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Abstract

These notes deal with some spaces of power series over fields with
absolute value functions.
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Part I

Preliminaries

1 A few basic inequalities

If f is a nonnegative real-valued function on a nonempty finite set X, then put

∥f∥r =
( ∑

x∈X

f(x)r
)1/r

(1.1)
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for every positive real number r, and

∥f∥∞ = max
x∈X

f(x).(1.2)

Clearly
∥f∥∞ ≤ ∥f∥r ≤ (#X)1/r ∥f∥∞(1.3)

for every r > 0, where #X is the number of elements in X. Thus

lim
r→∞

∥f∥r = ∥f∥∞,(1.4)

by the well-known fact that a1/r → 1 as r → ∞ for every positive real number
a. If 0 < r1 ≤ r2 < ∞, then

∥f∥r2r2 =
∑
x∈X

f(x)r2 ≤ ∥f∥r2−r1
∞

∑
x∈X

f(x)r1 = ∥f∥r2−r1
∞ ∥f∥r1r1 ≤ ∥f∥r2r1 ,(1.5)

using (1.3) in the last step. It follows that

∥f∥r2 ≤ ∥f∥1−(r1/r2)
∞ ∥f∥r1/r2r1 ≤ ∥f∥r1 .(1.6)

If a, b are nonnegative real numbers and r is a positive real number, then

max(a, b) ≤ (ar + br)1/r,(1.7)

as in the first inequality in (1.3). Similarly, if 0 < r1 ≤ r2 < ∞, then

(ar2 + br2)1/r2 ≤ (ar1 + br1)1/r1 ,(1.8)

by (1.6), where X has exactly two elements. If 0 < r ≤ 1, then

(a+ b)r ≤ ar + br.(1.9)

This follows from (1.8), with r1 = r and r2 = 1, and by taking rth powers of
both sides of the inequality.

Let X be a nonempty finite set again, and let f and g be nonnegative real-
valued functions on X. If 1 ≤ r ≤ ∞, then Minkowski’s inequality for finite
sums says that

∥f + g∥r ≤ ∥f∥r + ∥g∥r.(1.10)

If 0 < r ≤ 1, then one can check that

∥f + g∥rr ≤ ∥f∥rr + ∥g∥rr,(1.11)

using (1.9). Of course, equality holds trivially in (1.10) and (1.11) when r = 1.
If r = ∞, then it is easy to verify (1.10) directly.
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2 q-Semimetrics

A nonnegative real-valued function d(x, y) defined for x, y in a set X is said
to be a q-semimetric on X for some positive real number q if it satisfies the
following three conditions: first,

d(x, x) = 0 for every x ∈ X;(2.1)

second,
d(x, y) = d(y, x) for every x, y ∈ X;(2.2)

and third,

d(x, z)q ≤ d(x, y)q + d(y, z)q for every x, y, z ∈ X.(2.3)

If, in addition,
d(x, y) > 0 when x ̸= y,(2.4)

then d(·, ·) is a q-metric on X. In the case where q = 1, d(·, ·) is said to be a
metric or semimetric, as appropriate.

A nonnegative real-valued function d(x, y) defined for x, y ∈ X is said to be
a semi-ultrametric on X if it satisfies (2.1), (2.2), and

d(x, z) ≤ max(d(x, y), d(y, z)) for every x, y, z ∈ X.(2.5)

If (2.4) holds too, then d(·, ·) is an ultrametric on X. An ultrametric or semi-
ultrametric on X is also considered to be a q-metric or q-semimetric on X with
q = ∞, respectively. As usual, the discrete metric is defined on X by (2.1) and
putting d(x, y) = 1 when x ̸= y,. It is easy to see that this is an ultrametric on
X.

Note that (2.3) is the same as saying that

d(x, z) ≤ (d(x, y)q + d(y, z)q)1/q for every x, y, z ∈ X.(2.6)

The right side of this inequality is automatically greater than or equal to the
right side of the inequality in (2.5), as in (1.7). Similarly, the right side of the
inequality in (2.6) decreases monotonically in q, as in (1.8). If 0 < q1 ≤ q2 ≤ ∞
and d(x, y) is a q2-metric or q2-semimetric on X, then it follows that d(x, y) is
a q1-metric or q1-semimetric on X as well, respectively.

Let 0 < q ≤ ∞ be given, and let d(x, y) be a q-metric or q-semimetric on X.
If 0 < a < ∞, then it is easy to see that

d(x, y)a(2.7)

is a (q/a)-metric or (q/a)-semimetric on X, as appropriate. As usual, q/a is
interpreted as being ∞ when q = ∞.

Let d(x, y) be a q-semimetric on X for some q > 0 again. If x ∈ X and
0 < r < ∞, then

B(x, r) = Bd(x, r) = {y ∈ X : d(x, y) < r}(2.8)
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is the open ball in X centered at x with radius r with respect to d. Similarly, if
x ∈ X and 0 ≤ r < ∞, then

B(x, r) = Bd(x, r) = {y ∈ X : d(x, y) ≤ r}(2.9)

is the closed ball in X centered at x with radius r with respect to d. If a is a
positive real number, then we can also consider open and closed balls in X with
respect to (2.7). Observe that

Bda(x, ra) = Bd(x, r)(2.10)

for every x ∈ X and r > 0, and that

Bda(x, ra) = Bd(x, r)(2.11)

for every x ∈ X and r ≥ 0.
As usual, U ⊆ X is said to be an open set with respect to d if for every

x ∈ U there is an r > 0 such that

B(x, r) ⊆ U.(2.12)

This defines a topology on X, by standard arguments. If a is a positive real
number, then the topologies determined on X by d(x, y) and d(x, y)a are the
same, because of (2.10).

One can check that open balls in X with respect to d(·, ·) are open sets with
respect to the topology determined by d(·, ·). More precisely, one can adapt
the well-known argument for q = 1 to any q > 0, or reduce to that case when
0 < q ≤ 1 using the fact that d(x, y)q is an ordinary semimetric on X. If d(·, ·)
is a q-metric on X, then X is Hausdorff with respect to the topology determined
by d(·, ·). Similarly, one can verify that closed balls in X with respect to d(·, ·)
are closed sets.

If q = ∞, so that d(·, ·) is a semi-ultrametric on X, then one can check that
closed balls in X of positive radius with respect to d(·, ·) are open sets. One can
also verify that open balls in X are closed sets in this case.

Suppose now that d(·, ·) is a q-metric on X for some q > 0. The notion
of a Cauchy sequence in X with respect to d(·, ·) can be defined in the same
way as for ordinary metrics. Similarly, X is said to be complete with respect
to d(·, ·) if every Cauchy sequence in X with respect to d(·, ·) converges to an
element of X with respect to the topology determined by d(·, ·). If a is a positive
real number, then it is easy to see that a sequence {xj}∞j=1 of elements of X
is a Cauchy sequence with respect to d(·, ·) if and only if {xj}∞j=1 is a Cauchy
sequence with respect to d(·, ·)a. It follows that X is complete with respect to
d(·, ·) if and only if X is complete with respect to d(·, ·)a.

If X is not already complete with respect to d(·, ·), then one can pass to a
completion using standard arguments. This is well known for ordinary metric
spaces, and one can reduce to that case by considering d(x, y)q as a metric on
X when 0 < q ≤ 1.
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If X, Y are sets, dX , dY are qX , qY -semimetrics on X, Y , respectively, for
some qX , qY > 0, and f is a mapping from X into Y , then uniform continuity
of f with respect to dX and dY can be defined in the usual way. If a, b are
positive real numbers, then it is easy to see that f is uniformly continuous with
respect to dX and dY if and only if f is uniformly continuous with respect to
daX and dbY . This can be used to reduce to the case of ordinary semimetrics, as
before.

3 q-Absolute value functions

A nonnegative real-valued function |x| on a field k is said to be a q-absolute
value function on k for some positive real number q if it satisfies the following
three conditions: first, for every x ∈ k,

|x| = 0 if and only if x = 0;(3.1)

second,
|x y| = |x| |y| for every x, y ∈ k;(3.2)

and third,
|x+ y|q ≤ |x|q + |y|q for every x, y ∈ k.(3.3)

If these conditions hold with q = 1, then | · | is said to be an absolute value
function on k. The standard absolute value functions on the fields R of real
numbers and C of complex numbers satisfy these conditions with q = 1.

A nonnegative real-valued function |·| on a field k is said to be an ultrametric
absolute value function on k if it satisfies (3.1), (3.2), and

|x+ y| ≤ max(|x|, |y|) for every x, y ∈ k.(3.4)

An ultrametric absolute value function on k is also considered as a q-absolute
value function with q = ∞. The trivial absolute value function is defined on a
field k by (3.1) and putting |x| = 1 when x ̸= 0. One can check that this defines
an ultrametric absolute value function on k.

As before, (3.3) is the same as saying that

|x+ y| ≤ (|x|q + |y|q)1/q for every x, y ∈ k.(3.5)

The right side of this inequality is automatically greater than or equal to the
right side of (3.4), as in (1.7). The right side of the inequality in (3.5) is also
monotonically decreasing in q, as in (1.8). If 0 < q1 ≤ q2 ≤ ∞ and | · | is a
q1-absolute value function on a field k, then it follows that |x| is a q2-absolute
value function on k too.

Suppose that |x| is a q-absolute value function on a field k for some q > 0.
If a is a positive real number, then it is easy to see that

|x|a(3.6)
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is a (q/a)-absolute value function on k. In particular, if |x| is an ultrametric
absolute value function on k, then (3.6) is an ultrametric absolute value function
on k as well.

Let |x| be a q-absolute value function on a field k for some q > 0 again. Using
(3.1) and (3.2), one can check that |1| = 1, where the first 1 is the multiplicative
identity element in k, and the second 1 is the multiplicative identity element in
R. If x ∈ k satisfies xn = 1 for some positive integer n, then it follows that
|x| = 1 too. In particular, | − 1| = 1.

Observe that
d(x, y) = |x− y|(3.7)

defines a q-metric on k. If | · | is the trivial absolute value function on k, then
(3.7) is the discrete metric on k. The standard Euclidean metrics on R and C
correspond to their standard absolute value functions as in (3.7).

The p-adic absolute value |x|p of a rational number x is defined for each
prime number p as follows. If x = 0, then |x|p = 0. Otherwise, if x ̸= 0, then
x can be expressed as pj (a/b) for some integers a, b, and j, where a, b ̸= 0 and
neither a nor b is a multiple of p, in which case

|x|p = p−j .(3.8)

One can verify that this is an ultrametric absolute value function on the field
Q of rational numbers. The corresponding ultrametric

dp(x, y) = |x− y|p(3.9)

is the p-adic metric on Q.
Let |x| be a q-absolute value function on any field k for some q > 0 again.

If k is not complete with respect to the q-metric (3.7), then one can pass to
a completion in a standard way. The field operations can be extended to the
completion, so that the completion is a field as well. Similarly, |x| can be
extended to a q-absolute value function on the completion, which corresponds
to the distance to 0 in the completion. The field Qp of p-adic numbers is
obtained by completing Q with respect to the p-adic absolute value function
|x|p for each prime number p.

Let k be a field, and suppose that |·|1, |·|2 are q1, q2-absolute value functions
on k for some q1, q2 > 0. We say that |·|1, |·|2 are equivalent if there is a positive
real number a such that

|x|2 = |x|a1(3.10)

for every x ∈ k. In this case,

|x− y|2 = |x− y|a1(3.11)

for every x, y ∈ k, so that the topologies determined on k by the q1, q2-metrics
associated to | · |1, | · |2 are the same. Conversely, it is well known that | · |1 and
| · |2 are equivalent on k when the topologies determined on k by the associated
q1, q2-metrics are the same. If | · | is a q-absolute value function on Q for some
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q > 0, then a famous theorem of Ostrowski implies that | · | is either trivial on
Q, or | · | is equivalent to the standard (Euclidean) absolute value function on
Q, or | · | is equivalent to the p-adic absolute value function on Q for some prime
number p.

4 Some additional properties

Let k be a field, and let Z+ be the set of positive integers, as usual. If x ∈ k and
n ∈ Z+, then we let n · x be the sum of n x’s in k. Also let | · | be a q-absolute
value function on k for some q > 0. If there are n ∈ Z+ such that |n · 1| is
arbitrarily large, where 1 is the multiplicative identity element in k, then | · | is
said to be archimedean on k. Otherwise, | · | is said to be non-archimedean on
k when |n · 1| is bounded for n ∈ Z+. If | · | is an ultrametric absolute value
function on k, then it is easy to see that |n ·1| ≤ 1 for every n ∈ Z+, so that | · | is
non-archimedean on k. Conversely, if | · | is a non-archimedean q-absolute value
function on k for some q > 0, then it is well known that | · | is an ultrametric
absolute value function on k. If | · | is a q-absolute value function on k for some
q > 0, and if |n · 1| > 1 for some n ∈ Z+, then one can check more directly that
| · | is archimedean on k, because |nj · 1| = |(n · 1)j | = |n · 1|j → ∞ as j → ∞.

Let | · | be a q-absolute value function on a field k for some q > 0 again. If
k has positive characteristic, then | · | is automatically non-archimedean on k,
because there are only finitely many elements of k of the form n ·1 with n ∈ Z+.
Otherwise, if k has characteristic 0, then there is a natural embedding of Q
into k, and | · | induces a q-absolute value function on Q. In this case, | · | is
archimedean on k if and only if the induced q-absolute value function on Q is
archimedean. If | · | is archimedean on k, and k is complete with respect to the
associated q-metric, then another famous theorem of Ostrowski implies that k is
isomorphic to R or C, with | · | corresponding to a q-absolute value function on
R or C that is equivalent to the standard (Euclidean) absolute value function.

Let | · | be a q-absolute value function on any field k for some q > 0 again,
so that

{|x| : x ∈ k, x ̸= 0}(4.1)

is a subgroup of the multiplicative group R+ of positive real numbers. We say
that | · | is discrete on k if the real number 1 is not a limit point of (4.1) with
respect to the standard topology on R. Otherwise, one can verify that (4.1) is
dense in R+ with respect to the topology induced by the standard topology on
R. Put

ρ1 = sup{|x| : x ∈ k, |x| < 1},(4.2)

which is a nonnegative real number less than or equal to 1. One can check that
ρ1 = 0 if and only if | · | is trivial on k. One can also verify that ρ1 < 1 if and
only if | · | is discrete on k. If | · | is nontrivial and discrete on k, then 0 < ρ1 < 1,
and it is not difficult to see that the supremum in (4.2) is attained. In this case,
it is not too hard to show that (4.1) consists exactly of integer powers of ρ1.
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Suppose that |·| is archimedean on k, so that k has characteristic 0, as before.
In this situation, the induced q-absolute value function on Q is archimedean as
well. Hence the induced q-absolute value function on Q is equivalent to the
standard Euclidean absolute value function on Q, by the theorem of Ostrowski
mentioned in the previous section. In particular, the induced q-absolute value
function on Q is not discrete, which implies that | · | is not discrete on k. If | · |
is a discrete q-absolute value function on a field k, then it follows that | · | is
non-archimedean on k.

5 q-Seminorms

Let k be a field, let | · | be a qk-absolute value function on k for some qk > 0,
and let V be a vector space over k. A nonnegative real-valued function N on V
is said to be a q-seminorm on V with respect to | · | on k for some positive real
number q if it satisfies the following two conditions: first,

N(t v) = |t|N(v) for every v ∈ V and t ∈ k;(5.1)

and second,

N(v + w)q ≤ N(v)q +N(w)q for every v, w ∈ V.(5.2)

If, in addition,
N(v) > 0 when v ̸= 0,(5.3)

then N is said to be a q-norm on V . Of course, (5.1) implies that N(0) = 0. If
q = 1, then N is said to be a norm or seminorm on V , as appropriate.

A nonnegative real-valued function N on V is said to be a semi-ultranorm
on V with respect to | · | on k if it satisfies (5.1) and

N(v + w) ≤ max(N(v), N(w)) for every v, w ∈ V.(5.4)

If (5.3) holds too, then N is an ultranorm on V . As usual, an ultranorm or
semi-ultranorm may be considered as a q-norm or q-seminorm, respectively,
with q = ∞.

As before, (5.2) is the same as saying that

N(v + w) ≤ (N(v)q +N(w)q)1/q for every v, w ∈ V.(5.5)

The right side of this inequality is automatically greater than or equal to the
right side of the inequality in (5.4), as in (1.7). The right side of the inequality
in (5.5) also decreases monotonically in q, as in (1.8). If 0 < q1 ≤ q2 ≤ ∞ and
N is a q2-norm or q2-seminorm on V , then it follows that N is a q1-norm or
q1-seminorm on V as well, respectively.

If N is a q-norm or q-seminorm on V with respect to | · | on k for some q > 0,
then

d(v, w) = dN (v, w) = N(v − w)(5.6)
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is a q-metric or q-semimetric on V , as appropriate. Suppose for the moment
that | · | is the trivial absolute value function on k, and put N(0) = 0 and
N(v) = 1 when v ∈ V and v ̸= 0. This is the trivial ultranorm on V , for which
the corresponding ultrametric is the discrete metric on V .

Let | · | be a qk-absolute value function on k for some qk > 0 again, and let
N be a q-seminorm on V with respect to | · | on k for some q > 0. Note that | · |
has to be a q-absolute value function on k when N(v) > 0 for some v ∈ V . Let
a be a positive real number, and remember that | · |a is a (qk/a)-absolute value
function on k, as in Section 3. Similarly,

N(v)a(5.7)

is a (q/a)-seminorm on V with respect to | · |a on k, and a (q/a)-norm on V
when N is a q-norm on V .

Suppose now that N is a q-norm on V . If V is not already complete with
respect to the associated q-metric, then one can pass to a completion of V , as
usual. The vector space operations on V can be extended to the completion,
so that the completion is also a vector space over k. One can extend N to a
q-norm on the completion as well, which corresponds to the distance to 0 in
the completion. If V is complete, and k is not complete with respect to the
qk-metric associated to | · |, then scalar multiplication on V can be extended to
the completion of k, so that V becomes a vector space over the completion of
k, and N becomes a q-norm on V as a vector space over the completion of k.

If V is complete, then V is a q-Banach space with respect to N . If q = 1,
then one may simply say that V is a Banach space. One may wish to include
completeness of k in the definition of a q-Banach space.

Of course, k may be considered as a one-dimensional vector space over itself,
and | · | may be considered as a qk-norm on k with respect to itself.

6 Bounded linear mappings

Let k be a field with a qk-absolute value function | · | for some qk > 0, let V ,
W be vector spaces over k, and let NV , NW be qV , qW -seminorms on V , W ,
respectively, with respect to |·| on k, and for some qV , qW > 0. A linear mapping
T from V into W is bounded with respect to NV , NW if

NW (T (v)) ≤ C NV (v)(6.1)

for some C ≥ 0 and every v ∈ V . This implies that T is uniformly continuous
with respect to the qV , qW -semimetrics on V , W associated to NV , NW , respec-
tively, by a standard argument. If | · | is nontrivial on k, and if a linear mapping
T from V into W is continuous at 0 with respect to the topologies determined
on V , W by the qV , qW -semimetrics associated to NV , NW , respectively, then
one can check that T is bounded as a linear mapping from V into W . More
precisely, it suffices to ask that NW (T (v)) be bounded on a ball in V centered
at 0 with positive radius with respect to NV , in place of continuity of T at 0.
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Let BL(V,W ) be the space of bounded linear mappings from V into W with
respect to NV , NW . If T ∈ BL(V,W ), then put

∥T∥op = ∥T∥op,VW = inf{C ≥ 0 : (6.1) holds},(6.2)

and observe that the infimum is automatically attained. One can check that
BL(V,W ) is a vector space over k with respect to pointwise addition and scalar
multiplication, and that (6.2) is a qW -seminorm on BL(V,W ) with respect to
| · | on k. If NW is a qW -norm on W , then (6.2) is a qW -norm on BL(V,W ). If
W is also complete with respect to the qW -metric associated to NW , then one
can verify that BL(V,W ) is complete with respect to the qW -metric associated
to (6.2).

Let Z be another vector space over k, with a qZ-seminorm NZ with respect
to | · | on k for some qZ > 0. If T1, T2 are bounded linear mappings from V into
W and from W into Z with respect to NV , NW , and NZ , as appropriate, then
their composition T2 ◦ T1 is a bounded linear mapping from V into Z, with

∥T2 ◦ T1∥op,V Z ≤ ∥T1∥op,VW ∥T2∥op,WZ .(6.3)

In particular, the space BL(V ) = BL(V, V ) of bounded linear mappings from V
into itself is closed under compositions. Of course, the identity mapping I = IV
on V is bounded, with ∥I∥op = 1 when NV (v) > 0 for some v ∈ V .

Suppose that NV , NW are qV , qW -norms on V , W , respectively, and that
V0 is a dense linear subspace of V with respect to the qV -metric associated to
NV . Let T0 be a bounded linear mapping from V0 into W , with respect to the
restriction of NV to V0. As before, T0 is uniformly continuous with respect to
the qV , qW -metrics associated to NV , NW . If W is complete with respect to
the qW -metric associated to NW , then T0 has a unique extension to a uniformly
continuous mapping from V intoW . This follows from a well-known result about
metric spaces when qV = qW = 1, and otherwise one can reduce to the case of
metric spaces or use analogous arguments for q-metric spaces. One can check
that this extension is a bounded linear mapping from V into W in this situation,
with the same operator qW -norm as on V0. More precisely, completeness of W
is only needed to get the existence of the extension, and ordinary continuity is
sufficient for uniqueness.

7 Submultiplicative q-seminorms

Let k be a field, and let A be an (associative) algebra over k. This means that
A is a vector space over k equipped with a binary operation of multiplication,
which is bilinear as a mapping from A × A into A, and which satisfies the
associative law. Also let | · | be a qk-absolute value function on k for some
qk > 0, and let N be a q-seminorm on A as a vector space over k with respect
to | · | on k for some q > 0. To say that N is submultiplicative on A means that

N(x y) ≤ N(x)N(y)(7.1)
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for every x, y ∈ A. Similarly, N is said to be multiplicative on A if

N(x y) = N(x)N(y)(7.2)

for every x, y ∈ A.
Suppose that ∥ · ∥ is a submultiplicative q-norm on A with respect to | · | on

k for some q > 0. If A is complete with respect to the q-metric associated to
∥ · ∥, then (A, ∥ · ∥) is said to be a q-Banach algebra over k. As usual, one may
simply say that (A, ∥ · ∥) is a Banach algebra when q = 1. Sometimes one also
asks that A have a multiplicative identity element e such that ∥e∥ = 1, and we
shall normally follow that convention here. If A is not complete, then one can
pass to a completion, as in Section 5.

Let X be a nonempty topological space, and let C(X, k) be the space of
continuous k-valued functions on X, using the topology determined on k by the
qk-metric associated to | · |. Of course, C(X, k) contains the constant k-valued
functions on X, including the function 1X whose value at every point in X is
the multiplicative identity element 1 in k. Note that C(X, k) is a commutative
algebra over k with respect to pointwise addition and multiplication of functions,
and that 1X is the multiplicative identity element in C(X, k). If E is a nonempty
compact subset of X and f ∈ C(X, k), then put

∥f∥sup,E = sup
x∈E

|f(x)|,(7.3)

where in fact the supremum is attained, by standard results. One can check that
this defines a submultiplicative qk-seminorm on C(X, k), which is the supremum
qk-seminorm associated to E.

Similarly, let Cb(X, k) be the space of continuous k-valued functions f on X
that are bounded, in the sense that |f(x)| has a finite upper bound on X. This
is a subalgebra of C(X, k) that contains the constant functions. If f ∈ Cb(X, k),
then we put

∥f∥sup = sup
x∈X

|f(x)|,(7.4)

where now the supremum is finite by hypothesis. This defines a submultiplica-
tive qk-norm on Cb(X, k), which is the supremum qk-norm. If X is compact,
then C(X, k) = Cb(X, k), and (7.4) is the same as (7.3) with E = X. Note
that ∥1X∥sup = 1. If k is complete with respect to the qk-metric associated to
| · |, then Cb(X, k) is complete with respect to the qk-metric associated to (7.4),
by standard arguments. Thus Cb(X, k) is a qk-Banach algebra with respect to
(7.4).

Let V be a vector space over k, and let NV be a qV -seminorm on V with re-
spect to | · | on k for some qV > 0. The space BL(V ) of bounded linear mappings
from V into itself with respect to NV is an algebra over k, with composition of
linear mappings as multiplication, and the corresponding operator qV -seminorm
∥ · ∥op is submultiplicative on BL(V ). Suppose that NV is a qV -norm on V , and
that V ̸= {0}, so that ∥ · ∥op is a qV -norm on BL(V ), and ∥I∥op = 1. If V is
complete with respect to the qV -metric associated to NV , then BL(V ) is com-
plete with respect to the qV -metric associated to ∥ · ∥op, as before. Under these
conditions, (BL(V ), ∥ · ∥op) is a qV -Banach algebra over k.
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8 Nonnegative functions

Let X be a nonempty set, and let f be a nonnegative real-valued function on
X. The support of f is the set of x ∈ X such that f(x) > 0. Let us say that f
vanishes at infinity on X if for every ϵ > 0 we have that

f(x) < ϵ(8.1)

for all but finitely many x ∈ X. In particular, this holds when the support of f
has only finitely many elements. If f vanishes at infinity on X, then it is easy
to see that the support of f has only finitely or countably many elements, by
applying the previous definition to ϵ = 1/j, j ∈ Z+.

The sum ∑
x∈X

f(x)(8.2)

is defined as a nonnegative extended real number to be the supremum of the
sums ∑

x∈A

f(x)(8.3)

over all nonempty finite subsets A of X. If the supremum is finite, then f is
said to be summable on X. Of course, if f has finite support in X, then (8.2)
reduces to a finite sum. If f is summable on X, then one can check that f
vanishes at infinity on X. Let us also permit f to take values in the set of
nonnegative extended real numbers, with (8.2) equal to +∞ when f(x) = +∞
for any x ∈ X.

If t is a positive real number, then∑
x∈X

t f(x) = t
∑
x∈X

f(x),(8.4)

where t · (+∞) is interpreted as being +∞, as usual. If g is another nonnegative
extended real-valued function on X, then∑

x∈X

(f(x) + g(x)) =
∑
x∈X

f(x) +
∑
x∈X

g(x),(8.5)

where the sum of any nonnegative extended real number and +∞ is interpreted
as being +∞. These statements can be verified directly from the definitions.

Let f be a nonnegative real-valued function on X again, and let r be a
positive real number. If f(x)r is summable on X, then f is r-summable on X,
and

∥f∥r =
( ∑

x∈X

f(x)r
)1/r

(8.6)

is defined as a nonnegative real number. Otherwise, (1.1) may be interpreted
as being +∞. Similarly,

∥f∥∞ = sup
x∈X

f(x)(8.7)
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is defined as a nonnegative extended real number, which is finite when f is
bounded on X. Note that f is bounded on X when it vanishes at infinity on X,
in which case the supremum on the right side of (8.7) is automatically attained.

If t is a positive real number, then

∥t f∥r = t ∥f∥r(8.8)

for every r > 0, with t · (+∞) = +∞, as before. If 0 < r1 ≤ r2 ≤ ∞, then

∥f∥r2 ≤ ∥f∥1−(r1/r2)
∞ ∥f∥r1/r2r1 ≤ ∥f∥r1 ,(8.9)

as in (1.3) and (1.6). If f is r-summable on X for any positive real number r,
then f(x)r vanishes at infinity on X, and hence f vanishes at infinity on X. In
this case, one can use (8.9) to check that

lim
r→∞

∥f∥r = ∥f∥∞,(8.10)

as in (1.4).
If g is another nonnegative real-valued function on X and 1 ≤ r ≤ ∞, then

Minkowski’s inequality for arbitrary sums states that

∥f + g∥r ≤ ∥f∥r + ∥g∥r.(8.11)

If 0 < r ≤ 1, then
∥f + g∥rr ≤ ∥f∥rr + ∥g∥rr,(8.12)

as in (1.11). In both cases, it follows that ∥f + g∥r < ∞ when ∥f∥r, ∥g∥r < ∞,
which can also be verified more directly.

Let {fj}∞j=1 be a sequence of nonnegative real-valued functions on X, and
suppose that {fj}∞j=1 converges pointwise to a nonnegative real-valued function
f on X. Under these conditions,∑

x∈X

f(x) ≤ sup
j≥1

( ∑
x∈X

fj(x)
)
,(8.13)

which is a simplified version of Fatou’s lemma for sums. To see this, let A be a
nonempty finite subset of X, and observe that∑

x∈A

f(x) = lim
j→∞

(∑
x∈A

fj(x)
)
≤ sup

j≥1

(∑
x∈A

fj(x)
)
≤ sup

j≥1

( ∑
x∈X

fj(x)
)
.(8.14)

This implies (8.13), by taking the supremum over A. If {fj}∞j=1 increases mono-
tonically in j, so that fj(x) ≤ fj+1(x) for every j ≥ 1 and x ∈ X, then∑

x∈X

fj(x) →
∑
x∈X

f(x)(8.15)

as j → ∞. This is the analogue of the monotone convergence theorem for sums,
which can be obtained from (8.13). Similarly, one can check that

sup
x∈X

fj(x) → sup
x∈X

f(x)(8.16)

as j → ∞ in this case.
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9 Infinite series

Let k be a field with a qk-absolute value function | · | for some qk > 0, and let
V be a vector space over k with a q-norm N with respect to | · | on k for some
q > 0. An infinite series

∑∞
j=1 vj with vj ∈ V for each j ≥ 1 is said to converge

in V with respect to N if the corresponding sequence of partial sums
∑n

j=1 vj
converges in V with respect to the q-metric associated to N , in which case the
value of the infinite sum is defined to be the limit of the sequence of partial
sums. If

∑∞
j=1 vj converges in V and t ∈ k, then

∑∞
j=1 t vj converges in V too,

with
∞∑
j=1

t vj = t

∞∑
j=1

vj .(9.1)

Similarly, if
∑∞

j=1 wj is another convergent series in V , then
∑∞

j=1(vj + wj)
converges as well, with

∞∑
j=1

(vj + wj) =

∞∑
j=1

vj +

∞∑
j=1

wj .(9.2)

If
∑∞

j=1 aj is an infinite series of nonnegative real numbers, then the se-

quence
∑n

j=1 aj increases monotonically. In this case,
∑∞

j=1 aj converges in R
with respect to the standard absolute value function if and only if the partial
sums

∑n
j=1 aj have a finite upper bound. Otherwise, if the partial sums are

unbounded, then one may interpret
∑∞

j=1 aj as being +∞. This is equivalent
to considering the sum

∑
j∈Z+

aj as a nonnegative extended real number as in
the previous section.

Let
∑∞

j=1 vj be an infinite series with terms in V again. The sequence∑n
j=1 vj is a Cauchy sequence in V with respect to the q-metric associated to

N if and only if for every ϵ > 0 there is an L ∈ Z+ such that

N
( n∑

j=l

vj

)
< ϵ.(9.3)

for every n ≥ l ≥ L. Of course, if V is complete with respect to the q-metric
associated to N , then it follows that

∑∞
j=1 vj converges in V with respect to N .

Note that the Cauchy condition just mentioned implies that

lim
j→∞

N(vj) = 0,(9.4)

by taking l = n.
If q < ∞, then

N
( n∑

j=l

vj

)q

≤
n∑

j=l

N(vj)
q(9.5)

when n ≥ l ≥ 1, by the q-norm version (5.2) of the triangle inequality. In
this situation,

∑∞
j=1 vj is said to converge q-absolutely with respect to N when
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∑∞
j=1 N(vj)

q converges as an infinite series of nonnegative real numbers. This

implies that the sequence
∑n

j=1 vj of partial sums is a Cauchy sequence in V with
respect to the q-metric associated to N , using (9.3) and (9.5). If V is complete
with respect to the q-metric associated to N , so that

∑∞
j=1 vj converges in V

with respect to N , then we can also use (9.5) to get that

N
( ∞∑

j=1

vj

)q

≤
∞∑
j=1

N(vj)
q(9.6)

under these conditions.
If q = ∞, then

N
( n∑

j=l

vj

)
≤ max

l≤j≤n
N(vj)(9.7)

when n ≥ l ≥ 1, by the ultranorm version (5.4) of the triangle inequality. Thus
(9.4) imples that the sequence of partial sums

∑n
j=1 vj is a Cauchy sequence in

V with respect to the ultrametric associated to N in this case, as in (9.3). If
V is complete with respect to the ultrametric associated to N , then

∑∞
j=1 vj

converges in V with respect to N , and we have that

N
( ∞∑

j=1

vj

)
≤ max

j≥1
N(vj),(9.8)

using (9.7) again. Note that the maximum on the right side of (9.8) is attained
when (9.4) holds.

10 Weighted ℓr spaces

Let X be a nonempty set, and let w(x) be a nonnegative real-valued function
on X. Also let k be a field with a qk-absolute value function | · | for some qk > 0,
let V be a vector space over k, and let N be a q-seminorm on V with respect
to | · | on k for some q > 0. If r is a positive real number, then we let

ℓrw(X,V ) = ℓrw,N (X,V )(10.1)

be the space of V -valued functions f onX such thatN(f(x))w(x) is r-summable
as a nonnegative real-valued function on X, which is to say that N(f(x))r w(x)r

is summable on X. If f has this property, then we put

∥f∥r,w = ∥f∥ℓrw(X,V ) =
( ∑

x∈X

N(f(x))r w(x)r
)1/r

,(10.2)

where the sum is as defined in Section 8.
Similarly, let

ℓ∞w (X,V ) = ℓ∞w,N (X,V )(10.3)
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be the space of V -valued functions f on X such that N(f(x))w(x) is bounded
on X. In this case, we put

∥f∥∞,w = ∥f∥ℓ∞w (X,V ) = sup
x∈X

(N(f(x))w(x)).(10.4)

If f is a V -valued function on X that is not in ℓrw(X,V ) for some r > 0, then
we may interpret ∥f∥r,w as being +∞, as usual. Equivalently,

∥f∥r,w = ∥N(f)w∥r(10.5)

for every V -valued function f on X and r > 0, where N(f) is the nonnegative
real-valued function N(f(x)) on X, and ∥ · ∥r is as in Section 8. If w(x) = 1 for
every x ∈ X, then we may drop w from the notation in (10.1), (10.2), (10.3),
and (10.4).

If f ∈ ℓrw(X,V ) for some r > 0 and t ∈ k, then t f ∈ ℓrw(X,V ) too, with

∥t f∥r,w = |t| ∥f∥r,w.(10.6)

One can check directly that ℓrw(X,V ) is also closed under finite sums for each
r > 0, so that ℓrw(X,V ) is a vector space with respect to pointwise addition and
scalar multiplication. More precisely, if f , g are V -valued functions on X and
q = ∞, then it is easy to see that

∥f + g∥∞,w ≤ max(∥f∥∞,w, ∥g∥∞,w).(10.7)

Similarly, if 0 < r ≤ q and r < ∞, then

∥f + g∥rr,w ≤ ∥f∥rr,w + ∥g∥rr,w.(10.8)

Remember that N may be considered as an r-seminorm on V when 0 < r ≤ q,
as in Section 5. This permits (10.8) to be obtained directly from the definitions.
If q ≤ r and q < ∞, then

∥f + g∥qr,w ≤ ∥f∥qr,w + ∥g∥qr,w.(10.9)

This can be derived from Minkowski’s inequality for sums, with exponent r/q ≥
1. It follows that ∥ · ∥r,w defines an r-seminorm on ℓrw(X,V ) when 0 < r ≤ q,
and a q-seminorm when q ≤ r. If N is a q-norm on V , and w(x) > 0 for every
x ∈ X, then ∥ · ∥r,w is an r-norm on ℓrw(X,V ) when 0 < r ≤ q, and a q-norm
when q ≤ r. If V is also complete with respect to the q-metric associated to N ,
then one can verify that ℓrw(X,V ) is complete with respect to the q or r-metric
associated to ∥ · ∥r,w, using standard arguments.

If f is a V -valued function on X and 0 < r1 ≤ r2 ≤ ∞, then

∥f∥r2,w ≤ ∥f∥r1,w,(10.10)

by (8.9) and (10.5). Hence

ℓr1w (X,V ) ⊆ ℓr2w (X,V )(10.11)
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when r1 ≤ r2. If f ∈ ℓrw(X,V ) for some positive real number r, then

lim
r→∞

∥f∥r,w = ∥f∥∞,w,(10.12)

by (8.10) and (10.5). Similarly, if w1, w2 are nonnegative real-valued functions
on X such that w1(x) ≤ w2(x) for every x ∈ X, then

∥f∥r,w1
≤ ∥f∥r,w2

(10.13)

for every f ∈ c(X,V ) and r > 0. This implies that

ℓrw2
(X,V ) ⊆ ℓrw1

(X,V )(10.14)

for every r > 0 in this case.

11 Vanishing at infinity

Let X be a nonempty set, let k be a field, and let V be a vector space over k.
The space

c(X,V )(11.1)

of all V -valued functions on X is a vector space over k with respect to pointwise
addition and scalar multiplication. As before, the support of a f ∈ c(X,V ) is
the set of x ∈ X such that f(x) ̸= 0. Let

c00(X,V )(11.2)

be the space of f ∈ c(X,V ) such that the support of f has only finitely many
elements. This is a linear subspace of c(X,V ), which is the same as c(X,V )
when X has only finitely many elements.

Let | · | be a qk-absolute value function on k for some qk > 0, and let N be
a q-seminorm on V with respect to | · | on k for some q > 0. If f ∈ c(X,V ),
then the support of N(f(x)), as a real-valued function on X, is contained in the
support of f ∈ c(X,V ). Let

c00,N (X,V )(11.3)

be the space of f ∈ c(X,V ) such that N(f(x)) has finite support in X. It is easy
to see that c00,N (X,V ) is a linear subspace of c(X,V ) that contains c00(X,V ).
If N is a q-norm on V , then the support of f ∈ c(X,V ) and N(f(x)) are the
same, and hence c00,N (X,V ) is the same as c00(X,V ).

Let w(x) be a nonnegative real-valued function on X. A V -valued function
f on X is said to vanish at infinity on X with respect to N and w if for every
ϵ > 0 we have that

N(f(x))w(x) < ϵ(11.4)

for all but finitely many x ∈ X. Equivalently, this means that N(f(x))w(x)
vanishes at infinity as a nonnegative real-valued function on X, as in Section 8.
Let

c0,w(X,V ) = c0,w,N (X,V )(11.5)
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be the space of f ∈ c(X,V ) that vanish with respect to N and w. As before,
we may drop w from this terminology and notation when w(x) = 1 for every
x ∈ X.

It is easy to see that c0,w(X,V ) is a linear subspace of c(X,V ). Observe
that

c0,w(X,V ) ⊆ ℓ∞w (X,V ),(11.6)

because N(f(x))w(x) is bounded on X when it vanishes at infinity on X. In
this case, the supremum on the right side of (10.4) is automatically attained.
One can also check that c0,w(X,V ) is a closed set in ℓ∞w (X,V ), with respect to
the q-semimetric associated to (10.4).

Clearly
c00(X,V ) ⊆ c00,N (X,V ) ⊆ c0,w(X,V ).(11.7)

One can verify that c0,w(X,V ) is the closure of c00(X,V ) in ℓ∞w (X,V ), with
respect to the q-semimetric associated to (10.4).

If 0 < r < ∞, then
ℓrw(X,V ) ⊆ c0,w(X,V ).(11.8)

More precisely, if f ∈ ℓrw(X,V ), then N(f(x))w(x) is r-summable on X, and
hence vanishes at infinity on X, as in Section 8.

We also have that

c00(X,V ) ⊆ c00,N (X,V ) ⊆ ℓrw(X,V )(11.9)

for every r > 0. If r < ∞, then one can check that c00(X,V ) is dense in
ℓrw(X,V ), with respect to the q or r-semimetric associated to (10.2), as appro-
priate.

Let w1, w2 be nonnegative real-valued functions on X such that w1(x) ≤
w2(x) for every x ∈ X. If f ∈ c(X,V ) vanishes at infinity on X with respect to
N and w2, then f vanishes at infinity with respect to N and w1 as well. Hence

c0,w2(X,V ) ⊆ c0,w1(X,V )(11.10)

in this situation.

12 Multiplication operators

Let k be a field, and let A be an algebra over k. If a ∈ A, then

Ma(x) = a x(12.1)

defines a linear mapping from A into itself, which is the (left) multiplication
operator associated to a. One can check that

Ma ◦Mb = Ma b(12.2)

for every a, b ∈ A, using associativity of multiplication on A.
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Let | · | be a qk-absolute value function on k for some qk > 0, and let N be
a submultiplicative q-seminorm on A with respect to | · | on k for some q > 0.
Observe that Ma is a bounded linear mapping from A into itself with respect
to N on A for each a ∈ A, with

∥Ma∥op ≤ N(a),(12.3)

where ∥ · ∥op is the operator q-seminorm corresponding to N . If A has a multi-
plicative identity element e with N(e) = 1, then

∥Ma∥op = N(a)(12.4)

for every a ∈ A.
Now let X be a nonempty set, and let V be a vector space over k. If

a ∈ c(X, k) and f ∈ c(X,V ), then put

(Ma(f))(x) = a(x) f(x)(12.5)

for each x ∈ X, so that Ma(f) = a f ∈ c(X,V ). This defines a linear mapping
from c(X,V ) into itself, which is the multiplication operator associated to a.
Of course, Ma maps c00(X,V ) into itself as well. Note that (12.2) holds for
every a, b ∈ c(X, k) in this situation too. If V = k, then this definition of Ma

corresponds to the previous one with A = c(X, k), as a commutative algebra
with respect to pointwise multiplication of functions. If a(x) ̸= 0 for every
x ∈ X, then Ma is a one-to-one linear mapping from c(X,V ) onto itself, with
inverse M1/a.

Let| · | be a qk-absolute value function on k again, and let w1, w2 be non-
negative real-valued functions on X. Suppose that a ∈ c(X, k) satisfies

|a(x)|w1(x) ≤ C w2(x)(12.6)

for some C ≥ 0 and every x ∈ X. Let NV be a qV -seminorm on V with respect
to | · | on k for some qV > 0. If f ∈ c(X,V ), then

NV ((Ma(f))(x))w1(x) = |a(x)|NV (f(x))w1(x) ≤ C NV (f(x))w2(x)(12.7)

for every x ∈ X. This implies that

∥Ma(f)∥r,w1 ≤ C ∥f∥r,w2 .(12.8)

for every r > 0. Thus Ma defines a bounded linear mapping from ℓrw2
(X,V ) into

ℓrw1
(X,V ) for every r > 0, with operator qV or r-seminorm less than or equal

to C. Similarly, (12.7) implies that Ma maps c0,w2
(X,V ) into c0,w1

(X,V ).
Suppose now that a ∈ c(X, k) satisfies

w2(x) ≤ C ′ |a(x)|w1(x)(12.9)

for some C ′ ≥ 0 and every x ∈ X. This implies that

NV (f(x))w2(x) ≤ C ′ |a(x)|NV (f(x))w1(x)(12.10)

≤ C ′ NV ((Ma(f))(x))w1(x)
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for every f ∈ c(X,V ) and x ∈ X. It follows that

∥f∥r,w2
≤ C ′ ∥Ma(f)∥r,w1

(12.11)

for every f ∈ c(X,V ) and r > 0. If a(x) ̸= 0 for every x ∈ X, then (12.9) is the
same as saying that

(1/|a(x)|)w2(x) ≤ C ′ w1(x)(12.12)

for every x ∈ X. In this case, M1/a defines a bounded linear mapping from
ℓrw1

(X,V ) into ℓrw2
(X,V ) for every r > 0, as in the previous paragraph.

13 Sums of vectors

Let X be a nonempty set, let k be a field, and let V be a vector space over k
again. If f ∈ c00(X,V ), then ∑

x∈X

f(x)(13.1)

defines an element of V , by reducing to a finite sum. This defines a linear
mapping

f 7→
∑
x∈X

f(x)(13.2)

from c00(X,V ) into V .
Let | · | be a qk-absolute value function on k for some qk > 0, and let N be a

q-seminorm on V with respect to | · | on k for some q > 0. If f ∈ c(X,V ), then
we let ∥f∥q be as in (10.2) and (10.4), with w(x) = 1 for every x ∈ X. Observe
that

N
( ∑

x∈X

f(x)
)
≤ ∥f∥q(13.3)

for every f ∈ c00(X,V ), by the q-seminorm version of the triangle inequality.
Thus (13.2) is a bounded linear mapping from c00(X,V ) into V , using ∥f∥q on
c00(X,V ) and N on V . More precisely, the operator q-seminorm of (13.2) is
equal to 1 when N(v) > 0 for some v ∈ V .

Suppose that N is a q-norm on V , and that V is complete with respect to
the associated q-metric. If q < ∞, then there is a unique extension of (13.2)
to a bounded linear mapping from ℓq(X,V ) into V , as in Section 6. If q = ∞,
then these is a unique extension of (13.2) to a bounded linear mapping from
c0(X,V ) into V , with respect to the supremum ultranorm ∥f∥∞ associated to
N on c0(X,V ). These extensions can be used to define (13.1) as an element of
V in these cases. Note that these extensions also satisfy (13.3), as before.

Alternatively, (13.1) can be obtained from convergent infinite series in these
situations. More precisely, let {xj}∞j=1 be a sequence of distinct elements of X,
and suppose that f ∈ c(X,V ) has support contained in the set of xj ’s. Under
these conditions, the sum (13.1) corresponds formally to the infinite series

∞∑
j=1

f(xj).(13.4)
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Of course, if f has finite support in in X, then all but finitely many terms in
this series are equal to 0, so that the sum can be defined as before. If q < ∞ and
f ∈ ℓq(X,V ), then (13.4) converges q-absolutely with respect to N , and hence
converges in V with respect to N , as in Section 9. If q = ∞ and f ∈ c0(X,V ),
then N(f(xj)) → 0 as j → ∞, and (13.4) converges in V with respect to N as
in Section 9 again. Note that the support of every element of c0(X,V ) has only
finitely or countable many elements, as in Section 8. In particular, this holds
when f ∈ ℓq(X,V ) and q < ∞.

If f is a summable real or complex-valued function on X, then f can be
expressed as a linear combination of nonnegative real-valued summable func-
tions on X, whose sums can be defined as in Section 8. Of course, all of these
approaches to sums over X are based on suitable approximations by finite sums.

14 Sums of sums

Let X be a nonempty set, and let {Ej}j∈I be a family of pairwise-disjoint
nonempty subsets of X indexed by a nonempty set I. If f is a nonnegative
extended real-valued function on X, then∑

x∈Ej

f(x)(14.1)

can be defined as a nonnegative extended real number for each j ∈ I, as in
Section 8. Hence ∑

j∈I

( ∑
x∈Ej

f(x)
)

(14.2)

can be defined as a nonnegative extended real number as in Section 8 too. If
we put

E =
∪
j∈I

Ej ,(14.3)

then one can check that (14.2) is equal to∑
x∈E

f(x),(14.4)

which is defined as a nonnegative extended real number as in Section 8 as well.
Let k be a field, and let V be a vector space over k. If f ∈ c00(X,V ),

then (14.1) can be defined as an element of V for each j ∈ I. This defines a
V -valued function on I with finite support, so that (14.2) can also be defined as
an element of V . Of course, (14.4) can be defined as an element of V too, and
one can check that (14.2) is equal to (14.4).

Let | · | be a qk-absolute value function on k for some qk > 0, let N be
a q-norm on V with respect to | · | on k for some q > 0, and suppose that
V is complete with respect to the q-metric associated to N . If q < ∞ and
f ∈ ℓq(X,V ), then the restriction of N(f(x)) to any nonempty subset of X is
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q-summable on that set. This permits us to define (14.1) as an element of V for
each j ∈ I, as in the previous section, with

N
( ∑

x∈Ej

f(x)
)q

≤
∑
x∈Ej

N(f(x))q(14.5)

for every j ∈ I. Hence∑
j∈I

N
( ∑

x∈Ej

f(x)
)q

≤
∑
j∈I

( ∑
x∈Ej

N(f(x))q
)
=

∑
x∈E

N(f(x))q,(14.6)

which implies that (14.2) defines an element of ℓq(I, V ). Thus (14.2) can be
defined as an element of V , as in the previous section, and one can verify that
(14.2) is equal to (14.4) in this case as well.

If q = ∞ and f ∈ c0(X,V ), then the restriction of f to any nonempty subset
of X vanishes at infinity on that set. As before, this permits us to define (14.1)
as an element of V for every j ∈ I, with

N
( ∑

x∈Ej

f(x)
)
≤ max

x∈Ej

N(f(x))(14.7)

for every j ∈ I. One can use (14.7) to check that (14.1) vanishes at infinity as
a V -valued function on I, so that (14.2) can be defined as an element of V , as
in the previous section. As usual, one can check that (14.2) is equal to (14.4)
under these conditions.

If X is the Cartesian product Y ×Z of nonempty sets Y , Z, then X can be
partitioned into the families of subsets of the form {y}×Z, y ∈ Y , and Y ×{z},
z ∈ Z. The previous remarks can be used to show that sums over X are the
same as iterated sums over Y and Z under suitable conditions.

15 Cauchy products

Let k be a field, let A be an algebra over k, and let
∑∞

j=0 aj ,
∑∞

l=0 bl be infinite
series with terms in A, considered formally for the moment. Thus

cn =

n∑
j=0

aj bn−j(15.1)

is defined as an element of A for every nonnegative integer n, and the corre-
sponding series

∑∞
n=0 cn is the Cauchy product of

∑∞
j=0 aj ,

∑∞
l=0 bl. By con-

struction,
∞∑

n=0

cn =
( ∞∑

j=0

aj

)( ∞∑
l=0

bl

)
(15.2)

formally, and this can be made precise in some situations. Indeed, let f be the
A-valued function defined on

X = (Z+ ∪ {0})× (Z+ ∪ {0})(15.3)
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by
f(j, l) = aj bl(15.4)

for each j, l ≥ 0. Put

En = {(j, l) ∈ X : j + l = n}(15.5)

for each nonnegative integer n, so that the En’s are pairwise-disjoint nonempty
finite subsets of X such that

∞∪
n=0

En = X.(15.6)

Observe that
cn =

∑
(j,l)∈En

f(j, l)(15.7)

for every n ≥ 0, so that
∞∑

n=0

cn =
∑

(j,l)∈X

f(j, l)(15.8)

formally. Similarly, the sum over X can be identified formally with iterated
sums over j and l, to get that

∑
(j,l)∈X

f(j, l) =
( ∞∑

j=0

aj

)( ∞∑
l=0

bl

)
.(15.9)

If aj = 0 for all but finitely many j ≥ 0, and bl = 0 for all but finitely
many l ≥ 0, then f has finite support in X, and cn = 0 for all but finitely
many n ≥ 0. In this case, the various infinite sums mentioned in the preceding
paragraph reduce to finite sums, and (15.8) and (15.9) hold, as in the previous
section.

If A = k = R and aj , bl ≥ 0 for every j, l ≥ 0, then the infinite sums
mentioned earlier can be defined as nonnegative extended real numbers, as in
Section 8. We also have (15.8) in this situation, as in the previous section, and
that the left side of (15.9) can be expressed in terms of iterated sums. The
iterated sums are equal to the right side of (15.9) when the sums on the right
side of (15.9) are both positive or both finite. If either of the sums on the right
side of (15.9) are equal to 0, then the left side of (15.9) is equal to 0 too.

Now let k be a field with a qk-absolute value function | · | for some qk > 0,
let A be an algebra over k with a submultiplicative q-norm N with respect to
| · | on k for some q > 0, and suppose that A is complete with respect to the
q-norm associated to N . Suppose for the moment that q < ∞, and that

∞∑
j=0

N(aj)
q,

∞∑
l=0

N(bl)
q < ∞.(15.10)
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This implies that∑
(j,l)∈X

N(f(j, l))q ≤
∑

(j,l)∈X

N(aj)
q N(bl)

q(15.11)

=
( ∞∑

j=0

N(aj)
q
)( ∞∑

l=0

N(bl)
q
)
,

using the remarks in the previous paragraph in the second step. We also have
that

N(cn)
q ≤

n∑
j=0

N(aj bn−j)
q =

∑
(j,l)∈En

N(f(j, l))q(15.12)

for each n ≥ 0, by the q-norm version of the triangle inequality, so that

∞∑
n=0

N(cn)
q ≤

∞∑
n=0

( ∑
(j,l)∈En

N(f(j, l))q
)
=

∑
(j,l)∈X

N(f(j, l))q.(15.13)

It follows that the infinite sums mentioned at the beginning of the section are
defined as elements of A, as in Sections 9 and 13, and that they satisfy (15.8)
and (15.9), as in the previous section.

Similarly, if q = ∞ and

lim
j→∞

N(aj) = lim
l→∞

N(bl) = 0,(15.14)

then it is easy to see that f(j, l) vanishes at infinity on X with respect to N . In
this case,

N(cn) ≤ max
0≤j≤n

N(aj bn−j) = max
(j,l)∈En

N(f(j, l))(15.15)

for each n ≥ 0, by the ultranorm version of the triangle inequality, which can
be used to verify that

lim
n→∞

N(cn) = 0.(15.16)

Hence the infinite sums mentioned earlier in the section are defined as elements
of A, as in Sections 9 and 13, and they satisfy (15.7) and (15.9), as before.

Part II

Power series

16 Formal power series

Let k be a field, and let T be an indeterminate. As in [4, 12], we shall normally
use upper-case letters like T for indeterminates, and lower-case letters like t for
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elements of k. As usual, a formal power series in T with coefficients in k may
be expressed as

f(T ) =

∞∑
j=0

fj T
j ,(16.1)

where fj ∈ k for each nonnegative integer j, and the space of these formal
power series is denoted k[[T ]]. More precisely, fj is a k-valued function of j on
the set of nonnegative integers, so that k[[T ]] can be defined as c(Z+ ∪ {0}, k).
This is a vector space over k with respect to pointwise addition and scalar
multiplication of functions on Z+∪{0}, which corresponds to termwise addition
and scalar multiplication of formal power series expressed as in (16.1). A formal
polynomial in T with coefficients in k may be considered as a formal power series
f(T ) ∈ k[[T ]] with fj = 0 for all but finitely many j ≥ 0. The space of these
formal polynomials is denoted k[T ], which corresponds to the linear subspace
c00(Z+ ∪ {0}, k) of c(Z+ ∪ {0}, k).

If f(T ) and g(T ) =
∑∞

j=0 gj T
j are elements of k[[T ]], then their product is

defined to be the formal power series

f(T ) g(T ) = h(T ) =

∞∑
n=0

hn T
n,(16.2)

where

hn =

n∑
j=0

fj gn−j(16.3)

for each n ≥ 0. This corresponds to the Cauchy product of f(T ) and g(T ), as in
Section 15, and one can verify that k[[T ]] is a commutative algebra over k with
respect to this definition of multiplication. Note that k[T ] is a subalgebra of
k[[T ]], and we can identify k with the subalgebra of k[T ] of formal polynomials
for which all but the first coefficient is equal to 0. The multiplicative identity
element 1 in k corresponds to the multiplicative identity element in k[[T ]] in
this way.

If a(T ) ∈ k[[T ]] and l ∈ Z+, then the lth power a(T )l of a(T ) can be defined
as an element of k[[T ]] in the the preceding paragraph. Let us interpret a(T )l

as being equal to 1 when l = 0, as usual. If j, n are nonnegative integers with
j ≤ n, then the coefficient of T j in

n∑
l=0

a(T )l T l(16.4)

does not depend on n. Hence
∞∑
l=0

a(T )l T l(16.5)

can be defined as an element of k[[T ]]. Note that

(1− a(T )T )

n∑
l=0

a(T )l T l = 1− a(T )n+1 Tn+1(16.6)
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for every n ≥ 0, by a standard argument. One can use this to check that

(1− a(T )T )

∞∑
l=0

a(T )l T l = 1.(16.7)

This shows that (16.5) is the multiplicative inverse of 1− a(T )T in k[[T ]].
If f(T ) ∈ k[[T ]] satisfies f0 ̸= 0, then f(T ) can be expressed as f0 times

(1−a(T )T ) for some a(T ) ∈ k[[T ]]. This implies that f(T ) has a multiplicative
inverse in k[[T ]], by the remarks in the previous paragraph. Conversely, if
f(T ) ∈ k[[T ]] has a multiplicative inverse in k[[T ]], then f0 ̸= 0. This follows
from the fact that f(T ) 7→ f0 is an algebra homomorphism from k[[T ]] onto k.

17 Additional formal series

Let k be a field, and let T be an indeterminate again. As before, a formal
Laurent series in T with coefficients in k may be expressed as

f(T ) =

∞∑
j=−∞

fj T
j ,(17.1)

where fj ∈ k for each j ∈ Z. The space of these formal Laurent series may be
defined precisely as c(Z, k). This is a vector space over k with respect to point-
wise addition and scalar multiplication of functions on Z, which corresponds to
termwise addition and scalar multiplication of formal Laurent series expressed
as in (17.1). A formal power series in T may be identified with a formal Lau-
rent series f(T ) with fj = 0 when j < 0, which corresponds to identifying
c(Z+ ∪ {0}, k) with the subspace of c(Z, k) consisting of functions that vanish
on negative integers.

Let k((t)) be the space of formal Laurent series f(T ) with coefficients in k
such that fj = 0 for all but finitely many negative integers j. As in [4], we may
use

f(T ) =
∑

j>>−∞
fj T

j(17.2)

to indicate that fj = 0 for all but finitely many j < 0. As before, k((T )) can be
defined precisely as the linear subspace of c(Z, k) consisting of functions that are
equal to 0 at all but finitely many negative integers, and k[[T ]] can be identified
with a linear subspace of k((T )).

If f(T ) and g(T ) =
∑

j>>−∞ gj T
j are elements of k((T )), then put

f(T ) g(T ) = h(T ) =

∞∑
n=−∞

hn T
n,(17.3)

where

hn =

∞∑
j=−∞

fj gn−j(17.4)
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for each n ∈ Z. All but finitely many terms in the sum on the right side of
(17.4) are equal to 0, because fj = gj = 0 for all but finitely many j < 0, so
that hn is defined as an element of k for every n ∈ Z. Similarly, hn = 0 for all
but finitely many n < 0, so that h(T ) ∈ k((T )). One can check that k((T )) is
a commutative algebra over k with respect to this definition of multiplication.
This definition of multiplication is compatible with the previous one for k[[T ]],
so that k[[T ]] may be considered as a subalgebra of k((T )).

In fact, k((T )) is a field with respect to this definition of multiplication.
Indeed, every nonzero element of k((T )) can be expressed as T l f(T ), where
f(T ) ∈ k[[T ]], f0 ̸= 0, and l ∈ Z. Under these conditions, f(T ) has a multi-
plicative inverse in k[[T ]], as in the previous section. Thus T−l f(T )−1 is the
multiplicative inverse of T l f(T ) in k((T )), as desired.

18 Absolute values on k((T ))

Let k be a field, let T be an indeterminate, and let 0 < r ≤ 1 be given. If
f(T ) ∈ k((T )) and f(T ) ̸= 0, then we let j0(f) be the smallest integer such that
fj0 ̸= 0, so that fj = 0 when j < j0. Put

|f(T )|r = rj0(f)(18.1)

when f(T ) ̸= 0, and |f(T )|r = 0 when f(T ) = 0. Let us check that | · |r defines
an ultrametric absolute value function on k((T )). If f(T ), g(T ) ∈ k((T )) and
f(T ), g(T ), f(T ) + g(T ) ̸= 0, then it is easy to see that

j0(f(T ) + g(T )) ≥ min(j0(f(T )), j0(g(T ))).(18.2)

This implies that

|f(T ) + g(T )|r ≤ max(|f(T )|r, |g(T )|r)(18.3)

for every f(T ), g(T ) ∈ k((T )). Similarly,

j0(f(T ) g(T )) = j0(f(T )) + j0(g(T ))(18.4)

when f(T ), g(T ) ̸= 0, so that

|f(T ) g(T )|r = |f(T )|r |g(T )|r(18.5)

for every f(T ), g(T ) ∈ k((T )).
Observe that

|f(T )|ar = |f(T )|ra(18.6)

for every f(T ) ∈ k((T )), 0 < r ≤ 1, and 0 < a < ∞. Hence the absolute value
functions | · |r are equivalent on k((T )) when 0 < r < 1, as in Section 3. If r = 1,
then | · |r is the trivial absolute value function on k((T )).
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Let 0 < r < 1 and l ∈ Z be given, and let Br(0, r
l) be the closed ball in

k((T )) centered at 0 with radius rl with respect to the ultrametric associated
to | · |r. In this situation, we have that

Br(0, r
l) = {f(T ) ∈ k((T )) : fj = 0 for every j < l}.(18.7)

This can be identified with the Cartesian product of copies of k indexed by
j ∈ Z with j ≥ l. One can check that the topology determined on Br(0, r

l) by
the ultrametric associated to | · |r corresponds exactly to the product topology
on this Cartesian product, using the discrete topology on k in each factor. In
particular, a sequence of elements of Br(0, r

l) converges with respect to this
topology if and only if for each j ∈ Z with j ≥ l, the corresponding sequence of
coefficients of T j is eventually equal to the coefficient of T j of the limit.

It is not difficult to verify that k((T )) is complete with respect to the ultra-
metric associated to | · |r for every 0 < r ≤ 1. This is trivial when r = 1, because
the associated ultrametric on k((T )) is the discrete metric. If 0 < r < 1, then it
is helpful to begin by observing that a Cauchy sequence in k((T )) with respect
to the ultrametric associated to | · |r is contained in Br(0, r

l) for some l ∈ Z,
because Cauchy sequences are bounded. In this case, the Cauchy condition also
implies that for each j ∈ Z, the corresponding sequence of coefficients of T j is
eventually constant. The limiting values of these coefficients of T j determine
another element of k((T )), which is the limit of the Cauchy sequence, as in the
preceding paragraph.

19 Weighted ℓq norms

Let k be a field with a qk-absolute value function | · | for some qk > 0, and let
T be an indeterminate. If r is a nonnegative real number, q is a positive real
number, and f(T ) ∈ k[[T ]], then put

∥f(T )∥q,r =
( ∞∑

j=0

|fj |q rq j
)1/q

,(19.1)

which is defined as a nonnegative extended real number. Similarly, put

∥f(T )∥∞,r = sup
j≥0

(|fj | rj),(19.2)

which is also defined as a nonnegative extended real number. Here rj is inter-
preted as being equal to 1 when j = 0, even when r = 0. Thus

∥f(T )∥q,0 = |f0|(19.3)

for every f(T ) ∈ k[[T ]] and q > 0.
Let r be a nonnegative real number again, and put

wr(j) = rj(19.4)
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for every nonnegative integer j. Remember that k[[T ]] can be defined precisely
as c(Z+∪{0}, k), as in Section 16. As in Section 10, ∥f∥q,wr can be defined as a
nonnegative extended real number for every f ∈ c(Z+ ∪ {0}, k) and q > 0. Let
f(T ) be given, and let f be the corresponding element of c(Z+ ∪ {0}, k), whose
value at j ≥ 0 is the coefficient fj of T j in f(T ). Observe that

∥f(T )∥q,r = ∥f∥q,wr
(19.5)

for every q > 0, where the left side of (19.5) is as in (19.1) and (19.2), and the
right side of (19.5) is as in Section 10.

Here r corresponds to the radius on which a power series might be considered.
Of course, rj is increasing as a function of r for each j ∈ Z+. If 0 ≤ r1 ≤ r2 < ∞,
then

∥f(T )∥q,r1 ≤ ∥f(T )∥q,r2(19.6)

for every f(T ) ∈ k[[T ]] and q > 0, as in (10.13). If 0 < q1 ≤ q2 ≤ ∞, then

∥f(T )∥q2,r ≤ ∥f(T )∥q1,r(19.7)

for every f(T ) ∈ k[[T ]] and r ≥ 0, as in (10.10). If f(T ) ∈ k[[T ]] and ∥f(T )∥q,r
is finite for some positive real number q and r ≥ 0, then

lim
q→∞

∥f(T )∥q,r = ∥f(T )∥∞,r,(19.8)

as in (10.12).
Let a ∈ k and f(T ) ∈ k[[T ]] be given, so that a f(T ) ∈ k[[T ]] too. If a ̸= 0,

then
∥a f(T )∥q,r = |a| ∥f(T )∥q,r(19.9)

for every q > 0 and r ≥ 0. If a = 0, then a f(T ) = 0, and the left side of (19.9)
is equal to 0.

Now let f(T ), g(T ) ∈ k[[T ]] be given. If qk = ∞, then

∥f(T ) + g(T )∥∞,r ≤ max(∥f(T )∥∞,r, ∥g(T )∥∞,r)(19.10)

for every r ≥ 0, as in (10.7). If 0 < q ≤ qk and q < ∞, then

∥f(T ) + g(T )∥qq,r ≤ ∥f(T )∥qq,r + ∥g(T )∥qq,r(19.11)

for every r ≥ 0, as in (10.8). If qk ≤ q and qk < ∞, then

∥f(T ) + g(T )∥qkq,r ≤ ∥f(T )∥qkq,r + ∥g(T )∥qkq,r(19.12)

for every r ≥ 0, as in (10.9).
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20 Weighted ℓq spaces

Let k be a field with a qk-absolute value function | · | for some qk > 0, let T be
an indeterminate, and let r be a positive real number. If 0 < q ≤ ∞, then put

PSq
r (k) = {f(T ) ∈ k[[T ]] : ∥f(T )∥q,r < ∞},(20.1)

where ∥f(T )∥q,r is as in (19.1) and (19.2). As before, k[[T ]] can be defined
precisely as c(Z∪{0}, k), and wr can be defined as a positive real-valued function
on Z+∪{0} as in (19.4). Using (19.5), we have that PSq

r (k) corresponds exactly
to the space ℓqwr

(Z+ ∪ {0}, k) defined in Section 10. Thus PSq
r (k) is a linear

subspace of k[[T ]] for every q > 0, and ∥f(T )∥q,r defines a q-norm on PSq
r (k)

when q ≤ qk, and a qk-norm on PSq
r (k) when qk ≤ q. It is sometimes convenient

to allow r = 0 here, in which case PSq
r (k) reduces to k[[T ]] and ℓqwr

(Z+∪{0}, k)
reduces to c(Z+ ∪{0}, k) for every q > 0. Note that ∥f(T )∥q,0 is a qk-seminorm
on k[[T ]] for every q > 0, by (19.3).

If 0 ≤ r1 ≤ r2 < ∞, then

PSq
r2(k) ⊆ PSq

r1(k)(20.2)

for every q > 0. This follows from (19.6), and also corresponds to (10.14), as in
the preceding paragraph. Similarly, if 0 < q1 ≤ q2 ≤ ∞, then

PSq1
r (k) ⊆ PSq2

r (k)(20.3)

for every r ≥ 0. This follows from (19.7), and corresponds to (10.11) as well.
If r is a nonnegative real number, then put

PS0,r(k) =
{
f(T ) ∈ k[[T ]] : lim

j→∞
|fj | rj = 0

}
.(20.4)

This is a linear subspace of k[[T ]] for every r ≥ 0, which corresponds to the
subspace c0,wr

(Z+ ∪ {0}, k) of c(Z+ ∪ {0}, k) defined in Section 11. As before,
PS0,r(k) reduces to k[[T ]] and c0,wr (Z+∪{0}, k) reduces to c(Z+∪{0}, k) when
r = 0. Of course,

PS0,r(k) ⊆ PS∞
r (k)(20.5)

for every r ≥ 0, because convergent sequences are bounded, and as in (11.6). We
also have that PS0,r(k) is a closed set in PS∞

r (k) with respect to the topology
determined by the qk-semimetric associated to ∥f(T )∥∞,r for every r ≥ 0, as in
Section 11.

If 0 ≤ r1 ≤ r2 < ∞, then it is easy to see that

PS0,r2(k) ⊆ PS0,r1(k).(20.6)

This may be considered as an instance of (11.10) as well. If 0 < q < ∞, then

PSq
r (k) ⊆ PS0,r(k)(20.7)

for every r ≥ 0, because the terms of a convergent series converge to 0. This
may also be considered as an instance of (11.8).
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21 Radius of convergence

Let k be a field with a qk-absolute value function | · | again, and let T be an
indeterminate. If f(T ) ∈ k[[T ]], then the radius of convergence of f(T ) may be
defined as a nonnegative extended real number by

rad(f(T )) = sup{r ≥ 0 : f(T ) ∈ PS∞
r (k)}(21.1)

= sup{r ≥ 0 : ∥f(T )∥∞,r < ∞}.

This is the supremum of a nonempty set of nonnegative real numbers r, because
r = 0 is automatically in this set. If 0 ≤ r1 < rad(f(T )), then there is an r ≥ r1
such that f(T ) ∈ PS∞

r (k), by the definition of the supremum. This implies
that

f(T ) ∈ PS∞
r1 (k)(21.2)

when r1 < rad(f(T )), by (20.2). Of course, if r2 > rad(f(T )), then

f(T ) ̸∈ PS∞
r2 (k),(21.3)

by definition of rad(f(T )). Clearly rad(f(T )) is uniquely determined by these
two conditions.

Suppose that f(T ) ∈ PS∞
r (k) for some r > 0, so that ∥f(T )∥∞,r < ∞ and

|f(j)| ≤ ∥f(T )∥∞,r r
−j(21.4)

for every nonnegative integer j. This implies that

|f(j)| rj1 ≤ ∥f(T )∥∞,r (r1/r)
j(21.5)

for every nonnegative real number r1 and nonnegative integer j. In particular,
it follows that

lim
j→∞

|f(j)| rj1 = 0(21.6)

when 0 ≤ r1 < r, so that f(T ) ∈ PS0,r1(k). Similarly, if 0 ≤ r1 < r and q is a
positive real number, then

∞∑
j=0

|f(j)|q rq j
1 ≤ ∥f∥q∞,r

∞∑
j=0

(r1/r)
q j = ∥f∥q∞,r (1− (r1/r)

q)−1.(21.7)

This means that f(T ) ∈ PSq
r1(k), with

∥f(T )∥q,r1 ≤ ∥f∥∞,r (1− (r1/r)
q)−1/q(21.8)

under these conditions.
If r1 is any nonnegative real number with r1 < rad(f(T )), then there is

a real number r such that r1 < r < rad(f(T )). Thus f(T ) ∈ PS∞
r (k), so

that the remarks in the preceding paragraph can be applied. It follows that
f(T ) ∈ PS0,r1(k), and that f(T ) ∈ PSq

r1(k) for every q > 0, as before. This
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implies that the radius of convergence could be defined equivalently in terms of
PSq

r (k) for any q > 0 instead of PS∞
r (k), or in terms of PS0,r(k). This also uses

the fact that PSq
r (k) and PS0,r(k) are contained in PS∞

r (k) for every r ≥ 0
and q > 0, as in (20.3) and (20.5).

If r is a nonnegative extended real number, then put

PSr(k) = {f(T ) ∈ k[[T ]] : rad(f(T )) ≥ r}.(21.9)

This is the same as k[[T ]] when r = 0, as usual. If r > 0, then

PSr =
∩

0≤r1<r

PSq
r1(k)(21.10)

for every q > 0, and

PSr(k) =
∩

0≤r1<r

PS0,r1(k).(21.11)

In particular, PSr(k) is a linear subspace of k[[T ]] for every r ≥ 0. Of course,
PSr(k) increases as r decreases.

22 Submultiplicativity conditions

Let k be a field with a qk-absolute value function | · | for some qk > 0, let T be an
indeterminate, and let r be a positive real number. Also let f(T ), g(T ) ∈ PSq

r (k)
be given, where 0 < q ≤ qk, and PSq

r (k) is as in (20.1). We would like to check
that h(T ) = f(T ) g(T ) ∈ PSq

r (T ) too, with

∥h(T )∥q,r ≤ ∥f(T )∥q,r ∥g(T )∥q,r.(22.1)

This means that PSq
r (k) is a subalgebra of k[[T ]] under these conditions, and

that ∥f(T )∥q,r is submultiplicative as a q-norm on PSq
r (k). Note that

∥1∥q,r = 1(22.2)

for every q > 0 and r ≥ 0, where the 1 on the left is the constant power
series with constant term equal to the multiplicative identity element of k, and
the 1 on the right is the usual real number. If r = 0, then equality holds in
(22.1), because of (19.3). This also uses the fact that f(T ) 7→ f0 is an algebra
homomorphism from k[[T ]] into k, as in Section 16.

Suppose first that q < ∞, and remember that | · | may be considered as a
q-absolute value function on k, as in Section 3, because q ≤ qk. Remember also
that the nth coefficient hn of h(T ) is given as in (16.3) for each nonnegative
integer n. It follows that

|hn|q ≤
n∑

j=0

|fj |q |gn−j |q(22.3)
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for every n ≥ 0. This implies that

|hn|q rq n ≤
n∑

j=0

(|fj |q rq j) (|gj | rq (n−j))(22.4)

for every n ≥ 0. The right side of (22.4) is the same as the nth term of the
Cauchy product of the series

∑∞
j=0 |fj |q rq j and

∑∞
l=0 |gl|q rq l, as in Section

15. These series are convergent as series of nonnegative real numbers, because
f(T ), g(T ) ∈ PSq

r (k), by hypothesis. Hence

∞∑
n=0

|hn|q rq n ≤
∞∑

n=0

( n∑
j=0

(|fj |q rq j) (|gn−j |q rq (n−j))
)

(22.5)

=
( ∞∑

j=0

|fj |q rq j
)( ∞∑

l=0

|gl|q rq l
)
,

where the second step is as in as in Section 15. This is the same as (22.1), by
taking the qth roots of both sides.

Suppose now that q = ∞, so that qk = ∞. Using (16.3) again, we get that

|hn| ≤ max
0≤j≤n

(|fj | |gn−j |)(22.6)

for each n ≥ 0, by the ultrametric version of the triangle inequality. Thus

|hn| rn ≤ max
0≤j≤n

((|fj | rj) (|gn−j | rn−j))(22.7)

for every n ≥ 0, which implies (22.1) when q = ∞. Similarly, suppose that
f(T ), g(T ) ∈ PS0,r(k), so that

lim
j→∞

|fj | rj = lim
l→∞

|gl| rl = 0.(22.8)

In this case, one can use (22.7) to verify that

lim
n→∞

|hn| rn = 0,(22.9)

so that h(T ) ∈ PS0,r(k) too.
If r is a nonnegative extended real number, then PSr(k) as in (21.9) is

a subalgebra of k[[T ]] as well. This follows from the previous remarks and
the characterization of rad(f(T )) in terms of ℓqk norms and spaces, as in the
preceding section.

23 Multiplicativity conditions

Let k be a field with an ultrametric absolute value function | · |, let T be an
indeterminate, and let r be a positive real number. If f(T ), g(T ) ∈ PS∞

r (k),
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then h(T ) = f(T ) g(T ) ∈ PS∞
r (k), as in the previous section. In fact, we have

that
∥h(T )∥∞,r = ∥f(T )∥∞,r ∥g(T )∥∞,r(23.1)

in this situation. It suffices to check that

∥f(T )∥∞,r ∥g(T )∥∞,r ≤ ∥h(T )∥∞,r,(23.2)

because the opposite inequality follows from (22.1). We may as well suppose
that f(T ), g(T ) ̸= 0, since otherwise this is trivial.

Let us begin with the case where f(T ), g(T ) ∈ PS0,r(k), so that (22.8) holds.
In particular, this implies that the supremum in the definition (19.2) of each of
∥f(T )∥∞,r and ∥g(T )∥∞,r is attained. The standard argument is to take jr(f),
jr(g) to be the smallest nonnegative integers such that

|fjr(f)| r
jr(f) = ∥f(T )∥∞,r, |gjr(g)| r

jr(g) = ∥g(T )∥∞,r.(23.3)

Thus
|fj | rj < ∥f(T )∥∞,r(23.4)

for all nonnegative integers j < jr(f), and

|gj | rj < ∥g(T )∥∞,r(23.5)

for all nonnegative integers j < jr(g). We would like to verify that

∥f(T )∥∞,r ∥g(T )∥∞,r ≤ |hjr(f)+jr(g)| r
jr(f)+jr(g)(23.6)

under these conditions.
Remember that

hjr(f)+jr(g) =

jr(f)+jr(g)∑
j=0

fj gjr(f)+jr(g)−j ,(23.7)

as in (16.3). The sum on the right side is equal to

jr(f)−1∑
j=0

fj gjr(f)+jr(g)−j + fjr(f) gjr(g) +

jr(f)+jr(g)∑
j=jr(f)+1

fj gjr(f)+jr(g)−j ,(23.8)

where the first sum is interpreted as being 0 when jr(f) = 0, and the second
sum is interpreted as being 0 when jr(g) = 0. Taking l = jr(f) + jr(g)− j, the
second sum can be reexressed as

jr(g)−1∑
l=0

fjr(f)+jr(g)−l gl,(23.9)
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which is also interpreted as being 0 when jr(g) = 0. Thus

fjr(f) gjr(g) = hjr(f)+jr(g) −
jr(f)−1∑

j=0

fj gjr(f)+jr(g)−j(23.10)

−
jr(g)−1∑

l=0

fjr(f)+jr(g)−l gl,

with the same intepretations of the sums on the right when jr(f) = 0 or jr(g) =
0. The ultrametric version of the triangle inequality implies that

|fjr(f)| |gjr(g)| ≤ max
(
|hjr(f)+jr(g)|, max

0≤j≤jr(f)−1
(|fj | |gjr(f)+jr(g)−j |),

max
0≤l≤jr(g)−1

(|fjr(f)+jr(g)−l| |gl|)
)
.(23.11)

Note that
∥f(T )∥∞,r ∥g(T )∥∞,r = |fjr(f)| |gjr(g)| r

jr(f)+jr(g),(23.12)

by (23.3). Multiplying both sides of (23.11) by rjr(f)+jr(g), we get that (23.12)
is less than or equal to the maximum of

|hjr(f)+jr(g)| r
jr(f)+jr(g),(23.13)

max
0≤j≤jr(f)−1

((|fj | rj) (|gjr(f)+jr(g)−j | rjr(f)+jr(g)−j)), and(23.14)

max
0≤l≤jr(g)−1

((|fjr(f)+jr(g)−l| rjr(f)+jr(g)−l) (|gl| rl)).(23.15)

Each of the terms in (23.14) and (23.15) is strictly less than (23.12), because of
(23.4), (23.5), and the definition of ∥f(T )∥∞,r, ∥g(T )∥∞,r. It follows that (23.6)
holds, and hence (23.2), as desired.

Suppose now that f(T ), g(T ) ∈ PS∞
r (k), and let a positive real number

r1 < r be given. Thus f(T ), g(T ) ∈ PS0,r1(k), as in (21.6). Using the previous
argument applied to r1, we get that

∥f(T )∥∞,r1 ∥g(T )∥∞,r1 ≤ ∥h(T )∥∞,r1 .(23.16)

It follows that
∥f(T )∥∞,r1 ∥g(T )∥∞,r1 ≤ ∥h(T )∥∞,r,(23.17)

using the monotonicity property (19.6) on the right side of (23.16). This implies
that

(|fj | rj1) (|gj′ | r
j′

1 ) ≤ ∥h(T )∥∞,r(23.18)

for all nonnegative integers j and j′, by the definition (19.2) of ∥f(T )∥∞,r1 ,
∥g(T )∥∞,r1 . Hence

(|fj | rj) (|gj′ | rj
′
) ≤ ∥h(T )∥∞,r(23.19)

for all nonnegative integers j, j′, by approximating r by r1 on the left side. This
implies (23.2), by taking the supremum over j, j′ ≥ 0.
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24 Rescaling

Let k be a field, let T be an indeterminate, and let a ∈ k be given. If f(T ) is
an element of k[[T ]], then put

Ra(f(T )) =

∞∑
j=0

aj fj T
j .(24.1)

As usual, aj is interpreted as being the multiplicative identity element 1 in k
when j = 0, even if a = 0. Thus Ra(f(T )) is also a formal power series in
T , which might be considered informally as f(aT ). Clearly Ra defines a linear
mapping from k[[T ]] into itself, which sends k[T ] into itself. More precisely, Ra

defines an algebra homomorphism from k[[T ]] into itself. Indeed, if f(T ), g(T )
are elements of k[[T ]], then

Ra(f(T ))Ra(g(T )) =

∞∑
n=0

( n∑
j=0

(aj fj) (a
n−j gj)

)
Tn

=

∞∑
n=0

an
( n∑

j=0

fj gn−j

)
Tn = Ra(f(T ) g(T )),(24.2)

as desired.
If a, b ∈ k and f(T ) ∈ k[[T ]], then

Ra(Rb(f(T ))) = Ra

( ∞∑
j=0

bj fj T
j
)
=

∞∑
j=0

aj bj fj T
j = Ra b(f(T )),(24.3)

so that
Ra ◦Rb = Ra b.(24.4)

Note that R1 is the identity mapping on k[[T ]], where 1 is the multiplicative
identity element in k again. If a ∈ k and a ̸= 0, then Ra is invertible on k[[T ]],
with inverse equal to R1/a. Remember that k[[T ]] can be defined precisely as
c(Z+∪{0}, k), so that Ra corresponds to a linear mapping from c(Z+∪{0}) into
itself. This linear mapping is the same as the multiplication operator associated
to aj as a k-valued function of j on Z+ ∪ {0}, as in Section 12.

It is easy to see that

∥Ra(f(T ))∥q,r = ∥f(T )∥q,|a| r(24.5)

for every a ∈ k, f(T ) ∈ k[[T ]], 0 ≤ r < ∞, 0 < q ≤ ∞, directly from the
definition of ∥f(T )∥q,r in Section 19. This implies that Ra maps PSq

|a| r(k)

into PSq
r (k). If a ̸= 0, then Ra maps PSq

|a| r(k) onto PSq
r (k). Similarly, Ra

maps PS0,|a| r(k) into PS0,r(k) for every a ∈ k and r ≥ 0, and this mapping is
surjective when a ̸= 0. One can also look at these properties of Ra in terms of
multiplication operators, as in Section 12.

38



Of course,
R0(f(T )) = f0(24.6)

is a constant formal power series for every f(T ) ∈ k[[T ]], which is to say that
the coefficient of T j in R0(f(T )) is equal to 0 for every j ∈ Z+. In particular,
the radius of convergence of R0(f(T )) is equal to +∞. If a ̸= 0, then one can
check that

rad(Ra(f(T ))) = rad(f(T ))/|a|(24.7)

for every f(T ) ∈ k[[T ]], using the remarks in the preceding paragraph. This
implies that Ra maps PSr into PSr/|a| for every nonnegative extended real
number r and a ∈ k with a ̸= 0. One can verify that this mapping is surjective
as well.

25 Related functions on algebras

Let k be a field, let T be an indeterminate, and let

f(T ) =

n∑
j=0

fj T
j(25.1)

be an element of k[T ], so that fj ∈ k for each j = 0, 1, . . . , n. Also let A be an
algebra over k, with a multiplicative identity element e. If x ∈ A, then put

f(x) =

n∑
j=0

fj x
j ,(25.2)

where xj is interpreted as being equal to e when j = 0. Thus f(x) ∈ A for every
x ∈ A, which defines a mapping from A into itself. Let x ∈ A be given, so that

f(T ) 7→ f(x)(25.3)

defines a mapping from k[T ] into A. It is easy to see that this mapping is an
algebra homomorphism. This uses the remarks about Cauchy products for finite
sums in Section 15.

Let | · | be a qk-absolute value function on k for some qk > 0, and let N be a
submultiplicative q-seminorm on A with respect to | · | on k for some q > 0. It
is convenient to ask that N(e) = 1 too. In particular, this implies that | · | is a
q-absolute value function on k, as in Section 5, so that we may as well suppose
that q ≤ qk. Also let x ∈ A and a nonnegative real number r be given, with
N(x) ≤ r. If q < ∞, then

N(f(x))q ≤
n∑

j=0

N(fj x
j)q ≤

n∑
j=0

|fj |q N(x)q j ≤
n∑

j=0

|fj |q rq j ,(25.4)
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using the q-seminorm version of the triangle inequality in the first step. Here
N(x)q j and rq j are interpreted as being equal to 1 when j = 0, as usual.
Similarly, if q = ∞, then

N(f(x)) ≤ max
0≤j≤n

N(fj x
j) ≤ max

0≤j≤n
(|fj |N(x)j) ≤ max

0≤j≤n
(|fj | rj)(25.5)

using the semi-ultranorm version of the triangle inequality in the first step. In
both cases, we get that

N(f(x)) ≤ ∥f(T )∥q,r,(25.6)

where ∥f(T )∥q,r is as in Section 19.
Let us suppose in addition that N is a q-norm on A, and that A is complete

with respect to the q-metric associated to N , from now on in this section. Let
f(T ) =

∑∞
j=0 fj T

j be an element of k[[T ]], so that we would like to put

f(x) =

∞∑
j=0

fj x
j .(25.7)

Suppose for the moment that q < ∞ and f(T ) ∈ PSq
r (k), where PSq

r (k) is as
in (20.1). In this case,

∞∑
j=0

N(fj x
j)q ≤

∞∑
j=0

|fj |q N(x)q j ≤
∞∑
j=0

|fj |q rq j ≤ ∥f(T )∥qq,r < ∞,(25.8)

so that the sum on the right side of (25.7) converges q-absolutely with respect
to N , and hence converges in A with respect to N , as in Section 9. Thus f(x)
may be defined as an element of A as in (25.7), and it satisfies (25.6), because
of (9.6) and (25.8). Remember that PSq

r (k) is a subalgebra of k[[T ]], because
q ≤ qk, as in Section 22. One can check that (25.3) is an algebra homomorphism
from PSq

r (k) into A, using the remarks in Section 15.
Suppose now that q = ∞ and f(T ) ∈ PS0,r, where PS0,r(k) is as in (20.4).

This implies that

N(fj x
j) ≤ |fj |N(x)j ≤ |fj | rj → 0 as j → ∞,(25.9)

so that the series on the right side of (25.7) converges in A with respect to N ,
as in Section 9 again. If f(x) is defined as an element of A as in (25.7), then
it satisfies (25.6), because of (9.8) and (25.9). As in Section 22, PS0,r(k) is a
subalgebra of k[[T ]]. One can verify that (25.3) is an algebra homomorphism
from PS0,r(k) into A, using the remarks in Section 15 again.

As a variant of this case, suppose that q = ∞, f(T ) ∈ PS∞
r (k), and ∥x∥ < r.

Let r1 be a real number such that ∥x∥ ≤ r1 < r, and remember that PS∞
r (k) is

contained in PS0,r1(k), as in Section 21. This permits us to define f(x) as an
element of k, as in the preceding paragraph. We also get that (25.6) holds with
r replaced by r1, as before. Of course, this implies that (25.6) holds, by (19.6).
As in Section 22, PS∞

r (k) is a subalgebra of k[[T ]], and more precisely PS∞
r (k)

is a subalgebra of PS0,r1(k) in this situation. It follows that (25.3) is an algebra
homomorphism from PS∞

r (k) into A, because of the analogous statement for
PS0,r1(k), as in the previous paragraph.
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26 Another convergence condition

A sequence {aj}∞j=1 of nonnegative real numbers is said to be submultiplicative
if

aj+l ≤ aj al(26.1)

for every j, l ≥ 1. In this case, if we put

α = inf
j≥1

a
1/j
j ,(26.2)

then it is well known that
lim
j→∞

a
1/j
j = α.(26.3)

Of course,

α ≤ lim inf
j→∞

a
1/j
j(26.4)

holds automatically, and so it suffices to check that

lim sup
j→∞

a
1/j
j ≤ α.(26.5)

To do this, let j, j0 ∈ Z+ be given, and let l0, r0 be nonnegative integers such
that

j = j0 l0 + r0(26.6)

and r0 < j0. Thus
aj = aj0 l0+r0 ≤ al0j0 a

r0
1 ,(26.7)

by (26.1), so that

a
1/j
j ≤ (a

1/j0
j0

)j0 l0/j a
r0/j
1 = (a

1/j0
j0

)1−(r0/j) a
r0/j
1 .(26.8)

This implies that

lim sup
j→∞

a
1/j
j ≤ a

1/j0
j0

(26.9)

for every j0 ≥ 1, because b1/j → 1 as j → ∞ for every b > 0. It follows that
(26.5) holds, and hence (26.3), as desired.

Let k be a field with a qk-absolute value function | · | for some qk > 0, and
let A be an algebra over k with a submultiplicative q-seminorm N with respect
to | · | on k for some q > 0. If x ∈ A, then it is easy to see that aj = N(xj)
defines a submultiplicative sequence of nonnegative real numbers. Put

Nρ(x) = inf
j≥1

N(xj)1/j ,(26.10)

so that
lim
j→∞

N(xj)1/j = Nρ(x),(26.11)

as in (26.3). Of course,
Nρ(x) ≤ N(x)(26.12)
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automatically. If Nρ(x) < r1 for some positive real number r1, then

N(xj)1/j < r1(26.13)

for all but finitely many j ≥ 1, and hence

N(xj) < rj1(26.14)

for all but finitely many j.
Let us suppose from now on in this section that N is a q-norm on A, that

A is complete with respect to the q-metric associated to N , and that A has a
nonzero multiplicative identity element e. This implies that | · | is a q-absolute
value function on k, as in Section 5, and so we may as well suppose that q ≤ qk.
Let x ∈ A and a positive extended real number r be given, with

Nρ(x) < r.(26.15)

Also let T be an indeterminate, and let f(T ) ∈ PSr(k) be given, where PSr(k)
is as in Section 21. We would like to show that the right side of (25.7) converges
in A with respect to N under these conditions.

Because of (26.15), we can choose a positive real number r1 such that

Nρ(x) < r1 < r.(26.16)

Suppose first that q < ∞, and remember that f(T ) ∈ PSq
r1(k), as in Section

21. In this case, it is easy to see that

∞∑
j=0

N(fj x
j)q =

∞∑
j=0

|fj |q N(xj)q < ∞,(26.17)

using (26.14). This means that the right side of (25.7) converges q-absolutely
with respect to N , and hence converges in A with respect to N , as in Section
9. Similarly, if q = ∞, then we can use the fact that f(T ) ∈ PS0,r1(k), as in
Section 21. This implies that

N(fj x
j) = |fj |N(xj) → 0 as j → ∞,(26.18)

using (26.14). It follows that the right side of (25.7) converges in A with respect
to N in this case as well, as in Section 9.

Remember that PSr(k) is a subalgebra of k[[T ]], as in Section 22. One
can verify that (25.3) is an algebra homomorphism from PSr(k) into A in this
situation, using the remarks in Section 15.

27 Trivial absolute values

Let k be a field, and let T be an indeterminate. Let us take k to be equipped
with the trivial absolute value function, and consider the spaces PSq

r (k) defined
in (20.1). Observe that

PSq
r (k) = k[[T ]](27.1)
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for every q > 0 when 0 ≤ r < 1, and when q = ∞ and r = 1. Otherwise, we
have that

PSq
r (k) = k[T ](27.2)

for every q > 0 when r > 1, and for 0 < q < ∞ when r = 1. Similarly, if
PS0,r(k) is as in (20.4), then

PS0,r(k) = k[[T ]](27.3)

when 0 ≤ r < 1, and
PS0,r(k) = k[T ](27.4)

when r ≥ 1.
Let ∥f(T )∥q,r be defined for f(T ) ∈ k[[T ]] as in (19.1) and (19.2). It is easy

to see that
∥f(T )∥∞,1 is the trivial ultranorm on k[[T ]](27.5)

in this situation. Note that

∥f(T )∥∞,1 ≤ ∥f(T )∥q,r(27.6)

for every f(T ) ∈ k[[T ]], q > 0, and r ≥ 1, as in (19.6) and (19.7). Of course, the
trivial ultranorm on k[[T ]] corresponds to the discrete metric and topology on
k[[T ]]. If r ≥ 1, then the topology determined on k[T ] by the q-metric associated
to ∥f(T )∥q,r is the same as the discrete topology, because of (27.6).

If 0 < r ≤ 1, then
∥f(T )∥∞,r = |f(T )|r(27.7)

for every f(T ) ∈ k[[T ]], where |f(T )|r is as in Section 18. Remember that k[[T ]]
can be defined precisely as c(Z+ ∪ {0}, k), which can be identified with the
Cartesian product of copies of k indexed by nonnegative integers. If 0 < r < 1,
then the topology determined on k[[T ]] by the ultranorm associated to (27.7) is
the same as the product topology corresponding to the discrete topology on k
in each factor, as before.

Similarly, let 0 < r < 1 and 0 < q < ∞ be given, and let us check that
the topology determined on k[[T ]] by the q-metric associated to ∥f(T )∥q,r is the
same as the topology corresponding to (27.7). Remember that (27.7) is less than
or equal to ∥f(T )∥q,r for every f(T ) ∈ k[[T ]], as in (19.7). This implies that the
topology determined on k[[T ]] by the q-metric associated to ∥f(T )∥q,r is at least
as strong as the topology determined by the ultrametric associated to (27.7).
In the other direction, let 0 < r0 < r be given, and remember that ∥f(T )∥q,r is
less than or equal to a constant times ∥f(T )∥∞,r0 for every f(T ) in k[[T ]], as in
(21.8). This implies that the topology determined on k[[T ]] by the ultrametric
associated to ∥f(T )∥∞,r0 is at least as strong as the topology determined by the
q-metric associated to ∥f(T )∥q,r. The topologies determined on k[[T ]] by the
ultrametrics associated to ∥f(T )∥∞,r and ∥f(T )∥∞,r0 are the same, as in the
preceding paragraph. It follows that this is the same as the topology determined
on k[[T ]] by the q-metric associated to ∥f(T )∥q,r, as desired.
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28 Convergence in PSq
r (k)

Let k be a field with a qk-absolute value function | · | for some qk > 0, and let
T be an indeterminate. Also let

a(T ) =

∞∑
j=0

aj T
j(28.1)

be a formal power series in T with coefficients in k. Of course, aj T
j may be

considered as a formal polynomial in T with coefficients in k for each nonnegative
integer j. Remember that the spaces PSq

r (k) are defined in (20.1) for 0 < q ≤ ∞
and 0 ≤ r < ∞. Let us look at the right side of (28.1) as an infinite series in
these spaces.

Observe that
∥aj T j∥q,r = |aj | rj(28.2)

for every j ≥ 0, 0 < q ≤ ∞, and 0 ≤ r < ∞, where ∥f(T )∥q,r is as defined
in (19.1) and (19.2). Of course, rj is interpreted as being equal to 1 for every
r ≥ 0 when j = 0, as usual. In particular, aj T

j is an element of PSq
r (k) for

every j ≥ 0, 0 < q ≤ ∞, and 0 ≤ r < ∞. Similarly, if n is a nonnegative integer
and r is a nonnegative real number, then∥∥∥∥ n∑

j=0

aj T
j

∥∥∥∥
q,r

=
( n∑

j=0

|aj |q rq j
)1/q

(28.3)

when 0 < q < ∞, and ∥∥∥∥ n∑
j=0

aj T
j

∥∥∥∥
∞,r

= max
0≤j≤n

(|aj | rj).(28.4)

The right sides of (28.3) and (28.4) increase monotonically in n, and

∥a(T )∥q,r = sup
n≥0

∥∥∥∥ n∑
j=0

aj T
j

∥∥∥∥
q,r

(28.5)

as nonnegative extended real numbers for every 0 < q ≤ ∞ and 0 ≤ r < ∞.
Let n be a nonnegative integer again, and consider

a(T )−
n∑

j=0

aj T
j =

∞∑
j=n+1

aj T
j .(28.6)

If r is a nonnegative real number, then∥∥∥∥a(T )− n∑
j=0

aj T
j

∥∥∥∥
q,r

=
( ∞∑

j=n+1

|aj |q rq j
)1/q

(28.7)
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when 0 < q < ∞, and∥∥∥∥a(T )− n∑
j=0

aj T
j

∥∥∥∥
∞,r

= sup
j≥n+1

(|aj | rj).(28.8)

Let us take r to be a positive real number from now on in this section. Remember
that ∥f(T )∥q,r defines a q-norm on PSq

r (k) when q ≤ qk, and a qk-norm on
PSq

r (k) when qk ≤ q, as in Section 20. If a(T ) ∈ PSq
r (k) and 0 < q < ∞, then

the right side of (28.1) converges to a(T ) as an infinite series in PSq
r (k), by

(28.7). Conversely, the boundedness of the sequence of partial sums
∑n

j=0 aj T
j

in PSq
r (k) implies that a(T ) ∈ PSq

r (k), by (28.5). Of course, boundedness of
a sequence is necessary for the sequence to converge, or even to be a Cauchy
sequence.

Remember that PS0,r(k) is defined in (20.4). If a(T ) ∈ PS0,r(k), then
the right side of (28.1) converges with respect to the ∥f(T )∥∞,r qk-norm, be-
cause of (28.8). Conversely, if the right side of (28.1) converges with respect to
∥f(T )∥∞,r, then

∥aj T j∥∞,r → ∞ as j → ∞.(28.9)

This means that a(T ) ∈ PS0,r(k), because of (28.2). More precisely, (28.9) is
necessary for the sequence of partial sums

∑n
j=0 aj T

j to be a Cauchy sequence
with respect to ∥f(T )∥∞,r.

Part III

Complex holomorphic functions

29 Holomorphic functions and power series

In this part, we take k to be the field C of complex numbers, equipped with
the standard absolute value function. If U is a nonempty open set in C, then
we let H(U) be the space of holomorphic complex-valued functions on U . This
is a subalgebra of the algebra C(U) = C(U,C) of continuous complex-valued
functions on U . Let

Ur = {z ∈ C : |z| < r}(29.1)

be the open disk in C centered at 0 with radius r for each positive real number
r. We can also allow r = ∞ here, in which case Ur is the complex plane C.

Let T be an indeterminate, and let f(T ) =
∑∞

j=0 fj T
j be a formal power

series in T with complex coefficients. Also let 0 < r ≤ ∞ be given, and suppose
that

rad(f(T )) ≥ r,(29.2)

where rad(f(T )) is the radius of convergence of f(T ), as in Section 21. This
means that f(T ) is in the space PSr(C) defined in Section 21. If 0 ≤ r1 < r,
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then it follows that f(T ) is in the space PS1
r1(C) defined in (20.1), as in Section

21. If z ∈ Ur, then we put

f(z) =

∞∑
j=0

fj z
j ,(29.3)

where the series on the right converges absolutely by the previous statement.
It is well known that (29.3) defines a holomorphic function on Ur. Remember
that PSr(C) is a subalgebra of C[[T ]], as in Section 22. One can check that the
mapping that sends f(T ) to (29.3) is an algebra homomorphism from PSr(C)
into H(Ur), using the remarks in Section 15, as usual.

Note that f(T ) is uniquely determined by the function (29.3), because the
coefficients fj can be obtained from the values of f(z) and its derivatives at 0.

It is well known that every holomorphic function on Ur can be represented
by a power series in this way. More precisely, let 0 < r ≤ ∞, f ∈ H(Ur), and
0 < r1 < r be given. Put

fj =
1

2π i

∫
|w|=r1

f(w)w−j−1 dw(29.4)

for each nonnegative integer j, where more precisely the integral is an oriented
contour integral over the circle of radius r1 centered at 0. It is well known that
fj does not depend on r1, because of Cauchy’s theorem. Equivalently,

fj =
1

2π r1

∫
|w|=r1

f(w)w−j |dw|(29.5)

for each j ≥ 0, where |dw| refers to the element of arclength. This implies that

|fj | rj1 ≤ 1

2π r1

∫
|w|=r1

|f(w)| |dw|(29.6)

for each j ≥ 0. If f(T ) =
∑∞

j=0 fj T
j is the corresponding formal power series,

then (29.6) says that

∥f(T )∥∞,r1 = sup
j≥0

(|fj | rj1) ≤
1

2π r1

∫
|w|=r1

|f(w)| |dw|,(29.7)

where ∥f(T )∥∞,r1 is as in (19.2). Thus f(T ) ∈ PS∞
r1 (C), using the notation in

(20.1). It follows that (29.2) holds, because the previous statement holds when
0 < r1 < r. It is well known that (29.3) holds for every z ∈ Ur under these
conditions, because of the Cauchy integral formula. More precisely, one can
choose r1 so that |z| < r1 < r, and apply the Cauchy integral formula to the
circle centered at 0 with radius r1. The absolute convergence of the series on
the right side of (29.3) follows from (29.6).

30 Bounded holomorphic functions

Let U be a nonempty open subset of C, and let H∞(U) be the space of bounded
holomorphic functions on U . This is a subalgebra of the algebra Cb(U) =
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Cb(U,C) of bounded continuous complex-valued functions on U , and indeed

H∞(U) = H(U) ∩ Cb(U).(30.1)

It is well known that H∞(U) is a closed set in Cb(U), with respect to the
supremum metric. More precisely, if f is a continuous complex-valued function
on U that can be approximated by holomorphic functions on U uniformly on
compact subsets of U , then f is holomorphic on U too. In particular, this holds
when f can be approximated by holomorphic functions on U uniformly on U .

Let 0 < r ≤ ∞ be given, and let Ur be as in (29.1). Also let f ∈ C(U) and
0 ≤ r1 < r be given, and consider

sup{|f(z)| : z ∈ C, |z| = r1}.(30.2)

This is the same as the supremum seminorm of f associated to the circle in C
centered at 0 with radius r1, as in (7.3). Of course, the supremum norm of f
on Ur,

sup
z∈Ur

|f(z)|(30.3)

is the same as the supremum of (30.2) over 0 ≤ r1 < r. If f ∈ H(Ur), then it is
well known that (30.2) increases monotonically in r1, by the maximum principle.
This implies that (30.2) tends to (30.3) as r1 → r− in this case. Remember
that bounded holomorphic functions on C are constant, by Liouville’s theorem.

Suppose now that r < ∞, and let f ∈ H∞(Ur) be given. Also let T be an
indeterminate, and let f(T ) ∈ C[[T ]] be the formal power series corresponding
to f , as in the previous section. Using (29.6), we get that

|fj | rj1 ≤ sup{|f(w)| : w ∈ C, |w| = r1}(30.4)

for every 0 < r1 < r and nonnegative integer j. This also holds when r1 = 0,
because f0 = f(0). It follows that

|fj | rj1 ≤ sup
w∈Ur

|f(w)|(30.5)

for every j ≥ 0 and 0 ≤ r1 < r, since the right side of (30.4) is less than or equal
to the right side of (30.5). Hence

|fj | rj ≤ sup
w∈Ur

|f(w)|(30.6)

for every j ≥ 0, by letting r1 approach r in (30.5). This implies that

∥f(T )∥∞,r ≤ sup
w∈Ur

|f(w)|,(30.7)

where ∥f(T )∥∞,r is as in (19.2). Thus f(T ) is an element of the space PS∞
r (C)

defined in (20.1).
If f ∈ H∞(Ur), then it is well known that f has radial and in fact nontan-

gential boundary values almost everywhere with respect to arclength measure.
This defines an element of L∞(∂Ur) associated to f , whose L∞ norm is equal
to the supremum norm of f on Ur.
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31 Continuity on the closure

Let U be a nonempty bounded open subset of C, so that the closure U of U in
C is compact. Consider the space A(U) of continuous complex-valued functions
on U that are holomorphic on U . This is a subalgebra of the algebra C(U)
of all continuous complex-valued functions on U . Remember that elements of
C(U) are bounded on U , because U is compact. It is easy to see that A(U) is
a closed set in C(U) with respect to the supremum metric, for essentially the
same reasons as in the previous section.

Let ∂U be the boundary of U in C, as usual. If f ∈ A(U), then

sup
z∈∂U

|f(z)| = sup
z∈U

|f(z)|,(31.1)

by the maximum principle. In particular, this implies that f is uniquely deter-
mined on U by its restriction to ∂U .

Let r be a positive real number, and let Ur be the open unit disk in C
centered at 0 with radius r, as in (29.1). Thus the closure

Ur = {z ∈ C : |z| ≤ r}(31.2)

of Ur is the closed disk in C centered at 0 with radius r. Let T be an indeter-
minate, and let f(T ) =

∑∞
j=0 fj T

j be a formal power series in T with complex

coefficients. Suppose that f(T ) is in the space PS1
r (C) defined in (20.1), so that

∥f(T )∥1,r =

∞∑
j=0

|fj | rj < ∞.(31.3)

In this case, we can put

f(z) =

∞∑
j=0

fj z
j(31.4)

for every z ∈ Ur, where the series on the right converges absolutely, by the
comparison test. It is well known that the partial sums of the series on the
right side of (31.4) converge uniformly on Ur under these conditions, by a well-
known criterion of Weierstrass. In particular, this implies that (31.4) defines a
continuous function on Ur. The restriction of (31.4) to Ur is holomorphic, as in
Section 29, so that (31.4) defines an element of A(Ur). Note that

|f(z)| ≤
∞∑
j=0

|fj | |z|j ≤
∞∑
j=0

|fj | rj(31.5)

for every z ∈ Ur, so that

sup
z∈Ur

|f(z)| ≤ ∥f(T )∥1,r.(31.6)
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Remember that PS1
r (C) is a subalgebra of C[[T ]], as in Section 22. As be-

fore, one can check that the mapping that sends f(T ) to (31.4) is an algebra
homomorphism from PS1

r (C) into A(Ur), using the remarks in Section 15.
Now let f be any element of A(Ur), and observe that f is uniformly con-

tinuous on Ur, because Ur is compact. If t is a positive real number, then it is
easy to see that

f(t z)(31.7)

defines an element of A(Ur/t) as a function of z. In particular, if 0 < t ≤ 1,

then the restriction of (31.7) to z ∈ Ur defines an element of A(Ur). Because f
is uniformly continuous on Ur,

f(t z) → f(z) as t → 1−(31.8)

uniformly for z ∈ Ur. Remember that f(z) can be given by a convergent power
series on Ur, as in Section 29. This leads to a convergent power series expansion
for (31.7) on Ur/t for each t > 0. If 0 < t < 1, then we get an absolutely

convergent power series expansion for (31.7) on Ur, as in the previous paragraph.
Using this expansion, we can approximate (31.7) uniformly by holomorphic
polynomials on Ur when 0 < t < 1. This permits us to approximate f(z)
uniformly by holomorphic polynomials on Ur, because of (31.8).

32 Some related integrals

Let r1 be a positive real number. If l is a nonzero integer, then it is well known
that ∫

|w|=r1

wl−1 dw = 0,(32.1)

where the integral is a contour integral over the circle in C centered at 0 with
radius r1. This is equivalent to the fact that∫

|w|=r1

wl |dw| = 0(32.2)

for every nonzero integer l, where |dw| is the element of arclength, as before.
Let T be an indeterminate, let f(T ) =

∑∞
j=0 fj T

j be a formal power series
in T with complex coefficients, and suppose that f(T ) has radius of convergence
greater than or equal to some positive extended real number r. If Ur is as in
(29.1), then the corresponding power series (29.3) converges absolutely for every
z ∈ Ur, as before. In this situation, the integral expressions (29.4), (29.5) for
fj can be verified directly, using (32.1), (32.2). More precisely, the partial sums
of the right side of (29.3) converge uniformly for z ∈ C with |z| = r1 when
0 ≤ r1 < r, by the well-known criterion of Weierstrass. This permits one to
interchange the order of summation and integration in the integrals in (29.4),
(29.5).
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If 0 < r1 < r, then one can also check that
∞∑
j=0

|fj |2 r2 j
1 =

1

2π r1

∫
|w|=r1

|f(w)|2 |dw|(32.3)

under these conditions. Of course, |f(w)|2 = f(w) f(w), where f(w) is the
complex-conjugate of f(w). One can express f(w) as in (29.3), and interchange
the order of summation and integration to get (32.3), using (32.2).

Note that
∞∑
j=0

|fj |2 r2 j
1(32.4)

increases monotonically in r1, and in particular (32.4) is less than or equal to

∞∑
j=0

|fj |2 r2 j(32.5)

when 0 ≤ r1 < r. In fact, (32.4) tends to (32.5) as r1 → r−, which is the same
as saying that (32.5) is equal to the supremum of (32.4) over 0 ≤ r1 < r. This
is basically a version of the monotone convergence theorem for sums. If n is a
nonnegative integer, then

n∑
j=0

|fj |2 r2 j
1(32.6)

converges to
n∑

j=0

|fj |2 r2 j(32.7)

as r1 → r. Of course, (32.6) is less than or equal to (32.4) for every n ≥ 0.
This implies that (32.7) is less than or equal to the supremum of (32.4) over
0 ≤ r1 < r for every n ≥ 0. It follows that (32.5) is less than or equal to the
supremum of (32.4) over 0 ≤ r1 < r, as desired.

Let r ∈ R+ and f ∈ H∞(U) be given, and let f(T ) ∈ C[[T ]] be the corre-
sponding formal power series, as in Section 29. Using (32.3), we get that

∞∑
j=0

|fj |2 r2 j
1 ≤

(
sup{|f(w)| : w ∈ C, |w| = r1}

)2

(32.8)

when 0 < r1 < r, which clearly holds when r1 = 0 as well. Hence
∞∑
j=0

|fj |2 r2 j
1 ≤

(
sup
w∈Ur

|f(w)|
)2

(32.9)

when 0 ≤ r1 < r. This implies that
∞∑
j=0

|fj |2 r2 j ≤
(

sup
w∈Ur

|f(w)|
)2

,(32.10)

by the remarks in the previous paragraph. In particular, it follows that f(T ) is
in the space PS2

r (C) defined in (20.1) under these conditions.
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33 Hardy spaces

Let f be a holomorphic function on the open unit disk

U = U1 = {z ∈ C : |z| < 1}.(33.1)

Consider ( 1

2π

∫
|z|=1

|f(r z)|p |dz|
)1/p

(33.2)

for each positive real number p and 0 ≤ r < 1, where more precisely the integral
is taken over the unit circle in C with respect to arclength. This is the same as( 1

2πr

∫
|w|=r

|f(w)|p |dw|
)1/p

(33.3)

when 0 < r < 1, and otherwise (33.2) is equal to |f(0)| when r = 0. Note
that (33.2) increases monotonically in p, by a standard argument using Hölder’s
inequality or Jensen’s inequality.

The analogue of (33.2) for p = ∞ is

sup{|f(r z)| : z ∈ C, |z| = 1} = sup{|f(w)| : w ∈ C, |w| = r},(33.4)

as usual. Of course, this also reduces to |f(0)| when r = 0. It is easy to see that
(33.2) is less than or equal to (33.4) for every p > 0 and 0 ≤ r < 1.

As in Section 30, (33.4) increases monotonically in r, by the maximum prin-
ciple. It is well known that (33.2) increases monotonically in r for each p > 0
as well. Let T be an indeterminate, and let f(T ) =

∑∞
j=0 fj T

j be the formal
power series in T corresponding to f , as in Section 29. As in (32.3),

∞∑
j=0

|fj |2 r2 j =
1

2π

∫
|w|=1

|f(r w)|2 |dw|(33.5)

when 0 < r < 1, and this clearly holds when r = 0 too. In particular, this
implies that (33.2) increases monotonically in r when p = 2.

The Hardy space Hp is defined for each positive real number p to be the space
of holomorphic functions f on U such that (33.2) is bounded, for 0 ≤ r < 1. In
this case, ∥f∥Hp is defined to be the supremum of (33.2) over 0 ≤ r < 1. This is
the same as the limit of (33.2) as r → 1−, because (33.2) increases monotonically
in r, as before. Similarly, H∞ is defined to be the space of bounded holomorphic
functions on U , as in Section 30. If f ∈ H∞, then ∥f∥H∞ is defined to be the
supremum norm of f on U , which is the same as the supremum of (33.4) over
0 ≤ r < 1, or the limit of (33.4) as r → 1−.

One can check that Hp is a vector space over C with respect to pointwise
addition and scalar multiplication. If p ≥ 1, then ∥f∥Hp defines a norm on Hp,
because of the integral version of Minkowski’s inequality. If 0 < p ≤ 1, then it is
easy to see that ∥f∥Hp defines a p-norm on Hp, using (1.9). If 0 < p1 ≤ p2 ≤ ∞,
then

Hp2 ⊆ Hp1 ,(33.6)
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with
∥f∥Hp1 ≤ ∥f∥Hp2(33.7)

for every f ∈ Hp2 . This follows from the monotonicity of (33.2) in p, mentioned
earlier.

Let f be a holomorphic function on the open unit disk U again, and let
f(T ) ∈ C[[T ]] be the corresponding formal power series. Observe that f ∈ H2

if and only if f(T ) is in the space PS2
1(C) defined in (20.1), in which case

∥f(T )∥22,1 =

∞∑
j=0

|fj |2 = ∥f∥2H2 .(33.8)

Of course, the first step in (33.8) is basically the definition of ∥f(T )∥2,1, as
in (19.1). Remember that the sum in the middle of (33.8) is the same as the
supremum of the the sum on the left side of (33.5), which is the same as saying
that the sum on the left side of (33.5) tends to the sum in the middle of (33.8)
as r → 1−, as in the previous section. Thus the second step in (33.8) follows
from (33.5) by taking r → 1−, or the supremum over 0 ≤ r < 1.

Suppose that 0 < p1, p2, p3 ≤ ∞ satisfy

1/p3 = 1/p1 + 1/p2,(33.9)

and that f ∈ Hp1 , g ∈ Hp2 . Under these conditions, one can use Hölder’s
inequality to get that their product f g is in Hp3 , with

∥f g∥Hp3 ≤ ∥f∥Hp1 ∥g∥Hp2 .(33.10)

Let f ∈ H1 be given, and let f(T ) be the corresponding formal power series
in T again. Note that

|fj | rj ≤
1

2π

∫
|z|=1

|f(r z)| |dz| ≤ ∥f∥H1(33.11)

for every 0 ≤ r < 1 and nonnegative integer j. The first step follows from (29.6)
when 0 < r < 1, and is easy to see directly when r = 0, while the second step
just uses the definition of ∥f∥H1 . This implies that

|fj | ≤ ∥f∥H1(33.12)

for every j ≥ 0, so that f(T ) is in the space PS∞
1 (C) defined in (20.1), with

∥f(T )∥∞,1 = sup
j≥0

|fj | ≤ ∥f∥H1 .(33.13)

In fact, it is well known that
lim
j→∞

fj = 0(33.14)

when f ∈ H1, so that f(T ) is in the space PS0,1(C) defined in (20.4).
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Part IV

Compositions

34 Composing formal polynomials

Let k be a field, and let T be an indeterminate. Also let

f(T ) =

n∑
j=0

fj T
j(34.1)

and a(T ) be a formal polynomials in T with coefficients in k. The composition
(f ◦ a)(T ) of a(T ) and f(T ) is defined as a formal polynomial in T by

(f ◦ a)(T ) =
n∑

j=0

fj a(T )
j .(34.2)

Here a(T )j is interpreted as being the constant polynomial corresponding to the
multiplicative identity element in k when j = 0, as usual.

Of course, the space k[T ] of formal polynomials in T with coefficients in k is
an algebra over k with a multiplicative identity element, as in Section 16. Thus

f(a(T )) =

n∑
j=0

fj a(T )
j(34.3)

is defined as an element of k[T ] as in (25.2). Clearly (34.2) is the same as (34.3).
As in Section 25,

f(T ) 7→ f(a(T ))(34.4)

defines an algebra homomorphism from k[T ] into itself for each a(T ) ∈ k[T ].
Let A be an algebra over k with a multiplicative identity element e, and let

x ∈ A be given. If a(T ) ∈ k[T ], then a(x) can be defined as an element of A as
in Section 25. Similarly, if f(T ) ∈ k[T ] is as in (34.1), then

f(a(x)) =

n∑
j=0

fj a(x)
j(34.5)

is defined as an element of A as in (25.2). We also have that

(f ◦ a)(x)(34.6)

is defined as an element of A, as in Section 25, because (f ◦ a)(T ) ∈ k[T ]. It
is easy to see that (34.5) is the same as (34.6), using the fact that (25.3) is an
algebra homomorphism.

Let a(T ), b(T ), f(T ) ∈ k[T ] be given, so that their compositions are defined
as elements of k[T ] too. One can check that

((f ◦ a) ◦ b)(T ) = (f ◦ (a ◦ b))(T )(34.7)
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as elements of k[T ]. One way to do this is to use the remarks in the preceding
paragraph, with A = k[T ] and x = b(T ). This will be discussed more precisely
in the next section, and one can also use the remarks in the next two paragraphs.

If A is any set, then the collection of all mappings from A into itself is a
semigroup with respect to ordinary composition, and with the identity mapping
on A as the multiplicative identity element. Let A be an algebra over k with
a multiplicative identity element e again. If f(T ) ∈ k[T ], then (25.2) defines a
natural mapping fA from A into itself. This defines a mapping

f(T ) 7→ fA(34.8)

from k[T ] into the collection of all mappings from A into itself. This mapping
(34.8) sends formal compositions of elements of k[T ] to ordinary compositions
of mappings on A. This corresponds to the fact that (34.5) is equal to (34.6) for
every f, a ∈ k[T ] and x ∈ A. Note that f(T ) = T corresponds to the identity
mapping on A in this way.

In particular, we can take A = k[T ], as before. In this case, we have that
(34.8) is injective. This follows from the fact that f(a(T )) = f(T ) when a(T ) =
T .

Let α ∈ k be given, so that

aα(T ) = αT(34.9)

may be considered as an element of k[T ]. If f(T ) ∈ k[T ] is as in (34.1), then

f(aα(T )) = f(αT ) =

n∑
j=0

fj α
j T j .(34.10)

This is the same as the rescaling Rα(f(T )) of f(T ) by α, as in (24.1).

35 Polynomials and power series

Let k be a field, let T be an indeterminate, and let f(T ) be a formal polynomial
in T with coefficients in k as in (34.1) again. If a(T ) is a formal power series in
T with coefficients in k, then the composition (f ◦ a)(T ) of a(T ) and f(T ) can
be defined as a formal power series in T by (34.2), as before.

Remember that the space k[[T ]] of formal power series in T with coefficients
in k is an algebra over k with a multiplicative identity element, as in Section
16. If f(T ) ∈ k[T ] and a(T ) ∈ k[[T ]], then f(a(T )) can be defined as an element
of k[[T ]], as in (25.2) and (34.3). This is the same as (f ◦ a)(T ) as defined in
the preceding paragraph, for the same reasons as in the previous section. We
also have that (34.4) defines an algebra homomorphism from k[T ] into k[[T ]] for
each a(T ) ∈ k[[T ]], as in Section 25.

Let a(T ), f(T ) ∈ k[T ] and b(T ) ∈ k[[T ]] be given. Thus (f ◦ a)(T ) is defined
as an element of k[T ] as in the previous section, and

(a ◦ b)(T ) = a(b(T )),(35.1)
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((f ◦ a) ◦ b)(T ) = (f ◦ a)(b(T )), and(35.2)

(f ◦ (a ◦ b))(T ) = f((a ◦ b)(T )) = f(a(b(T )))(35.3)

are defined as elements of k[[T ]]. In this situation, we have that

f(a(b(T ))) = (f ◦ a)(b(T ))(35.4)

as elements of k[[T ]]. This follows from the equality between (34.5) and (34.6),
with A = k[[T ]] and x = b(T ). This shows that (34.7) holds as an equality
between formal power series in T under these conditions.

If f(T ) ∈ k[T ], then f(x) can be defined as an element of k for every x ∈ k,
as in Section 25. If a(T ) ∈ k[[T ]], then a(0) can be defined as an element of k,
which is the same as the constant term a0 in a(T ). It is easy to see that the
constant term in (f ◦ a)(T ) is equal to f(a0), which is the same as saying that
(f ◦ a)(0) is equal to f(a(0)).

Let 0 < r < 1 be given, and let | · |r be defined on k[[T ]] as in Section 18.
Let us take k to be equipped with the trivial absolute value function, so that
| · |r may be considered as an ultranorm on k[[T ]] as a vector space over k.
More precisely, k[[T ]] is a commutative algebra over k, and we have seen that
| · |r is multiplicative as an ultranorm on k[[T ]]. Remember that k[[T ]] may be
identified with the space c(Z+ ∪ {0}, k) of k-valued functions on Z+ ∪ {0} as a
vector space over k. This can also be identified with the Cartesian product of
copies of k indexed by nonnegative integers. The topology determined on k[[T ]]
by the ultrametric associated to | · | corresponds exactly to the product topology
on this Cartesian product that uses the discrete topology on k in each factor.
In particular, this topology does not depend on r ∈ (0, 1). As before, k[T ] may
be identified with the subspace c00(Z+ ∪ {0}, k) of c(Z+ ∪ {0}, k) consisting of
k-valued functions on Z+ ∪ {0} with finite support. It is easy to see that k[T ]
is dense in k[[T ]] with respect to the topology just mentioned.

36 Composing formal power series

Let k be a field again, let T be an indeterminate, and let f(T ) =
∑∞

j=0 fj T
j

be a formal power series in T with coefficients in k. Also let a(T ) ∈ k[[T ]] be
given, and suppose that the constant term in a(T ) is equal to 0. Equivalently,
this means that

a(T ) = c(T )T(36.1)

for some c(T ) ∈ k[[T ]], so that

a(T )j = c(T )j T j(36.2)

for every positive integer j. As usual, if j = 0, then we interpret both sides
of (36.2) as being the power series whose constant term is the multiplicative
identity element 1 in k, and for which the coefficient of T l is equal to 0 when
l ≥ 1.
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If n is a nonnegative integer, then

n∑
j=0

fj a(T )
j =

n∑
j=0

fj c(T )
j T j(36.3)

is defined as a formal power series in T with coefficients in k. Note that the
coefficient of T l in (36.3) does not depend on n when l ≤ n. This permits us to
define the composition (f ◦ a)(T ) of a(T ) and f(T ) as a formal power series in
T by

(f ◦ a)(T ) =
∞∑
j=0

fj a(T )
j =

∞∑
j=0

fj c(T )
j T j .(36.4)

More precisely, the coefficient of T l in (36.4) is defined to be the same as the
coefficient of T l in (36.3) when l ≤ n. If f(T ) ∈ k[T ], then this reduces to the
definition of (f ◦ a)(T ) in the previous section. The constant term in (36.4) is
equal to the constant term f0 in f(T ) for every a(T ) ∈ k[[T ]]. This is the same
as saying that (f ◦ a)(0) = f(0) as elements of k, which is the same as f(a(0)),
because a(0) = 0 by hypothesis.

Let us consider
f(T ) 7→ (f ◦ a)(T )(36.5)

as a mapping from k[[T ]] into itself, where a(T ) ∈ k[[T ]] with a(0) = 0 is fixed
for the moment. Clearly (36.5) is linear on k[[T ]] as a vector space over k. If
f(T ), g(T ) ∈ k[[T ]], then one can check that

((f g) ◦ a)(T ) = (f ◦ a)(T ) (g ◦ a)(T ),(36.6)

so that (36.5) is an algebra homomorphism from k[[T ]] into itself. Indeed, if
f(T ), g(T ) ∈ k[T ], then (36.6) follows from the remarks in the previous para-
graph. Otherwise, one can approximate f(T ), g(T ) ∈ k[[T ]] by elements of k[T ],
using the remarks in the preceding paragraph.

Let a(T ), b(T ) ∈ k[[T ]] be given, with a(0) = b(0) = 0. Thus (a ◦ b)(T ) can
be defined as an element of k[[T ]] as before, with (a◦b)(0) = 0. If f(T ) ∈ k[[T ]],
then it follows that (f ◦a)(T ), ((f ◦a)◦b)(T ), and (f ◦ (a◦b))(T ) can be defined
as elements of k[[T ]] as well. One would like to verify that

((f ◦ a) ◦ b)(T ) = (f ◦ (a ◦ b))(T )(36.7)

for every f(T ) ∈ k[[T ]], as usual. Observe that

f(T ) 7→ ((f ◦ a) ◦ b)(T ), f(T ) 7→ (f ◦ (a ◦ b))(T )(36.8)

define algebra homomorphisms from k[[T ]] into itself, by the remarks in the
previous paragraph. If f(T ) is a constant formal power series, so that fj = 0
when j ≥ 1, then both sides of (36.7) are equal to the same constant power
series. Similarly, if f(T ) = T , then (f ◦ a)(T ) = a(T ), and so on, so that (36.7)
holds. This implies that (36.7) when f(T ) ∈ k[T ], because the mappings in
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(36.8) are algebra homomorphisms. If f(T ) ∈ k[[T ]], then one can get the same
conclusion by approximating f(T ) by elements of k[T ].

If α ∈ k, then aα(T ) = αT defines an element of k[T ] with aα(0) = 0. Thus
(f ◦ aα)(T ) is defined as an element of k[[T ]] when f(T ) ∈ k[[T ]], in which case
(36.4) reduces to

(f ◦ aα)(T ) =
∞∑
j=0

fj α
j T j .(36.9)

This corresponds to (24.1), with slightly different notation, as in Section 34.

37 Polynomials and convergent series

Let k be a field with a qk-absolute value function | · | for some qk > 0, and let T
be an indeterminate. Also let 0 < q ≤ qk and a positive real number r be given.
Thus the space PSq

r (k) can be defined as in (20.1). Remember that ∥f(T )∥q,r
as defined in (19.1) and (19.2) is a q-norm on PSq

r (k), because q ≤ qk, as in
Section 20. We have seen that PSq

r (k) is a subalgebra of k[[T ]] when q ≤ qk,
and that ∥f(T )∥q,r is submultiplicative on PSq

r (k), as in Section 22. The ∥ · ∥q,r
q-norm of the multiplicative identity element in k[[T ]] is equal to 1, as before.
If qk = ∞, then the space PS0,r(k) defined in (20.4) is a subalgebra of k[[T ]]
too, as in Section 22 again.

Let f(T ) =
∑n

j=0 fj T
j be a formal polynomial with coefficients in k. If

a(T ) ∈ k[[T ]], then

f(a(T )) =

n∑
j=0

fj a(T )
j(37.1)

defines an element of k[[T ]], as in Section 35. This is the same as the formal
composition (f ◦ a)(T ), as before. If a(T ) ∈ PSq

r (k), then (37.1) is an element
of PSq

r (k) as well, because PSq
r (k) is a subalgebra of k[[T ]] that contains the

multiplicative identity element. Similarly, if a(T ) ∈ PS0,r(k), then (37.1) is an
element of PS0,r(k).

Let r1 be a nonnegative real number, and suppose for the moment that

∥a(T )∥q,r ≤ r1.(37.2)

Under these conditions, we have that

∥f(a(T ))∥q,r ≤ ∥f(T )∥q,r1 ,(37.3)

as in (25.6). More precisely, the remarks in Section 25 are being used here with
A = PSq

r (k), N = ∥ · ∥q,r, and x = a(T ). The r in the previous situation is
taken to be r1 here. Note that (37.3) also works when r = 0.

Now let A be an algebra over k with a multiplicative identity element e, and
let N be a submultiplicative q-norm on A with respect to | · | on k. Suppose
that A is complete with respect to the q-metric associated to N , and let x ∈ A
be given, with

N(x) ≤ r.(37.4)
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If a(T ) ∈ PSq
r (k) and q < ∞, then a(x) can be defined as an element of A, as in

Section 25. This permits us to define f(a(x)) as an element of A, as in (34.5).
Of course, (f ◦ a)(T ) ∈ PSq

r (k) too, as before, so that (f ◦ a)(x) can be defined
as an element of A as in Section 25 again. One can check that

(f ◦ a)(x) = f(a(x))(37.5)

under these conditions, which is corresponds to the equality of (34.5) and (34.6)
in this situation. This uses the fact that a(T ) 7→ a(x) is an algebra homomor-
phism from PSq

r (k) into A, as in Section 25. There are analogous statements
for q = ∞ and a(T ) ∈ PS0,r(k), using the corresponding remarks in Section 25.

38 q-Summability

Let k be a field with a qk-absolute value function | · | for some qk > 0 again, and
let T be an indeterminate. Also let 0 < q ≤ qk be given, with q < ∞, and let r
be a positive real number. Thus ∥f(T )∥q,r and PSq

r (k) are as defined in (19.1)
and (20.1), respectively, PSq

r (k) is a subalgebra of k[[T ]], and ∥f(T )∥q,r is a
submultiplicative q-norm on PSq

r (k). Let us suppose throughout this section
that k is complete with respect to the qk-metric associated to | · |. This implies
that PSq

r (k) is complete with respect to the q-metric associated to ∥f(T )∥q,r.
More precisely, let wr be the positive real-valued function on Z+∪{0} associated
to r as in (19.4). Remember that PSq

r (k) corresponds exactly to the space
ℓqwr

(Z+∪{0}, k) defined in Section 10, as in Section 20. Hence the completeness
of PSq

r (k) is actually the same as the completeness of ℓqwr
(Z+ ∪ {0}, k), which

was mentioned in Section 10.
Let a(T ) ∈ PSq

r (k) be given, with

∥a(T )∥q,r ≤ r1(38.1)

for some nonnegative real number r1. Using r1, the space PSq
r1(k) can be defined

as in (20.1) as well. Let f(T ) =
∑∞

j=0 fj T
j be an element of PSq

r1(k). Under
these conditions, we would like to define

f(a(T )) =

∞∑
j=0

fj a(T )
j(38.2)

as a power series in T . More precisely, the right side of (38.2) converges q-
absolutely as an infinite series with terms in PSq

r (k), as in Section 25. This uses
the remarks in Section 25 with A = PSq

r (k), N = ∥ · ∥q,r, x = a(T ), and the r
in the previous situation taken to be r1 here. It follows that the right side of
(38.2) converges in PSq

r (k), because PSq
r (k) is complete, as before. Thus (38.2)

is defined as an element of PSq
r (k), and we have that

∥f(a(T ))∥q,r ≤ ∥f(T )∥q,r1 ,(38.3)
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as in Section 25. We also have that

f(T ) 7→ f(a(T ))(38.4)

defines an algebra homomorphism from PSq
r1(k) into PSq

r (k), as in Section 25
again.

Let us take (38.2) to be the definition of the composition (f ◦ a)(T ) of a(T )
and f(T ) as an element of PSq

r (k). Of course, this reduces to the discussion
in the previous section when f(T ) ∈ k[T ]. In the present situation, if we also
ask that a(0) = 0, then one can check that (38.2) determines the same formal
power series in T as in Section 36.

Let A be an algebra over k with a multiplicative identity element e, and let
N be a submultiplicative q-norm on A with respect to | · | on k. Suppose that
N(e) = 1, and that A is complete with respect to the q-metric associated to
N . Suppose also that a(T ) ∈ PSq

r (k) satisfies (38.1) for some r1 ≥ 0 again, and
that x ∈ A satisfies N(x) ≤ r. Thus a(x) can be defined as an element of A, as
in Section 25, with

N(a(x)) ≤ ∥a(T )∥q,r ≤ r1.(38.5)

If f(T ) ∈ PSq
r1(k), then we can also define f(a(x)) as an element of A, as in

Section 25. More precisely,

f(a(x)) =

∞∑
j=0

fj a(x)
j ,(38.6)

where the sum on the right converges q-absolutely with respect to N , and hence
converges in A with respect to N . We can define (f ◦ a)(x) as an element of A
too, as in Section 25, because (f ◦ a)(T ) ∈ PSq

r (k).
Under these conditions, one can verify that

(f ◦ a)(x) = f(a(x)).(38.7)

This was already discussed in the previous section when f ∈ k[T ]. If r1 = 0,
then (38.7) is trivial, because (38.1) implies that a(T ) = 0, so that a(x) = 0, and
f(a(T )) = f0. If r1 > 0, then one can approximate f(T ) ∈ PSq

r1(k) by elements
of k[T ] with respect to the ∥ · ∥q,r1 q-norm. This leads to approximations of
(f ◦a)(T ) in PSq

r (k) with respect to the ∥·∥q,r q-norm, because of (38.3). These
approximations of f(T ) in PSq

r1(k) lead to approximations of f(a(x)) in A with
respect to N , because of (25.6). Similarly, these approximations of (f ◦ a)(T )
in PSq

r (k) lead to approximations of (f ◦ a)(x) in A with respect to N .

39 Convergence when q = ∞
Let k be a field with an ultrametric absolute value function | · |, let T be an
indeterminate, and let r be a positive real number. Remember that ∥f(T )∥∞,r

and PS∞
r (k) are as defined in (19.2) and (20.1), respectively, PS∞

r (k) is a
subalgebra of k[[T ]], and ∥f(T )∥∞,r is a multiplicative ultranorm on PS∞

r (k).
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As in the previous section, we ask that k be complete with respect to the
ultrametric associated to |·|, which implies that PS∞

r (k) is complete with respect
to the ultrametric associated to ∥f(T )∥∞,r. Remember also that PS0,r(k) is
defined in (20.4), and that PS0,r(k) is a subalgebra of PS∞

r (k). In addition,
PS0,r(k) is a closed set in PS∞

r (k) with respect to the topology determined by
the ultrametric associated to ∥f(T )∥∞,r, as in Section 20.

Let a(T ) ∈ PS∞
r (k) be given, with

∥a(T )∥∞,r ≤ r1(39.1)

for some nonnegative real number r1. If f(T ) =
∑∞

j=0 fj T
j ∈ PS0,r1(k), then

we would like to define

f(a(T )) =

∞∑
j=0

fj a(T )
j(39.2)

as a power series in T again. As before, the right side of (39.2) converges
as an infinite series in PS∞

r (k). This uses the remarks in Section 25, with
A = PS∞

r (k), N = ∥ · ∥∞,r, x = a(T ), q = ∞, and the r in the previous
situation taken to be r1 here. We also have that

∥f(a(T ))∥∞,r ≤ ∥f(T )∥∞,r1(39.3)

under these conditions, and that

f(T ) 7→ f(a(T ))(39.4)

is an algebra homomorphism from PS0,r1(k) into PS∞
r (k), as in Section 25.

As in the previous section, we take (39.2) to be the definition of the composi-
tion of a(T ) and f(T ) as an element of PS∞

r (k). This reduces to the discussion
in Section 37 when f(T ) ∈ k[T ], as before. If we also ask that a(0) = 0 in
the preceding paragraph, then one can verify that (39.2) determines the same
formal power series as in Section 36. Note that

f(a(T )) ∈ PS0,r(k)(39.5)

when a(T ) ∈ PS0,r(k) satisfies (39.1), because PS0,r(k) is a closed subalgebra
of PS∞

r (k).
Let A be an algebra over k with a multiplicative identity element e, and

let N be a submultiplicative ultranorm on A with respect to | · | on k such
that N(e) = 1. Suppose that A is complete with respect to the ultrametric
associated to N , and that a(T ) ∈ PS0,r(k) satisfies (39.1) for some r1 ≥ 0. If
x ∈ A satisfies N(x) ≤ r, then a(x) can be defined as an element of A as in
Section 25, with

N(x) ≤ ∥a(T )∥∞,r ≤ r1.(39.6)

Similarly, if f(T ) ∈ PS0,r1(k), then f(a(x)) can be defined as an element of A
too, as in Section 25. We can define (f ◦ a)(x) as an element of A as well, as in
Section 25, because (f ◦ a)(T ) ∈ PS0,r(k), as in (39.5).
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As in the previous section, one can check that

(f ◦ a)(x) = f(a(x))(39.7)

under these conditions. This follows from the remarks in Section 37 when f(T )
is a formal polynomial in T , as before. If r1 = 0, then a(T ) = 0, and (39.7) is
trivial. If r1 > 0, then one can approximate f(T ) ∈ PS0,r1(k) by formal poly-
nomials with respect to the ∥ · ∥∞,r1 ultranorm, which leads to approximations
of (f ◦a)(T ) in PS0,r(k) with respect to the ∥·∥∞,r ultranorm, by (39.3). These
approximations lead to corresponding approximations of f(a(x)) and (f ◦ a)(x)
in A with respect to N .

40 Associativity

Let k be a field with a qk-absolute value function | · | for some qk > 0, and let T
be an indeterminate. Suppose that k is complete with respect to the qk-metric
associated to | · |, and let 0 < q ≤ qk and a positive real number r be given.
Also let a(T ) ∈ PSq

r (k) be given, with

∥a(T )∥q,r ≤ r1(40.1)

for some nonnegative real number r1. If f(T ) ∈ PSq
r1(k) and q < ∞, then

(f ◦ a)(T ) can be defined as an element of PSq
r (k), as in Section 38. Similarly,

if f(T ) ∈ PS0,r1(k) and q = ∞, then (f ◦ a)(T ) can be defined as an element of
PS∞

r (k), as in the previous section.
Let a positive real number r0 be given, as well as b(T ) ∈ PSq

r0(k), with

∥b(T )∥q,r0 ≤ r.(40.2)

If q < ∞, then (a ◦ b)(T ) can be defined as an element of PSq
r0(k), as in Section

38. If q = ∞ and a(T ) ∈ PS0,r(k), then (a ◦ b)(T ) can be defined as an element
of PS∞

r0 (k), as in the previous section. In both cases, we have that

∥(a ◦ b)(T )∥q,r0 ≤ ∥a(T )∥q,r ≤ r1.(40.3)

If f(T ) ∈ PSq
r1(k) and q < ∞, then (f ◦ a)(T ) ∈ PSq

r (k), and so

((f ◦ a) ◦ b)(T )(40.4)

can be defined as an element of PSq
r0(k), as in Section 38 . If q = ∞, f(T ) is

an element of PS0,r1(k), and a(T ) ∈ PS0,r(k), then (f ◦ a)(T ) ∈ PS0,r(k) too,
as in the previous section. This means that (40.4) can be defined as an element
of PS∞

r0 (k), as before. Note that

∥((f ◦ a) ◦ b)(T )∥q,r0 ≤ ∥(f ◦ a)(T )∥q,r ≤ ∥f(T )∥q,r1(40.5)

in both situations.
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If f(T ) ∈ PSq
r1(k) and q < ∞, then

(f ◦ (a ◦ b))(T )(40.6)

can be defined as an element of PSq
r0(k), as in Section 38, and using (40.3). If

q = ∞, a(T ) ∈ PS0,r(k), and f(T ) ∈ PS0,r1(k), then (40.6) can be defined as
an element of PS∞

r0 (k), as in the previous section, and using (40.3) again. In
both situations,

∥(f ◦ (a ◦ b))(T )∥q,r0 ≤ ∥f(T )∥q,r1 ,(40.7)

as before.
If q < ∞, then the mappings from f(T ) to (40.4) and (40.6) define algebra

homomorphisms from PSq
r1(k) into PSq

r0(k), because of the analogous statement
for (38.4). Similarly, if q = ∞, and a(T ) ∈ PS0,r(k), then the mappings from
f(T ) to (40.4) and (40.6) define algebra homomorphisms from PS0,r1(k) into
PS∞

r0 (k), because of the analogous statement for (39.4), and using (39.5).
Of course, we would like to say that (40.4) is equal to (40.6), under suitable

conditions. Suppose first that q < ∞. If f(T ) is a constant power series, so
that fj = 0 when j ≥ 1, or if f(T ) = T , then the equality of (40.4) and
(40.6) can be verified directly. This implies that (40.4) and (40.6) are the same
when f(T ) ∈ k[T ], because the mappings from f(T ) to (40.4) and (40.6) are
algebra homomorphisms, as in the preceding paragraph. If f(T ) is any element
of PSq

r1(k), then one can check that (40.4) is equal to (40.6), by approximating
f(T ) by formal polynomials.

Suppose now that q = ∞, and that a(T ) ∈ PS0,r(k). If f(T ) ∈ k[T ], then
(40.4) is equal to (40.6), for the same reasons as before. If f(T ) ∈ PS0,r1(k),
then one can get the same conclusion by approximating f(T ) by formal poly-
nomials again.

41 Some variants for q = ∞
Let k be a field with an ultrametric absolute value function | · |, let T be an
indeterminate, and let r, r2 be positive real numbers. As before, we ask that k
be complete with respect to the ultrametric associated to | · |, which implies that
the space PS∞

r (k) defined in (20.1) is complete with respect to the ultrametric
associated to the ultranorm ∥ · ∥∞,r defined in (19.2). Let a(T ) ∈ PS∞

r (k) and
f(T ) =

∑∞
j=0 fj T

j ∈ PS∞
r2 (k) be given, and suppose for the moment that

∥a(T )∥∞,r < r2.(41.1)

As usual, we would like to define

f(a(T )) =

∞∑
j=0

fj a(T )
j(41.2)

as a power series in T , where the right side of (41.2) converges as an infinite series
in PS∞

r (k). This corresponds to the second convergence condition described in
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Section 25 with q = ∞, where A = PS∞
r (k), N = ∥ · ∥∞,r, x = a(T ), and the r

in the previous situation is taken to be r2 here. This amounts to applying the
remarks in Section 39 to a nonnegative real number r1 such that

∥a(T )∥∞,r ≤ r1 < r2.(41.3)

Remember that PS∞
r2 (k) ⊆ PS0,r1(k) when r1 < r2, as in Section 21, so that

f(T ) ∈ PS0,r1(k). We also get that

∥f(a(T ))∥∞,r ≤ ∥f(T )∥∞,r1 ≤ ∥f(T )∥∞,r2 ,(41.4)

using (39.3) in the first step, and (19.6) in the second step. As before,

f(T ) 7→ f(a(T ))(41.5)

is an algebra homomorphism from PS∞
r2 (k) into PS∞

r (k) under these conditions,
and f(a(T )) ∈ PS0,r(k) when a(T ) ∈ PS0,r(k).

Let a(T ) =
∑∞

j=0 aj T
j ∈ PS∞

r (k) be given again, and observe that

∥a(T )∥∞,r0 = max
(
|a0|, sup

j≥1
(|aj | rj0)

)
(41.6)

for every nonnegative real number r0, by the definition (19.2) of ∥a(T )∥∞,r0 . If
0 ≤ r0 ≤ r, then

|aj | rj0 ≤ (r0/r) |aj | rj ≤ (r0/r) ∥a(T )∥∞,r(41.7)

for every j ≥ 1. It follows that

∥a(T )∥∞,r0 ≤ max(|a0|, (r0/r) ∥a(T )∥∞,r)(41.8)

when 0 ≤ r0 ≤ r.
Suppose now that

∥a(T )∥∞,r ≤ r2,(41.9)

instead of (41.1), and that
|a0| < r2.(41.10)

If 0 ≤ r0 < r, then we get that

∥a(T )∥∞,r0 < r2,(41.11)

because of (41.8). Let f(T ) ∈ PS∞
r2 (k) be given again, so that f(a(T )) can be

defined as an element of PS∞
r0 (k) when 0 ≤ r0 < r, as before. Of course, the

convergence of the series on the right side of (41.2) in PS∞
r0 (k) is a stronger

condition as r0 increases. These convergence conditions determine the same
formal power series in T when r0 > 0. As in (41.4), we have that

∥f(a(T ))∥∞,r0 ≤ ∥f(T )∥∞,r2(41.12)

for every 0 ≤ r0 < r. Using this, one can check that f(a(T )) ∈ PS∞
r (k), with

∥f(a(T ))∥∞,r ≤ ∥f(T )∥∞,r2 .(41.13)
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42 Some remarks about A(Ur)

In this section, we take k = C, with the standard absolute value function. Let
r1 be a positive real number, and let

Ur1 = {z ∈ C : |z| < r1}(42.1)

be the open disk in C centered at 0 with radius r1, as before. Of course, the
closure of Ur1 in C is the closed disk

Ur1 = {z ∈ C : |z| ≤ r1}(42.2)

centered at 0 with radius r1. Remember that A(Ur1) denotes the space of
continuous complex-valued functions on Ur1 that are holomorphic on Ur1 , as in
Section 31. The elements of A(Ur1) are bounded on Ur1 , because Ur1 is compact.

Let X be a nonempty topological space, and let Cb(X) = Cb(X,C) be the
algebra of bounded continuous complex-valued functions on X, as in Section 7.
Also let A be a subalgebra of Cb(X) that contains the constant functions on
X, and suppose that A is a closed set in Cb(X) with respect to the topology
determined by the supremum metric. Let a ∈ A be given, and suppose that

|a(x)| ≤ r1(42.3)

for every x ∈ X. Let f ∈ A(Ur1) be given too, so that the composition f ◦ a is
defined as a complex-valued function on X. Note that f ◦a is continuous on X,
because the composition of continuous functions is continuous. Similarly, f ◦ a
is bounded on X, because f is bounded on Ur1 , with

sup
x∈X

|(f ◦ a)(x)| = sup
x∈X

|f(a(x))| ≤ sup
z∈Ur1

|f(z)|.(42.4)

Let us check that
f ◦ a ∈ A(42.5)

under these conditions. If f(z) is the restriction to Ur1 of a polynomial in z,
then (42.5) follows from the hypothesis that A be a subalgebra of cb(X) that
contains the constant functions. If f(z) is any element of A(Ur1), then f(z) can
be approximated uniformly by polynomials in z on Ur1 , as in Section 31. This
implies that f ◦ a can be approximated by elements of A uniformly on X, by
the previous case. It follows that (42.5) holds in this case as well, because A is
a closed set in Cb(X) with respect to the supremum metric.

Let U be a nonempty open subset of C, equipped with the topology induced
by the standard topology on C. Remember that H∞(U) denotes the space of
bounded holomorphic complex-valued functions on U , as in Section 30. This
is a subalgebra of the algebra Cb(U) of bounded continuous complex-valued
functions on U , and H∞(U) contains the constant functions. It is well known
that H∞(U) is a closed set in Cb(U) with respect to the topology determined
by the supremum metric, as mentioned in Section 30. Thus we can take X = U
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and A = H∞(U) in the preceding paragraph. Let a ∈ H∞(U) be given, and
suppose that

|a(w)| ≤ r1(42.6)

for every w ∈ U . If f ∈ A(Ur1), then

f ◦ a ∈ H∞(U),(42.7)

as in (42.5). Alternatively, it suffices to show that f ◦ a is holomorphic on U in
this situation. If

|a(w)| < r1(42.8)

for every w ∈ U , then the holomorphicity of f ◦a on U follows from the holomor-
phicity of a on U , the holomorphicity of f on Ur1 , and the fact that compositions
of holomorphic functions are holomorphic. Otherwise, suppose for the moment
that U is connected. If a satisfies (42.6) and |a(w)| = r1 for some w ∈ U , then
it is well known that a is constant on U . This implies that f ◦ a is constant
on U , so that f ◦ a is holomorphic on U in particular. If U is not connected,
then one can verify that f ◦ a is holomorphic on each connected component of
U , using the same type of argument.

Remember that A(Ur1) is a subalgebra of the algebra C(Ur1) of continuous
complex-valued functions on Ur1 , that A(Ur1) contains the constant functions
on Ur1 , and that A(Ur1) is a closed set in C(Ur1) with respect to the topology
determined by the supremummetric, as in Section 31. ThusA = A(Ur1) satisfies
the conditions mentioned earlier, with X = Ur1 equipped with the topology
induced by the standard topology on C. Put a(z) = z for each z ∈ Ur1 , so that
a ∈ A(Ur1), and |a(z)| ≤ r1 for every z ∈ Ur1 . If f ∈ C(Ur1), then f ◦ a is
defined as a continuous complex-valued function on Ur1 , and is equal to f . In
this case, (42.5) says that f ∈ A(Ur1), so that this condition is necessary for the
earlier remarks to hold.

Part V

Invertibility

43 Invertible elements of algebras

Let k be a field, and let A be an algebra over k. Suppose that A has a nonzero
multiplicative identity element e. As usual, an element a of A is said to be
invertible if there is a b ∈ A such that

a b = b a = e.(43.1)

It is well known and easy to see that b is unique when it exists, in which case it is
denoted a−1. If a ∈ A is invertible, then a−1 is invertible too, with (a−1)−1 = a.
If x, y ∈ A are invertible, then x y is invertible in A as well, with

(x y)−1 = y−1 x−1.(43.2)
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Thus the invertbile elements in A form a group.
Let b ∈ A be given. If a ∈ A satisfies

a b = e,(43.3)

then a is said to be a left inverse of b in A. Similarly, if c ∈ A satisfies

b c = e,(43.4)

then c is said to be a right inverse of b in A. If b has a left inverse a ∈ A and a
right inverse c ∈ A, then a = c, and b is invertible in A.

Let x, y ∈ A be given. If x y is invertible in A, then

x (y (x y)−1) = (x y) (x y)−1 = e, ((x y)−1 x) y = (x y)−1 (x y) = e.(43.5)

In particular, this means that x has a right inverse in A, and that y has a left
inverse in A. Similarly, if y x is invertible in A, then

y (x (y x)−1) = (y x) (y x)−1 = e, ((y x)−1 y)x = (y x)−1 (y x) = e,(43.6)

which means that y has a right inverse in A, and that x has a left inverse in
A. If x y and y x are both invertible in A, then it follows that x and y are both
invertible in A.

Let w, z ∈ A be given, and suppose that w and z commute, so that w z = z w.
If w is invertible in A, then w−1 commutes with z too.

Let x ∈ A and a nonnegative integer be given. Using a standard argument,
we get that

(e− x)

n∑
j=0

xj =
( n∑

j=0

xj
)
(e− x) = e− xn+1,(43.7)

where xj is interpreted as being equal to e when j = 0, as usual. If e− xn+1 is
invertible in A, then it follows that e− x is invertible in A, as before.

44 Invertibility and q-seminorms

Let k be a field with a qk-absolute value function | · | for some qk > 0, and let
A be an algebra over k with a nonzero multiplicative identity element e. Also
let N be a submultiplicative q-seminorm on A with respect to | · | on k for some
q > 0. If x ∈ A, then

N(x) = N(e x) ≤ N(e)N(x).(44.1)

Thus N(e) ≥ 1 when N(x) > 0 for some x ∈ A. If x ∈ A is invertible in A,
then

N(e) = N(xx−1) ≤ N(x)N(x−1).(44.2)

Suppose that x, y ∈ A are invertible in A, and observe that

x−1 − y−1 = x−1 y y−1 − x−1 x y−1 = x−1 (y − x) y−1.(44.3)
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It follows that

N(x−1 − y−1) ≤ N(x−1)N(x− y)N(y−1).(44.4)

Using (44.3), we also get that

y−1 = x−1 + x−1 (y − x) y−1.(44.5)

Suppose for the moment that q < ∞, so that

N(y−1)q ≤ N(x−1)q +N(x−1 (x− y) y−1)q,(44.6)

by (44.5) and the q-seminorm version of the triangle inequality. This implies
that

N(y−1)q ≤ N(x−1)q +N(x−1)q N(x− y)q N(y−1)q,(44.7)

and hence (
1−N(x−1)q N(x− y)q

)
N(y−1)q ≤ N(x−1)q.(44.8)

If
N(x−1)N(x− y) < 1,(44.9)

then it follows that

N(y−1)q ≤ N(x−1)q
(
1−N(x−1)q N(x− y)q

)−1
.(44.10)

Equivalently,

N(y−1) ≤ N(x−1)
(
1−N(x−1)q N(x− y)q

)−1/q
(44.11)

when (44.9) holds. Combining this with (44.4), we get that

N(x−1 − y−1) ≤ N(x−1)2 N(x− y)
(
1−N(x−1)q N(x− y)q

)−1/q
(44.12)

when (44.9) holds.
If q = ∞, then

N(y−1) ≤ max
(
N(x−1), N(x−1 (x− y) y−1)

)
,(44.13)

by (44.5) and the semi-ultranorm version of the triangle inequality. It follows
that

N(y−1) ≤ max
(
N(x−1), N(x−1)N(x− y)N(y−1)

)
,(44.14)

because N is submultiplicative on A. If (44.9) holds, then (44.14) implies that

N(y−1) ≤ N(x−1).(44.15)

More precisely, (44.15) is trivial when N(y−1) = 0. Otherwise, if N(y−1) > 0,
then (44.9) implies that

N(x−1)N(x− y)N(y−1) < N(y−1).(44.16)
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This and (44.14) imply (44.15), as desired. Using (44.4) and (44.15), we get
that

N(x−1 − y−1) ≤ N(x−1)2 N(x− y)(44.17)

when q = ∞ and (44.9) holds.
Consider y 7→ y−1 as a mapping from the group of invertible elements of A

into itself. This mapping is continuous with respect to the topology induced on
the group of invertible elements of A by the topology determined on A by the
q-semimetric associated to N . More precisely, the continuity of this mapping at
a given invertible element x of A follows from (44.12) when q < ∞, and from
(44.17) when q = ∞. In both cases, (44.9) holds when y is sufficiently close to
x with respect to N . This permits us to use (44.12) and (44.17) to get that y−1

is close to x−1 with respect to N when y is close to x, as desired.

45 The inverse of e− x

Let k be a field, and let A be an algebra over k with a nonzero multiplicative
identity element e. Suppose that x ∈ A has the property that e−x is invertible
in A. Using (43.7), we get that

n∑
j=0

xj = (e− x)−1 (e− xn+1) = (e− xn+1) (e− x)−1(45.1)

for every nonnegative integer n. Equivalently,

(e− x)−1 −
n∑

j=0

xj = (e− x)−1 xn+1 = xn+1 (e− x)−1(45.2)

for each n ≥ 0.
Let | · | be a qk-absolute value function on k for some qk > 0, and let N be

a submultiplicative q-seminorm on A with respect to | · | on k for some q > 0.
Observe that

N(xj) ≤ N(x)j(45.3)

for every x ∈ A and positive integer j. If N(e) = 1, then (45.3) also holds when
j = 0, with xj interpreted as being e and N(x)j interpreted as being 1, as usual.

If x ∈ A satisfies N(x) < 1, then (45.3) implies that

lim
j→∞

N(xj) = 0.(45.4)

If e− x is invertible in A, then (45.2) and (45.4) imply that

lim
n→∞

N
(
(e− x)−1 −

n∑
j=0

xj
)
= 0.(45.5)
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Of course, this is the same as saying that

lim
n→∞

N
(
(e− x)−1 − e−

n∑
j=1

xj
)
= 0,(45.6)

because xj is interpreted as being e when j = 0.
If q < ∞, then

N
( n∑

j=1

xj
)q

≤
n∑

j=1

N(xj)q ≤
n∑

j=1

N(x)q j(45.7)

for every x ∈ A and positive integer n, using the q-seminorm version of the
triangle inequality in the first step, and (45.3) in the second step. This implies
that

N
( n∑

j=1

xj
)q

≤
∞∑
j=1

N(x)q j = N(x)q (1−N(x)q)−1(45.8)

for every n ≥ 1 when N(x) < 1, so that

N
( n∑

j=1

xj
)
≤ N(x) (1−N(x)q)−1/q(45.9)

for every n ≥ 1. Similarly, if q = ∞, then

N
( n∑

j=1

xj
)
≤ max

1≤j≤n
N(xj) ≤ max

1≤j≤n
N(x)j(45.10)

for every x ∈ A and positive integer n, using the semi-ultranorm version of the
triangle inequality in the first step, and (45.3) in the second step. Hence

N
( n∑

j=1

xj
)
≤ N(x)(45.11)

for every n ≥ 1 when N(x) ≤ 1.
Suppose that x ∈ A satisfies N(x) < 1, and that e− x is invertible in A. If

q < ∞, then we get that

N((e− x)−1 − e) ≤ N(x) (1−N(x)q)−1/q,(45.12)

using (45.6) and (45.9). Similarly, if q = ∞, then

N((e− x)−1 − e) ≤ N(x),(45.13)

by (45.6) and (45.11).
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46 Inverting e− x

Let k be a field with a qk-absolute value function | · | for some qk > 0, and let
A be an algebra over k with a nonzero multiplicative identity element e. Also
let N be a submultiplicative q-norm on A with respect to | · | on k for some
q > 0. Suppose that x ∈ A has the property that

∑∞
j=0 x

j converges as an
infinite series in A with respect to N . In particular, this implies that

lim
j→∞

N(xj) = 0,(46.1)

as in (9.4). It follows that

(e− x)

∞∑
j=0

xj =
( ∞∑

j=0

xj
)
(e− x) = e,(46.2)

by taking the limit as n → ∞ in (43.7). Thus e− x has a multiplicative inverse
in A under these conditions, with

(e− x)−1 =

∞∑
j=0

xj .(46.3)

Note that (45.5) holds by construction in this situation.
Let us suppose from now on in this section that A is complete with respect to

the q-metric associated to N . Let x ∈ A be given, and suppose for the moment
that N(x) < 1. If q < ∞ and N(e) = 1, then we can use (45.3) to get that

∞∑
j=0

N(xj)q ≤
∞∑
j=0

N(x)q j = (1−N(x)q)−1.(46.4)

This means that
∑∞

j=0 x
j converges q-absolutely with respect to N , and hence∑∞

j=0 x
j converges in A with respect to N , as in Section 9. Of course, the

hypothesis that N(e) = 1 is only used to simplify (46.4), and is not needed to
get that

∑∞
j=0 x

j converges q-absolutely. Similarly, (46.1) holds when N(x) < 1,

because of (45.3). If q = ∞, then (46.1) implies that
∑∞

j=0 x
j converges in A

with respect to N , as in Section 9 again.
Suppose now that x ∈ A satisfies

N(xl) < 1(46.5)

for some positive integer l. This implies that e− xl has a multiplicative inverse
in A, as in the preceding paragraph. One can use this to get that e − x has a
multiplicative inverse in A, as in Section 43.

Of course, (46.5) holds if and only if

N(xl)1/l < 1.(46.6)
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Thus there is an l ∈ Z+ such that (46.5) holds if and only if

inf
l≥1

N(xl)1/l < 1.(46.7)

In this case, the convergence of
∑∞

j=1 x
j in A with respect to N can be obtained

as in Section 26.
Let y, z ∈ A be given, and suppose that y is invertible in A. Thus z can be

expressed as
z = y − (y − z) = y

(
e− y−1 (y − z)

)
.(46.8)

If
N(y−1)N(y − z) < 1,(46.9)

then N(y−1 (y − z)) < 1, so that e− y−1 (y − z) has a multiplicative inverse in
A, as before. This implies that z has a multiplicative inverse in A too, with

z−1 =
(
e− y−1 (y − z)

)−1
y−1.(46.10)

In particular, the group of invertible elements of A is an open set in A with
respect to the q-metric associated to N under these conditions.

47 Some examples

Let k be a field, and let T be an indeterminate. Remember that the collection
k[[T ]] of formal power series in T with coefficients in k is a commutative algebra
over k, as in Section 16. As before, elements of k can be identified with formal
power series whose 0th coefficient is the given element of k, and whose other
coefficients are equal to 0. In particular, the multiplicative identity element 1
in k corresponds to the multiplicative identity element in k[[T ]] in this way. If
a ∈ k, then

∑∞
j=0 a

j T j defines an element of k[[T ]], where aj is interpreted as
being equal to 1 when j = 0, as usual. A standard argument shows that

(1− aT )

∞∑
j=0

aj T j = 1,(47.1)

which may be considered as an instance of (16.7). Thus 1− aT is invertible in
k[[T ]], with

(1− aT )−1 =

∞∑
j=0

aj T j ,(47.2)

as before.
Let | · | be a qk-absolute value function on k for some qk > 0, and let r be a

nonnegative real number. If f(T ) ∈ k[[T ]], then ∥f(T )∥q,r is defined as in (19.1)
when q is a positive real number, and as in (19.2) when q = ∞. Let a ∈ k be
given, and observe that

∥aT∥q,r = |a| r(47.3)
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for every q > 0. Suppose for the moment that 0 < q < ∞, so that∥∥∥∥ ∞∑
j=0

aj T j

∥∥∥∥
q,r

=
( ∞∑

j=0

|a|q j rq j
)1/q

.(47.4)

It follows that∥∥∥∥ ∞∑
j=0

aj T j

∥∥∥∥
q,r

= (1− |a|q rq)1/q when |a| r < 1,(47.5)

= +∞ when |a| r ≥ 1.

Similarly, ∥∥∥∥ ∞∑
j=0

aj T j

∥∥∥∥
∞,r

= sup
j≥0

(|a|q j rq r) = 1 when |a| r ≤ 1(47.6)

= +∞ when |a| r > 1.

We also have that

|aj | rj = |a|j rj = (|a| r)j → 0 as j → ∞(47.7)

exactly when |a| r < 1.
Remember that PSq

r (k) is defined in (20.1), and that PS0,r(k) is defined in
(20.4). Using (47.5) and (47.6), we get that

∞∑
j=0

aj T j ∈ PSq
r (k)(47.8)

when 0 < q < ∞ and |a| r < 1, and when q = ∞ and |a| r ≤ 1. Similarly,

∞∑
j=0

aj T j ∈ PS0,r(k)(47.9)

exactly when |a| r < 1, as in (47.7). If |a| r < 1, then
∑∞

j=0 a
j T j converges as

an infinite series in PSq
r (k) for every q > 0, as in Section 28. If |a| r = 1, then∑∞

j=0 a
j T j defines an element of PS∞

r (k), but does not converge as an infinite
series of elements of PS∞

r (k) with respect to ∥ · ∥∞,r, as in Section 28 again.
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