tempered distributions

A tempered distribution on Rn is a continuous linear functional on S(Rn), which
is to say a linear functional on S(Rn) that is continuous with respect to the
topology defined by the Nk,α’s, as in the previous section. If λ is a tempered
distribution on Rn, then λ determines an ordinary distribution on Rn, since
the restriction of λ to C∞

com(Rn) ⊆ S(Rn) is a continuous linear functional
on C∞

com(Rn). More precisely, this uses the fact that the natural inclusion of
C∞

com(Rn) in S(Rn) is continuous. Note that a continuous linear functional
λ on S(Rn) is uniquely determined by its restriction to C∞

com(Rn), because
C∞

com(Rn) is dense in S(Rn), as in the previous section.
Suppose that f is a locally integrable function on Rn such that

∫

Rn

(1 + |x|)−k |f(x)| dx < +∞(16.1)

for some nonnegative integer k. In this case, the product φ f is an integrable
function on Rn for every φ ∈ S(Rn), and we put

λf (φ) =

∫

Rn

φ(x) f(x) dx.(16.2)

This defines a continuous linear functional on S(Rn), and hence a tempered
distribution on Rn, because

|λf (φ)| ≤

∫

Rn

|φ(x)| |f(x)| dx ≤ Nk,0(φ)

∫

Rn

(1 + |x|)−k|f(x)| dx(16.3)

for every φ ∈ S(Rn). Similarly, if µ is a positive Borel measure on Rn such that
∫

Rn

(1 + |x|)−k dµ(x) < +∞(16.4)
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for some nonnegative integer k, then

λµ(φ) =

∫

Rn

φ(x) dµ(x)(16.5)

defines a tempered distribution on Rn. If λ is an ordinary distribution on Rn

with compact support, then we have seen in Section 11 that λ has a natural
continuous extension to C∞(Rn), whose restriction to S(Rn) defines a tempered
distribution on Rn.

If λ is a tempered distribution on Rn and α is a multi-index, then we can
define Dαλ in the same way as for ordinary distributions, as in (8.2). More
precisely, this is a continuous linear functional on S(Rn) when λ is, because
Dα is a continuous linear mapping from S(Rn) into itself, as in the previous
section. Now let g be a smooth function on Rn with the property that for
each multi-index α there are k(α), C(α) ≥ 0 such that (15.11) holds for every
x ∈ Rn. If λ is a tempered distribution on Rn, then the product of λ and g
can be defined as a tempered distribution on Rn, as in Section 9. Note that
the derivatives of g satisfy analogous conditions, and that product rule for the
derivative of a product also works in this situation, as before.

If λ is a tempered distribution on Rn, then there are nonnegative integers
k, L and a nonnegative real number A such that

|λ(φ)| ≤ A
∑

|α|≤L

Nk,α(φ)(16.6)

for every φ ∈ S(Rn), where the sum is taken over all multi-indices α such that
|α| ≤ L. This follows from the way that the topology on S(Rn) is defined, and
conversely a linear functional λ on S(Rn) is continuous if it satisfies a condition
of this type.

A sequence {λj}
∞
j=1 of tempered distributions on Rn is said to converge to

a tempered distribution λ on Rn if

lim
j→∞

λj(φ) = λ(φ)(16.7)

for every φ ∈ S(Rn). As before, this is the same as convergence with respect to
the weak∗ topology on the space of tempered distributions on Rn, as the dual
of S(Rn). If {λj}

∞
j=1 converges to λ in this sense, and if α is any multi-index,

then it is easy to see that {Dαλj}∞j=1 converges to Dαλ in the same sense, as
in the case of ordinary distributions on Rn.

Suppose that {λj}
∞
j=1 is a sequence of tempered distributions on Rn such

that {λj(φ)}∞j=1 is a bounded sequence in R or C, as appropriate, for each
φ ∈ S(Rn). As in Section 14, a version of the Banach–Steinhaus theorem
implies that there are nonnegative integers k, L and a nonnegative real number
A such that

|λj(φ)| ≤ A
∑

|α|≤L

Nk,α(φ)(16.8)
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for every φ ∈ S(Rn) and j ∈ Z+, where the sum is again taken over all multi-
indices α with |α| ≤ L. This uses the fact that S(Rn) is a Fréchet space, as in
the previous section.

In particular, if {λj(φ)}∞j=1 converges in R or C, as appropriate, for each φ
in S(Rn), then {λj(φ)}∞j=1 is bounded for each φ ∈ S(Rn). In this case, one can
define a linear functional λ on S(Rn) by (16.7), and the uniform boundedness
condition (16.8) implies that λ satisfies (16.6) for each φ ∈ S(Rn), with the
same choices of A, k, and L. This implies that λ is also continuous on S(Rn).

If {λj}
∞
j=1 is a sequence of tempered distributions on Rn that converges to

a tempered distribution λ on Rn as in (16.7), and if {φj}
∞
j=1 is a sequence of

elements of S(Rn) that converges to φ ∈ S(Rn), then

lim
j→∞

λj(φj) = λ(φ).(16.9)

As in Section 14, one can use the uniform boundedness condition (16.8), to get
that λl(φj − φ) → 0 as j → ∞ uniformly over l. This permits (16.9) to be
reduced to (16.7), as before.

17 Bounded sets of functions

Let U be a nonempty open set in Rn, and let E be a subset of Ck(U) for some
k, 0 ≤ k ≤ +∞. We say that E is bounded in Ck(U) if for each nonempty
compact set K ⊆ U and multi-index α with |α| ≤ k there is a nonnegative real
number C(K,α) such that

‖f‖K,α ≤ C(K,α)(17.1)

for every f ∈ E, where ‖f‖K,α is as in (2.3). There is a more abstract definition
of the boundedness of a subset E of a topological vector space V over the real
or complex numbers, which reduces to this condition in this situation. More
precisely, if the topology on V is determined by a collection N of seminorms on
V , then E ⊆ V is bounded if each seminorm N ∈ N is bounded on E.

Suppose now that E ⊆ Ck
com(U) for some k, 0 ≤ k ≤ ∞. In this case, we

say that E is bounded in Ck
com(U) if there is a compact set K ⊆ U such that E

is a bounded subset of Ck
K(U). This means that E ⊆ Ck

K(U), and that for each
multi-index α with |α| ≤ k there is a nonnegative real number C(α) such that

‖f‖K,α ≤ C(α)(17.2)

for every f ∈ E, which is the same as saying that E ⊆ Ck
K(U) is bounded as

a subset of Ck(U). It is well known that this is equivalent to the boundedness
of E as a subset of Ck

com(U) as a topological vector space, with respect to the
appropriate inductive limit topology.

Now let E be a subset of the Schwartz class S(Rn). We say that E is
bounded in S(Rn) if for each nonnegative integer k and multi-index α there is
a nonnegative real number C(k, α) such that

Nk,α(f) ≤ C(k, α)(17.3)
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for every f ∈ E, where Nk,α(f) is as in (15.2). As before, this is equivalent to
the boundedness of E as a subset of S(Rn) as a topological vector space. Note
that bounded subsets of C∞

com(Rn) are bounded as subsets of S(Rn), and that
bounded subsets of S(Rn) are bounded as subsets of C∞(Rn).

Let {fj}∞j=1 be a sequence of functions in S(Rn) which is bounded as in the
previous paragraph, so that for each nonnegative integer k and multi-index α
there is a nonnegative real number C(k, α) such that

Nk,α(fj) ≤ C(k, α)(17.4)

for every j ≥ 1. Suppose that {fj}
∞
j=1 converges to a smooth function f on

Rn in C∞(Rn), which means that {Dαfj}
∞
j=1 converges to Dαf uniformly on

compact subsets of Rn for every multi-index α. Under these conditions, it is
easy to see that f ∈ S(Rn) too, with Nk,α(f) ≤ C(k, α) for each k ≥ 0 and
multi-index α. One can also check that {fj}

∞
j=1 converges to f in S(Rn), so that

Nk,α(fj − f) → 0 as j → ∞ for every k ≥ 0 and multi-index α. More precisely,
for a fixed k and α, one can use the boundedness of Nk+1,α(fj) to get the
convergence of {fj}

∞
j=1 to f with respect to Nk,α from the uniform convergence

of {Dαfj}∞j=1 to Dαf on compact subsets of Rn. Similarly, if E is a bounded
subset of S(Rn), then the topology on E induced by the one on S(Rn) is the
same as the topology on E induced by the one on C∞(Rn). This can be derived
from the previous remarks about sequences, or verified more directly from the
definitions using analogous arguments.

18 Compactness and equicontinuity

Let (M,d(x, y)) be a metric space. Remember that a set E ⊆ M is said to be
sequentially compact if every sequence of elements of E has a subsequence that
converges to an element of E. It is well known that sequential compactness
is equivalent to the usual definition of compactness in terms of open coverings
in the context os subsets of metric spaces. A set E ⊆ M is said to be totally

bounded if for every ǫ > 0, E is contained in the union of finitely many open
balls in M with radius ǫ. If M is a complete metric space, in the sense that every
Cauchy sequence in M converges to an element of M , then it is also well known
that a set E ⊆ M is compact if and only if E is closed in M and totally bounded.
Another result of this type states that E ⊆ M is totally bounded if and only if
every sequence of elements of E has a subsequence which is a Cauchy sequence.
Indeed, if E is not totally bounded, then there is an ǫ > 0 and a sequence
{xj}∞j=1 of elements of E such that d(xj , xl) ≥ ǫ when j 6= l, and it is easy
to see that such a sequence cannot have a Cauchy sequence. Conversely, if E
is totally bounded and {xj}

∞
j=1 is a sequence of elements of E, then for each

ǫ > 0 there is a subsequence of {xj}∞j=1 whose terms are contained in a ball
of radius ǫ. To get a subsequence of {xj}

∞
j=1 which is a Cauchy sequence, one

can use Cantor’s diagonalization argument, applied to a sequence of successive
subsequences of {xj}∞j=1 whose terms are contained in open balls in M with
radii converging to 0.
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Now let X be a compact topological space, and let C(X) be the space of
real or complex-valued continuous functions on X, equipped with the supremum
norm. In particular, C(X) is a metric space with respect to the supremum
metric, and it is well known that C(X) is complete. Let E be a subset of C(X),
and suppose that E is pointwise bounded on X, in the sense that for each x ∈ X,

E(x) = {f(x) : f ∈ E}(18.1)

is a bounded subset of the real or complex numbers, as appropriate. Suppose
also that E is equicontinuous at every point in X, which means that for each
ǫ > 0 and x ∈ X there is an open set U in X such that x ∈ X and

|f(x) − f(y)| < ǫ(18.2)

for every f ∈ E and y ∈ U . Under these conditions, it is well known that E is
totally bounded in C(X) with respect to the supremum metric.

Alternatively, let X be a topological space which is not necessarily compact,
and let {fj}

∞
j=1 be a sequence of real or complex-valued continuous functions on

X. Suppose that {fj}
∞
j=1 is bounded pointwise on X, so that {fj(x)}∞j=1 is a

bounded sequence of real or complex numbers, as appropriate, for each x ∈ X.
This implies that for each x ∈ X there is a subsequence {fjl

}∞l=1 of {fj}∞j=1 such
that {fjl

(x)}∞j=1 converges in R or C, since closed and bounded subsets of the
real and complex numbers are compact. If A is a countable subset of X, then
one can use a Cantor diagonalization argument to get a subsequence {fjl

}∞l=1

of {fj}
∞
j=1 such that {fjl

(x)}∞l=1 converges in R or C for every x ∈ A.
Suppose that A is a countable dense subset of X, and that the set of fj ’s is

equicontinuous at every point in X. Under these conditions, one can check that
{fjl

(x)}∞j=1 is a Cauchy sequence in R or C for every x ∈ X, and hence that
{fjl

(x)}∞j=1 converges in R or C for every x ∈ X. One can also show that the
limit f(x) of {fjl

(x)}∞l=1 is a continuous function on X, using the equicontinuity
of the fj ’s again. In addition, {fjl

}∞l=1 converges to f uniformly on compact
subsets of X in this situation. In particular, {fjl

}∞l=1 converges to f uniformly
on X when X is compact.

19 Compact sets of functions

Let U be a nonempty open set in Rn, and let {fj}∞j=1 be a sequence of functions

in C1(U) such that the set of fj ’s is bounded as a subset of C1(U), in the sense
of Section 17. This means that for each compact set K ⊆ U , the fj ’s and their
first derivatives are uniformly bounded on K. In particular, {fj(x)}∞j=1 is a
bounded sequence of real or complex numbers, as appropriate, for each x ∈ U .
Also, for each x ∈ U , there is a positive real number r(x) such that the closed
ball B(x, r(x)) with center x and radius r(x) in Rn is contained in U , and hence
is a compact subset of U . The boundedness of the set of fj ’s in C1(U) implies
that the first derivatives of the fj ’s are uniformly bounded on B(x, r(x)), so
that the set of fj ’s is equicontinuous at x. Of course, there is a countable
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dense set in U , such as the set of points in U with rational coordinates. Under
these conditions, the Arzela–Ascoli type of arguments discussed in the previous
section imply that there is a subsequence {fjl

}∞l=1 of {fj}
∞
j=1 that converges to

a continuous function f on U uniformly on compact subsets of U .
Now let k be a positive integer, and suppose that {fj}∞j=1 is a sequence of

functions in Ck(U) such that the set of fj ’s is bounded in Ck(U). As before,
this means that for each compact set K ⊆ U and multi-index α with |α| ≤ k,
the functions Dαfj are uniformly bounded on K. Under these conditions, for
each multi-index α with |α| ≤ k − 1, there is a subsequence of {Dαfj}

∞
j=1 that

converges uniformly on compact subsets of U , as in the previous paragraph. By
applying this to each such multi-index α one at a time, and passing to suitable
subsequences at each step, one can get a single subsequence {fjl

}∞l=1 of {fj}
∞
j=1

such that {Dαfjl
}∞l=1 converges uniformly on compact subsets of U for each

multi-index α with |α| ≤ k − 1. As in Section 4, well-known results in analysis
imply that the limit f of {fjl

}∞l=1 is in Ck−1(U), and that the limit of {Dαfjl
}∞l=1

is equal to Dαf for each multi-index α with |α| ≤ k − 1.
Similarly, if {fj}∞j=1 is a sequence of smooth functions on U such that the

set of fj ’s is bounded in C∞(U), then there is a subsequence {fjl
}∞l=1 of {fj}

∞
j=1

that converges to a smooth function f on U in C∞(U). This uses an additional
Cantor diagonalization argument, to get a subsequence of {fj}∞j=1 for which
all derivatives converge uniformly on compact subsets of U . It follows that
a closed and bounded set E in C∞(U) is compact with respect to the usual
topology on C∞(U). There are analogous statements for bounded sequences in
the Schwartz class S(Rn), and for closed and bounded subsets of S(Rn). These
statements can be derived from the corresponding ones for C∞(Rn), because of
the compatibility between the topologies on S(Rn) and C∞(Rn) on bounded
subsets of S(Rn), as in Section 17.

20 Riemann–Stieltjes integrals

Let α(x) be a monotone increasing real-valued function on the real line. It is
well known that the one-sided limits of α exist at each point x ∈ R, and are
given by

α(x+) = lim
t→x+

α(t) = inf{α(t) : t ∈ R, t > x}(20.1)

and
α(x−) = lim

t→x−
α(t) = sup{α(t) : t ∈ R, t < x}.(20.2)

In particular,
α(x−) ≤ α(x) ≤ α(x+)(20.3)

for every x ∈ R, and α(x−) = α(x) = α(x+) if and only if α is continuous at
x. Similarly,

α(x+) ≤ α(y−)(20.4)

when x < y, because α(x+) ≤ α(t) ≤ α(y−) when x < t < y.
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Let A be the set of x ∈ R such that α is not continuous at x, which happens
if and only if α(x−) < α(x+). Put

I(x) = (α(x−), α(x+))(20.5)

for each x ∈ A, and observe that

I(x) ∩ I(y) = ∅(20.6)

when x, y ∈ A and x < y, because of (20.4). Let r(x) be a rational number
contained in I(x) for each x ∈ A, so that

r(x) < r(y)(20.7)

when x, y ∈ A and x < y, by (20.4) again. This implies that A has only finitely
or countably many elements, because the set Q of rational numbers has only
finitely or countably many elements.

Let a, b be real numbers with a < b, and let φ be a continuous real-valued
function on [a, b]. The Riemann–Stieltjes integral

∫ b

a

φdα(20.8)

can be defined in essentially the same way as for the ordinary Riemann integral,
which corresponds to the case where α(x) = x for every x ∈ R. The main
difference is to measure the length of an interval using α, by taking the difference
of the values of α at the endpoints. As in the classical case, the existence of
the integral for a continuous function φ on [a, b] uses the fact that continuous
functions on closed intervals in the real line are uniformly continuous. Note that
(20.8) is a nonnegative real number when φ(x) ≥ 0 for every x ∈ [a, b], and that

∣∣∣∣
∫ b

a

φdα

∣∣∣∣ ≤
∫ b

a

|φ| dα ≤
(

sup
a≤x≤b

|φ(x)|
)

(α(b) − α(a))(20.9)

for every continuous function φ on [a, b].
Let λα be the distribution on the real line corresponding to α as a locally

integrable function on R, so that

λα(φ) =

∫

R

φ(x)α(x) dx(20.10)

for every φ ∈ C∞
com(R), as in (7.2). Using an appropriate version of integration

by parts, one can show that

(Dλα)(φ) = −λα(Dφ) = −

∫

R

(Dφ)(x)α(x) dx =

∫

R

φdα(20.11)

for every φ ∈ C∞
com(R), where the last integral is the Riemann–Stieltjes integral

(20.8) over any interval [a, b] that contains the support of φ. In particular, the
derivative of λα is nonnegative as a distribution on R, and jump discontinuities
in α correspond to Dirac masses in the derivative of λα in the usual way.
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21 Translations

Let U be a nonempty open set in Rn, let a be an element of Rn, and put

U + a = {x + a : x ∈ U},(21.1)

which is also an open set in Rn. If f is a function on U , then let τa(f) be the
function on U + a defined by

(τa(f))(x) = f(x − a)(21.2)

for each x ∈ U + a. Of course, this preserves integrability and smoothness
properties of f , and it is easy to see that the support of τa(f) is the same as
the support of f translated by a. In particular, if f has compact support in U ,
then τa(f) has compact support in U + a.

Let λ be a distribution on U , and define a distribution τa(λ) on U + a by

(τa(λ))(φ) = λ(τ−a(φ))(21.3)

for each φ ∈ C∞
com(U + a). More precisely, if φ ∈ C∞

com(U + a), then τ−a(φ)
is an element of C∞

com(U), as in the previous paragraph, so that λ(τ−a(φ))
makes sense. It is easy to see that τ−a defines a continuous linear mapping
from C∞

com(U +a) onto C∞
com(U), which implies that τa(λ) is a continuous linear

functional on C∞
com(U +a) when λ is a continuous linear functional on C∞

com(U).
If λf is the distribution on U corresponding to a locally integrable function f
on U , as in (7.2), then

(τa(λf ))(φ) = λf (τ−a(φ)) =

∫

U

φ(x + a) f(x) dx(21.4)

=

∫

U+a

φ(x) f(x − a) dx

for every φ ∈ C∞
com(U + a), and hence τa(λf ) = λτa(f). Similarly, if δp is the

Dirac delta distribution corresponding to a point p ∈ U as in (7.4), then

(τa(δp))(φ) = δp(τ−a(φ)) = φ(p + a)(21.5)

for each φ ∈ C∞
com(U + a), so that τa(δp) = δp+a.

Let r be a positive real number, and let Ur be the set of x ∈ U such that

B(x, t) ⊆ U(21.6)

for some t > r. Equivalently, x ∈ Ur if and only if B(x, r) ⊆ U . Note that Ur

is an open set in Rn for each r > 0, Ur ⊆ Ut when r < t, and every x ∈ U is in
Ur for sufficiently small r. If K is a nonempty compact subset of Ur, then put

K(r) =
⋃

p∈K

B(p, r),(21.7)
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which is the same as

K(r) = {x ∈ Rn : dist(x,K) ≤ r},(21.8)

by well known properties of compact sets. The first description of K(r) implies
that K(r) ⊆ U when K ⊆ Ur, and the second description implies that K(r) is
closed and bounded and thus compact.

If a ∈ Rn and |a| ≤ r, then Ur − a ⊆ U , so that Ur ⊆ U + a, and the
restriction of τa(λ) to Ur is defined as a distribution on Ur as in Section 7. Let
K be a nonempty compact subset of Ur, and let φ be a smooth function on Ur

with compact support contained in K. As usual, we can extend φ to a smooth
function on Rn with compact support contained in K, by setting φ(x) = 0 for
every x ∈ Rn\K. Note that

supp τa(φ) = (suppφ) + a ⊆ K(r)(21.9)

under these conditions. Also, if K is any compact subset of U , then K ⊆ Ur

when r > 0 is sufficiently small.
Let j be a positive integer less than or equal to n, and let ej ∈ Rn be the

corresponding standard basis vector in Rn, with jth coordinate equal to 1 and
all other coordinates equal to 0. If h is a nonzero real number with |h| ≤ r, then

µj,h = h−1 (τ−h ej
(λ) − λ)(21.10)

is defined as a distribution on Ur, by restricting λ and τ−h ej
(λ) to Ur as in the

previous paragraph. If K is a compact subset of Ur and φ is a smooth function
on Rn with support contained in K, then

µj,h(φ) = h−1 ((τ−h ej
(λ))(φ) − λ(φ)) = λ(h−1(τh ej

(φ) − φ)),(21.11)

and
supp h−1 (τh ej

(φ) − φ) ⊆ suppK(r).(21.12)

Of course,

h−1 ((τh ej
(φ))(x) − φ(x)) = h−1 (φ(x − h ej) − φ(x))(21.13)

tends to −(Djφ)(x) as h → 0 for each x ∈ Ur. More precisely, (21.13) converges
to −(Djφ)(x) as h → 0 uniformly on Ur, because φ is continuously differentiable
and has compact support. Similarly, the derivatives of (21.13) converge to the
corresponding derivatives of −(Djφ)(x) as h → 0 uniformly on Ur, because φ is
smooth. This and (21.12) imply that (21.13) converges to −(Djφ)(x) as h → 0
in the topology of C∞

com(Ur).
It follows that

lim
h→0

µj,h(φ) = −λ(Djφ) = (Djλ)(φ)(21.14)

when φ is a smooth function on Rn with support contained in a compact subset
K of Ur for some r > 0. If φ is any smooth function on U with support
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contained in a compact subset K of U , then φ can be extended to a smooth
function on Rn with compact support contained in K as before, and K ⊆ Ur

when r > 0 is sufficiently small. Thus (21.14) holds for every φ ∈ C∞
com(U),

with the understanding that µj,h(φ) is defined when |h| is sufficiently small,
depending on φ. This is all a bit simpler when U = Rn, so that U + a = Rn

for each a ∈ Rn, and Ur = Rn for every r > 0. In this case, µj,h(φ) is defined
for every φ ∈ C∞

com(Rn) and h 6= 0, and (21.14) implies that µj,h → Djλ as
h → 0 with respect to the weak∗ topology on the dual of C∞

com(Rn). Note that
there are analogous statements for tempered distributions on Rn. This uses the
fact that (21.13) converges to −(Djφ)(x) as h → 0 with respect to the usual
topology on the Schwartz class when φ ∈ S(Rn).

Suppose for instance that n = 1, U = R, and λ = λf as in (7.2) for some
locally integrable function f on R. Put

µh = h−1 (τ−h(λ) − λ)(21.15)

for each nonzero real number h, as in (21.10). Thus

µh(φ) =

∫

R

φ(x)
(f(x + h) − f(x)

h

)
dx(21.16)

for every φ ∈ C∞
com(R), by (21.4). If f is monotone increasing on R, then it

follows that µh is a nonnegative distribution on R for each h 6= 0. This implies
that Dλf is a nonnegative distribution on R as well, since µh → Dλf as h → 0
with respect to the weak∗ topology on the dual of C∞

com(Rn), as before.

22 Lebesgue–Stieltjes measures

Let α(x) be a monotone increasing real-valued function on the real line. It is
well known that there is a unique nonnegative Borel measure µα on the real line
such that

µα((a, b)) = α(b−) − α(a+)(22.1)

for every a, b ∈ R with a < b. Equivalently,

µα([a, b]) = α(b+) − α(a−)(22.2)

for every a, b ∈ R with a ≤ b, because every closed interval in the real line can
be expressed as the intersection of a decreasing sequence of open intervals, and
every open interval can be expressed as the union of an increasing sequence of
closed intervals. Similarly, µα can be characterized by the property that

µα((a, b]) = α(b+) − α(a+)(22.3)

for every a, b ∈ R with a, b, or the property that

µα([a, b)) = µ(b−) − µ(a−)(22.4)
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for every a, b ∈ R with a < b. In particular, if α(x) = x for every x ∈ R, then
µα is the same as ordinary Lebesgue measure on R. Note that

µα({a}) = α(a+) − α(a−)(22.5)

for each a ∈ R, by applying (22.2) with a = b. Thus discontinuities of α
correspond exactly to points a ∈ R such that µα > 0.

One way to get µα for an arbitrary monotone increasing function α on R is
to start with the corresponding Riemann–Stieltjes integral

∫

R

φdα(22.6)

of a continuous real-valued function φ with compact support on R, as in Section
20. This defines a nonnegative linear functional on Ccom(R), and the Riesz
representation theorem implies that there is a unique nonnegative Borel measure
µα on R such that (22.6) is equal to the Lebesgue integral

∫

R

φdµα(22.7)

of φ with respect to µα for each φ ∈ Ccom(R). One check that µα satisfies
the conditions in the previous paragraph, by approximating indicator functions
of intervals by nonnegative continuous functions on R. Conversely, if µα is a
nonnegative Borel measure on R that satisfies the conditions described in the
preceding paragraph, then it is easy to see that the Lebesgue integral (22.7) of
φ ∈ Ccom(R) is the same as the Riemann–Stieltjes integral (22.6). Alternatively,
one can start by defining µα on finite unions of intervals in R as in the previous
paragraph, and then show that µα can be extended to a countably-additive
Borel measure on R. As another approach, if α is continuous and strictly
increasing, then α is a homeomorphism onto α(R), and α(R) is either an open
interval, an open half-line, or the whole real line. In this case, one can simply
take µα(E) to be the Lebesgue measure of α(E), and otherwise there are some
related constructions of µα.

Now let µ be a nonnegative Borel measure on R such that µ(E) < ∞ for
every bounded Borel set E ⊆ R. It is well known that µ = µα for some monotone
increasing real-valued function α on R. This is simpler when µ(R) < +∞, or
at least µ((−∞, 0)) < +∞, in which case one can take

α(x) = µ((−∞, x))(22.8)

for each x ∈ R. One could also take

α(x) = µ((−∞, x])(22.9)

for each x ∈ R, which is the same as (22.8) when µ({x}) = 0, and which has the
same one-sided limits at every point in R. Note that (22.8) is left continuous
on R, which means that α(x−) = α(x) for every x ∈ R, while (22.9) is right
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continuous on R, in the sense that α(x+) = α(x) for every x ∈ R. Both (22.8)
and (22.9) have the property that α(x) → 0 as x → −∞. There are analogous
but more complicated choices of α based at any point in R instead of −∞,
which do not require any additional finiteness assumptions on µ.

If α1(x) and α2(x) are monotone increasing real-valued functions on R with
the same one-sided limits at each point, so that α1(x+) = α2(x+) and α1(x−) =
α2(x−) for every x ∈ R, then the corresponding Borel measures µα1

and µα2

are the same. In this case, α1 and α2 have the same set of discontinuities, and
α1(x) = α2(x) when α1 or equivalently α2 is continuous at x. In particular,
α1(x) = α2(x) for all but finitely or countably many x ∈ R. If α1 and α2 are
both right continuous at every x ∈ R, or if they are both left continuous at every
x ∈ R, then it follows that α1(x) = α2(x) for every x ∈ R. Similarly, if α3(x)
is a monotone increasing real-valued function on R such that α3(x) − α1(x) is
constant, then µα1

= µα3
.

23 Differentiation of monotone functions

Let α(x) be a monotone increasing real-valued function on the real line. It is
well known that the classical derivative

α′(x) = lim
h→0

α(x + h) − α(x)

h
(23.1)

exists for almost every x ∈ R with respect to Lebesgue measure, in which case
we obviously have that α′(x) ≥ 0. Note that

α′(x) = lim
j→∞

j (α(x + 1/j) − α(x))(23.2)

for every x ∈ R for which (23.1) exists. In particular, this implies that α′(x) is
Lebesgue measurable on R. If a, b ∈ R and a < b, then we can apply Fatou’s
lemma to get that

∫ b

a

α′(x) dx ≤ lim inf
j→∞

∫ b

a

j (α(x + 1/j) − α(x)) dx.(23.3)

Of course,
∫ b

a

j (α(x + 1/j) − α(x)) dx = j

∫ b

a

α(x + 1/j) dx − j

∫ b

a

α(x) dx(23.4)

= j

∫ b+1/j

a+1/j

α(x) dx − j

∫ b

a

α(x) dx

= j

∫ b+1/j

b

α(x) dx − j

∫ a+1/j

a

α(x) dx

for each j. It is easy to see that

lim
j→∞

∫ y+1/j

y

α(x) dx = α(y+)(23.5)
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for each y ∈ R, so that

∫ b

a

α′(x) dx ≤ α(b+) − α(a+)(23.6)

for every a, b ∈ R with a < b. In fact, we have that

∫ b

a

α′(x) dx ≤ α(b−) − α(a+)(23.7)

for every a, b ∈ R with a < b, since one can apply (23.6) with b replaced by any
element of (a, b), and then pass to the limit to get (23.7).

Now let f be a locally integrable function on R, and put

F (y) =

∫ y

0

f(x) dx(23.8)

for each y ∈ R. More precisely, this is intended as an oriented integral, so that

F (y) =

∫

[0,y]

f(x) dx(23.9)

when x ≥ 0, and

F (y) = −

∫

[y,0]

f(x) dx(23.10)

when y ≤ 0, and at any rate the main point is that

F (b) − F (a) =

∫ b

a

f(x) dx(23.11)

for every a, b ∈ R with a < b. Lebesgue’s differentiation theorem implies that
F ′(y) exists and is equal to f(y) for almost every y ∈ R. Note that F (y) is
monotone increasing on R when f is a nonnegative real-valued function on R.

In particular, if α(x) is a monotone increasing function on R, then we can
apply this to f(x) = α′(x), to get a monotone increasing function F on R such
that F ′(y) = α′(y) for almost every y ∈ R. Let us check that β(y) = α(y)−F (y)
is also monotone increasing on R. If a, b ∈ R and a < b, then

β(b) − β(a) = (α(b) − α(a)) − (F (b) − F (a))(23.12)

= (α(b) − α(a)) −

∫ b

a

f(x) dx ≥ 0,

by (23.7) and (20.3). Thus β(y) is monotone increasing and β′(y) = 0 for almost
every y ∈ R, although β is not constant on R when α has jump discontinuities.
There are also well-known examples of continuous monotone increasing functions
on R that are not constant but have derivative equal to 0 almost everywhere,
such as the Cantor–Lebesgue function.
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