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Abstract

These informal notes deal with the strong operator topology for spaces
of linear mappings between vector spaces over fields with absolute value
functions.
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Part I

Preliminaries

1 q-Semimetrics

Let us begin by reviewing some simple inequalities. If q is a positive real number
and a, b are nonnegative real numbers, then

max(a, b) ≤ (aq + bq)1/q.(1.1)

If 0 < q1 ≤ q2 and a, b ≥ 0, then it follows that

aq2 + bq2 ≤ max(a, b)q2−q1 (aq1 + bq1)(1.2)

≤ (aq1 + bq1)(q2−q1)/q1+1 = (aq1 + bq1)q2/q1 ,

using (1.1) in the second step. Equivalently, this means that

(aq2 + bq2)1/q2 ≤ (aq1 + bq1)1/q1(1.3)

for every a, b ≥ 0 when q1 ≤ q2. We also have that

(aq + bq)1/q ≤ 21/q max(a, b)(1.4)

for every a, b ≥ 0 and q > 0, so that

lim
q→∞

(aq + bq)1/q = max(a, b)(1.5)

for each a, b ≥ 0, using (1.1) again too.
Let X be a set, and let d(x, y) be a nonnegative real-valued function defined

for x, y ∈ X. Suppose that
d(x, x) = 0(1.6)

for every x ∈ X, and that
d(x, y) = d(y, x)(1.7)

for every x, y ∈ X. We say that d(x, y) is a q-semimetric on X for some positive
real number q if

d(x, z)q ≤ d(x, y)q + d(y, z)q(1.8)

for every x, y, z ∈ X. If this holds with q = 1, then we may simply say that
d(x, y) is a semimetric on X. Thus d(x, y) is a q-semimetric on X for some
q > 0 if and only if d(x, y)q is an ordinary semimetric on X.

Of course, (1.8) is the same as saying that

d(x, z) ≤ (d(x, y)q + d(y, z)q)1/q(1.9)

for every x, y, z ∈ X. Let us say that d(x, y) is a semi-ultrametric on X if it
satisfies

d(x, z) ≤ max(d(x, y), d(y, z))(1.10)
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for every x, y, z ∈ X, in addition to (1.6) and (1.7). This may be considered as
a q-semimetric with q = ∞, because of (1.5). If 0 < q1 ≤ q2 ≤ ∞ and d(·, ·) is a
q2-semimetric on X, then d(·, ·) is a q1-semimetric on X as well. This uses (1.3)
when q2 < ∞, and (1.1) when q2 = ∞.

A q-semimetric d(x, y) on X is said to be a q-metric if

d(x, y) > 0(1.11)

for every x, y ∈ X with x ̸= y. This is also known as a metric on X when q = 1.
Similarly, a semi-ultrametric d(x, y) on X that satisfies (1.11) is known as an
ultrametric on X, which corresponds to q = ∞. The discrete metric on any set
X is defined by putting

d(x, y) = 1(1.12)

for every x, y ∈ X with x ̸= y, and using (1.6) when x = y. It is easy to see
that the discrete metric on X is an ultrametric on X.

2 q-Absolute value functions

Let k be a field, and let | · | be a nonnegative real-valued function on k. Suppose
that

|x| = 0 if and only if x = 0,(2.1)

and that
|x y| = |x| |y|(2.2)

for every x, y ∈ k. Using this, one can check that

|1| = 1,(2.3)

where the 1 on the left side of (2.3) refers to the multiplicative identity element
in k, and the 1 on the right side of (2.3) is the positive real number. More
precisely, (2.3) uses the facts that |1| > 0, by (2.1), and 12 = 1 in k. Similarly,

|x| = 1(2.4)

for every x ∈ k that satisfies xn = 1 for some positive integer n, which holds in
particular with n = 2 when x = −1 in k.

Let us say that | · | is a q-absolute value function on k for some positive real
number q if

|x+ y|q ≤ |x|q + |y|q(2.5)

for every x, y ∈ k, in addition to (2.1) and (2.2). If (2.5) holds with q = 1, then
we say that | · | is an absolute value function on k. Note that |x| is a q-absolute
value function on k if and only if |x|q is an absolute value function on k. If | · |
is a q-absolute value function on k for some q > 0, then

d(x, y) = |x− y|(2.6)
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defines a q-metric on k. This uses (2.1) to get (1.6) and (1.11), and (2.4) with
x = −1 to get (1.7).

As before, (2.5) is equivalent to asking that

|x+ y| ≤ (|x|q + |y|q)1/q(2.7)

for every x, y ∈ k. If
|x+ y| ≤ max(|x|, |y|)(2.8)

for every x, y ∈ k, in addition to (2.1) and (2.2), then | · | is said to be an
ultrametric absolute value function on k. In this case, (2.6) is an ultrametric
on | · |. An ultrametric absolute value function on k may be considered as a
q-absolute value function with q = ∞, because of (1.5). If 0 < q1 ≤ q2 ≤ ∞ and
| · | is a q2-absolute value function on k, then | · | is a q1-absolute value function
on k too, because of (1.1) and (1.3).

The standard absolute value functions on the fields R, C are absolute value
functions in the sense described in this section. It follows that they are also
q-absolute value functions when 0 < q ≤ 1, and it is easy to see that they are
not q-absolute value functions when q > 1. The trivial absolute value function is
defined on any field k by putting |0| = 0 and |x| = 1 for every x ∈ k with x ̸= 0.
This is an ultrametric absolute value function on k, for which the corresponding
ultrametric as in (2.6) is the discrete metric on k. Suppose for the moment that
| · | is a q-absolute value function on a field k for some q > 0, and that | · | is not
trivial on k. This means that there is an x ∈ k such that x ̸= 0 and |x| ̸= 1. It
follows that there are y, z ∈ k such that 0 < |y| < 1 and |z| > 1, using x and
1/x.

3 q-Seminorms

Let k be a field, and let | · | be a qk-absolute value function on k for some qk > 0.
Also let V be a vector space over k, and let N be a nonnegative real-valued
function on V that satisfies

N(t v) = |t|N(v)(3.1)

for every v ∈ V and t ∈ k. Note that this implies that N(0) = 0, by taking
t = 0. We say that N is a q-seminorm on V with respect to | · | on k for some
positive real number q if

N(v + w)q ≤ N(v)q +N(w)q(3.2)

for every v, w ∈ V . If q = 1, then we may simply say that N is a seminorm on
V .

As usual, (3.2) is the same as saying that

N(v + w) ≤ (N(v)q +N(w)q)1/q(3.3)
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for every v, w ∈ V . A nonnegative real-valued function N on V that satisfies
(3.1) and

N(v + w) ≤ max(N(v), N(w))(3.4)

for every v, w ∈ V is said to be a semi-ultranorm on V with respect to | · | on
k. A semi-ultranorm on V may also be considered as a q-seminorm on V with
q = ∞, because of (1.5). If 0 < q1 ≤ q2 ≤ ∞ and N is a q2-seminorm on V ,
then N is a q1-seminorm on V as well, because of (1.1) and (1.3). If N is a
q-seminorm on V for any q > 0, then

d(v, w) = dN (v, w) = N(v − w)(3.5)

defines a q-semimetric on V .
A q-seminorm N on V for some q > 0 is said to be a q-norm on V if

N(v) > 0(3.6)

for every v ∈ V with v ̸= 0. This implies that (3.5) is a q-metric on V . As
before, a q-norm on V is also known as a norm on V when q = 1, and as an
ultranorm on V when q = ∞.

Suppose for the moment that N is a q-seminorm on V with respect to | · |
on k for some q > 0, and that (3.6) holds for some v ∈ V . In this case, (3.2)
implies (2.5) when q < ∞, and (3.4) implies (2.8) when q = ∞. Thus | · | should
be a q-absolute value function on k when N is a q-seminorm on V with respect
to | · | on k, unless N is identically 0 on V .

Let q be a positive real number, and let N be a nonnegative real-valued
function on V . Observe that | · |q is a (qk/q)-absolute value function on k, since
| · | is a qk-absolute value function on k. Clearly N satisfies (3.1) if and only
if Nq satisfies the analogous homogeneity property with respect to | · |q on k.
Similarly, N is a q-seminorm on V with respect to | · | on k if and only if Nq is
a seminorm on V with respect to | · |q on k.

Suppose for the moment again that | · | is the trivial absolute value function
on k. In this case, the trivial ultranorm is defined by putting N(0) = 0 and

N(v) = 1(3.7)

for every v ∈ V with v ̸= 0. It is easy to see that this defines an ultranorm on
V , for which the corresponding ultrametric as in (3.5) is the discrete metric.

Note that k may be considered as a one-dimensional vector space over itself.
If | · | is a qk-absolute value function on k, then | · | may be considered as a
qk-norm on k as a vector space over itself.

4 Associated topologies

Let X be a set, and let d(·, ·) be a q-semimetric on X for some q > 0. If x ∈ X
and r is a positive real number, then the open ball centered at x with radius r
corresponding to d is defined as usual by

B(x, r) = Bd(x, r) = {y ∈ X : d(x, y) < r}.(4.1)
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Similarly, the closed ball inX centered at x ∈ X with radius r ≥ 0 corresponding
to d is defined by

B(x, r) = Bd(x, r) = {y ∈ X : d(x, y) ≤ r}.(4.2)

Suppose for the moment that q < ∞, so that d(·, ·)q is a semimetric on X, for
which the corresponding open and closed balls in X can be defined in the same
way as before. In this case,

Bdq (x, rq) = Bd(x, r)(4.3)

for every x ∈ X and r > 0, and

Bdq (x, rq) = Bd(x, r)(4.4)

for every x ∈ X and r ≥ 0.
As usual, a subset U of X is said to be an open set with respect to d(·, ·) if

for each x ∈ U there is an r > 0 such that

Bd(x, r) ⊆ U.(4.5)

It is easy to see that this defines a topology on X. If q < ∞, then this is the
same as the topology associated to d(·, ·)q on X, because of (4.3). This permits
one to reduce to the case of ordinary semimetrics on X, using also the fact
that a semi-ultrametric on X is a semimetric on X when q = ∞. One can
check that open balls in X with respect to d are open sets with respect to this
topology, by reducing to the standard argument for ordinary semimetrics, or
using an analogous argument directly for q-semimetrics. Similarly, closed balls
in X with respect to d are closed sets with respect to this topology. If d(·, ·) is
a q-metric on X, then this topology is Hausdorff. If d(·, ·) is a semi-ultrametric
on X, then open balls in X with respect to d are also closed sets with respect
to this topology, and closed balls in X with respect to d of positive radius are
open sets.

Now let M be a nonempty collection of q-semimetrics on X. More precisely,
we ask that each d ∈ M be a qd-semimetric on X for some qd > 0 that may
depend on d. In this situation, a subset U of X is said to be an open set if for
each x ∈ U there are finitely many elements d1, . . . , dn of M and finitely many
positive real numbers r1, . . . , rn such that

n∩
j=1

Bdj
(x, rj) ⊆ U.(4.6)

This defines a topology on X, which includes the topology associated to each
d ∈ M. In particular, open balls in X with respect to any d ∈ M are open
sets with respect to this topology, and the collection of all such open balls forms
a sub-base for this topology. Let us say that M is nondegenerate on X if for
every x, y ∈ X with x ̸= y there is a d ∈ M such that

d(x, y) > 0.(4.7)
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This implies that the topology on X associated to M is Hausdorff.
Let k be a field with a qk-absolute value function | · | for some qk > 0, and let

V be a vector space over k. Also let N be a nonempty collection of q-seminorms
on V . As before, we ask more precisely that each N ∈ N be a qN -seminorm on
V with respect to | · | on k for some qN > 0 that may depend on N . Thus each
N ∈ N determines a qN -semimetric dN on V as in (3.5), so that

M(N ) = {dN : N ∈ N}(4.8)

is a nonempty collection of q-semimetrics on V . We say that N is nondegenerate
on V if for each v ∈ V with v ̸= 0 there is an N ∈ N such that

N(v) > 0,(4.9)

which means that (4.8) is nondegenerate as a collection of q-semimetrics on V .

5 Topological vector spaces

Let k be a field, and let | · | be a qk-absolute value function on k for some qk > 0.
This leads to a qk-metric on k as in (2.6), and hence to a topology on k, as in
the previous section. Using standard arguments, one can check that addition
and multiplication on k are continuous as mappings from k × k into k, where
k × k is equipped with the corresponding product topology. Similarly,

x 7→ 1/x(5.1)

is continuous as a mapping from k \ {0} into itself. This uses the topology
induced on k \ {0} by the one on k just mentioned, which is the same as the
topology determined by the restriction to k \ {0} of the qk-metric associated to
| · |.

Let V be a vector space over k, and suppose that V is also equipped with
a topology. If the vector space operations on V are continuous, then V is said
to be a topological vector space. More precisely, this means that addition on V
should be continuous as a mapping from V ×V into V , using the corresponding
product topology on V ×V . Similarly, scalar multiplication should be continuous
as a mapping from k×V into V , using the product topology on k×V associated
to the given topology on V and the topology on k determined by the qk-metric
associated to | · | as in the previous paragraph. The condition that {0} be a
closed set in V is sometimes included in the definition of a topological vector
space. This implies that V is Hausdorff as a topological space, by a well-known
argument that will be given in the next section. In [19], | · | is required to be
nontrivial on k, in the context of topological vector spaces. Although we shall
allow | · | to be trivial here, one should be a bit careful about situations in which
the nontriviality of | · | may be needed.

Let V be a vector space over k again, and let N be a nonempty collection
of q-seminorms on V with respect to | · | on k. More precisely, the q’s here are
allowed to depend on the elements of N , as in the previous section. This leads
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to a collection of q-semimetrics on V , as in (4.8), and hence to a topology on
V . One can check that addition and scalar multiplication on V are continuous
with respect to this topology, as in the previous paragraph, so that V becomes
a topological vector space. If N is nondegenerate on V , then V is Hausdorff
with respect to this topology, as before.

Suppose that V is a topological vector space over k. Continuity of addition
on V implies in particular that the translation mappings

v 7→ v + a(5.2)

are continuous on V for each a ∈ V . These translation mappings are in fact
homeomorphisms on V , since their inverses are of the same type. Similarly,
continuity of scalar multiplication implies that the dilation mappings

v 7→ t v(5.3)

are continuous on V for each t ∈ k. If t ̸= 0, then this is also a homeomorphism
on V , because the inverse mapping is of the same type. Continuity of scalar
multiplication also implies that

t 7→ t v(5.4)

is continuous as a mapping from k into V for each v ∈ V . If | · | is the trivial
absolute value function on k, then the corresponding topology on k is the dis-
crete topology, and the continuity of (5.4) is trivial. In this case, continuity of
scalar multiplication on V as a mapping from k× V into V is equivalent to the
continuity of (5.3) as a mapping from V into itself for each t ∈ k.

6 Regular topological spaces

A topological space X is said to be regular in the strict sense if for each x ∈ X
and closed set E ⊆ X there are disjoint open subsets U1, U2 of X such that
x ∈ U1 and E ⊆ U2. This is equivalent to asking that for each x ∈ X and
open set W ⊆ X that contains x there is an open set U ⊆ X such that x ∈ U
and the closure U of U in X is contained in W , by a standard argument. If X
is regular in the strict sense, and if X satisfies the first or even 0th separation
condition, then it is easy to see that X is Hausdorff. In this case, one might say
that X is regular in the strong sense, or that X satisfies the third separation
condition. If the topology on X is determined by a q-semimetric d(·, ·) on X for
some q > 0, then it is easy to see that X is regular in the strict sense. Similarly,
if the topology on X is determined by a nonempty collection of q-semimetrics,
as in Section 4, then one can check that X is regular in the strict sense. If the
topology onX is determined by a q-metric for some q > 0, or by a nondegenerate
collection of q-semimetrics, then X is regular in the strong sense.

Let k be a field, and let V be a vector space over k. If a ∈ V and B ⊆ V ,
then we put

a+B = B + a = {a+ b : b ∈ B},(6.1)
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which is the same as the image of B under the translation mapping (5.2). If A
is another subset of V , then we put

A+B = {a+ b : a ∈ A, b ∈ B},(6.2)

so that
A+B =

∪
a∈A

(a+B) =
∪
b∈B

(A+ b).(6.3)

Also put
−A = {−a : a ∈ A},(6.4)

which is the same as the image of A under the dilation mapping (5.3) with
t = −1. Similarly, a − B is defined to be a + (−B), A − b is defined to be
A+ (−b), and A−B is defined to be A+ (−B).

Now let |·| be a qk-absolute value function on k for some qk > 0, and suppose
that V is a topological vector space over k. If B ⊆ V is an open set, then (6.1)
is an open set in V for every a ∈ V , because the translation mapping (5.2) is a
homeomorphism on V . If A, B are subsets of V , and either A or B is an open
set, then A+B is an open set in V too, because it can be expressed as a union
of open sets in V as in (6.3). Similarly, if A is an open subset of V , then −A
is an open set as well, because the dilation mapping (5.3) is a homeomorphism
on V when t = −1. If E is any subset of V , and W ⊆ V is an open set that
contains 0, then one can check that

E ⊆ E +W,(6.5)

where E is the closure of E in V .
If U ⊆ V is an open set that contains 0, then there are open sets U1, U2 ⊆ V

that contain 0 and satisfy
U1 + U2 ⊆ U,(6.6)

by continuity of addition on V as a mapping from V × V into V at (0, 0). This
implies that

U1 ⊆ U,(6.7)

as in (6.5), and hence that V is regular as a topological space in the strict sense,
using also continuity of translations. If {0} is a closed set in V , then {a} is a
closed set in V for every a ∈ V , by continuity of translations. In this case, it
follows that V is Hausdorff as a topological space, because V is regular in the
strict sense. Of course, this also means that V is regular in the strong sense as
a topological space when {0} is a closed set in V .

7 Balanced sets

Let k be a field with a qk-absolute value function | · | for some qk > 0, and let
V be a vector space over k. If t ∈ k and E ⊆ V , then we put

t E = {t v : v ∈ E},(7.1)
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which is the image of E under the corresponding dilation mapping (5.3). We
say that E is balanced as a subset of V with respect to | · | on k if

t E ⊆ E(7.2)

for every t ∈ k with |t| ≤ 1. This implies that 0 ∈ E when E ̸= ∅, by taking
t = 0 in (7.2). If E ⊆ V is balanced, t ∈ k, and |t| = 1, then we have that

t E = E,(7.3)

by applying (7.2) to t and to 1/t.
Let N be a nonnegative real-valued function on V that satisfies the homo-

geneity condition (3.1) with respect to | · | on k. Put

BN (0, r) = {v ∈ V : N(v) < r}(7.4)

for every r > 0, and

BN (0, r) = {v ∈ V : N(v) ≤ r}(7.5)

for each r ≥ 0, which are the open and closed balls in V centered at 0 with
radius r with respect to N . It is easy to see that these are balanced subsets of
V , because of (3.1). More precisely, if t ∈ k and t ̸= 0, then

tBN (0, r) = BN (0, |t| r)(7.6)

for every r > 0, and
tBN (0, r) = BN (0, |t| r)(7.7)

for every r ≥ 0. If N is a qN -seminorm on V with respect to | · | on k for some
qN > 0, then (3.5) defines a corresponding qN -semimetric dN on V , and (7.4)
and (7.5) are the same as the open and closed balls in V centered at 0 with
radius r with respect to dN , as in (4.1) and (4.2).

Suppose now that V is a topological vector space over k, and that W is an
open subset of V that contains 0. Under these conditions, there is an open set
U ⊆ V that contains 0 and a positive real number δ such that

t U ⊆ W(7.8)

for every t ∈ k with |t| < δ. This uses continuity of scalar multiplication on V ,
as a mapping from k × V into V . More precisely, this is basically the same as
continuity of scalar multiplication on V as a mapping from k×V into V at (0, 0)
in k × V . If | · | is the trivial absolute value function on k, then this condition
holds automatically with δ = 1.

Suppose for the moment that | · | is not the trivial absolute value function
on k, and put

U1 =
∪

0<|t|<δ

t U,(7.9)
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where more precisely the union is taken over all t ∈ k such that 0 < |t| < δ.
The hypothesis that | · | be nontrivial on k implies that there are t ∈ k with this
property, and in particular 0 ∈ U1. Observe that

U1 ⊆ W,(7.10)

by (7.8), and that U1 is an open set in V , because it is a union of open sets. It
is easy to see that U1 is balanced in V , by construction. If the topology on V is
determined by a collection N of q-seminorms on V , then the same conclusion
can be obtained more directly using the fact that the corresponding open balls
centered at 0 are balanced, which also works when | · | is trivial on k.

8 Absorbing sets

Let k be a field with a qk-absolute value function | · | for some some qk > 0 again,
and let V be a vector space over k. A subset A of V is said to be absorbing
in V with respect to | · | on k if for each v ∈ V there is a t0(v) ∈ k such that
t0(v) ̸= 0 and

t v ∈ A(8.1)

for every t ∈ k with |t| ≤ |t0(v)|. Note that this implies that 0 ∈ A, so that (8.1)
holds automatically for every v ∈ V when t = 0. Equivalently, one can check
that A ⊆ V is absorbing in V if and only if for each v ∈ V there is a t1(v) ∈ k
such that

v ∈ tA(8.2)

for every t ∈ k with |t| ≥ |t1(v)|. If | · | is the trivial absolute value function on
k, then V is the only absorbing subset of itself in this sense.

Let us suppose from now on in this section that | · | is not trivial on k. As in
Section 2, this implies that there are y, z ∈ k such that 0 < |y| < 1 and |z| > 1.
Hence

|yj | = |y|j → 0 as j → ∞,(8.3)

and
|zj | = |z|j → +∞ as j → ∞.(8.4)

It follows that A ⊆ V is absorbing when (8.1) holds for all t ∈ k such that |t|
is sufficiently small, depending on v, or equivalently when (8.2) holds for all
t ∈ k such that |t| is sufficiently large, depending on v. If N is a nonnegative
real-valued function on V that satisfies the homogeneity condition (3.1) with
respect to | · | on k, then the open and closed balls (7.4) and (7.5) in V centered
at 0 with radius r with respect to N are absorbing in V for every r > 0.

Suppose for the moment that V is a topological vector space over k, and let
W be an open set in V that contains 0. Let v ∈ V be given, and remember that
(5.4) defines a continuous mapping from k into V . Using the continuity of this
mapping at t = 0, we get that there is a δ(v) > 0 such that

t v ∈ W(8.5)
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for every t ∈ k with |t| < δ(v). This implies that W is absorbing in V , using the
remarks in the preceding paragraph. More precisely, this corresponds exactly
to the continuity of (5.4) at t = 0 for each v ∈ V .

Let {tj}∞j=1 be a sequence of elements of k such that |tj | → ∞ as j → ∞. If
A ⊆ V is absorbing, then

∞∪
j=1

tj A = V,(8.6)

by (8.2). If A is a balanced set in V , then

tA ⊆ t′ A(8.7)

for every t, t′ ∈ k with |t| ≤ |t′|. In this case, (8.6) implies that A is absorbing
in V . More precisely, a balanced set A ⊆ V is absorbing in V if for every v ∈ V
there is a t ∈ k such that t ̸= 0 and (8.1) holds, or if for every v ∈ V there is a
t ∈ k that satisfies (8.2).

9 Bounded sets

Let k be a field with a nontrivial qk-absolute value function | · | for some qk > 0,
and let V be a topological vector space over k. A subset E of V is said to be
bounded in V if for each open set U ⊆ V with 0 ∈ U there is a t ∈ k such that

E ⊆ t U.(9.1)

If U is balanced in V , then it follows that

E ⊆ t′ U(9.2)

for every t′ ∈ k such that |t′| ≥ |t|, as in (8.7). Otherwise, one can first choose
a nonempty balanced open set contained in U , as in Section 7. If E ⊆ V is
bounded and U ⊆ V is any open set that contains 0, then it follows that (9.1)
holds for all t ∈ k such that |t| is sufficiently large.

If U ⊆ V is an open set that contains 0, then U is absorbing in V , as in
the previous section. Using this, it is easy to see that finite subsets of V are
bounded. Similarly, one can check that the union of finitely many bounded
subsets of V is bounded as well. Note that subsets of bounded sets in V are
bounded too. If E ⊆ V is bounded, then one can also check that the closure E
of E in V is bounded, using the fact that V is regular as a topological space in
the strict sense, as in Section 6.

If B0 is a local base for the topology of V at 0, then it suffices to verify (9.1)
for U ∈ B0 in order to show that E ⊆ V is bounded. In particular, one can take
B0 to be the collection of nonempty balanced open subsets of V , as in Section
7. If U ⊆ V is nonempty, open, and balanced, then (8.6) and (8.7) hold with
A = U , because U is absorbing in V , as before. One can use this to check that
compact subsets of V are bounded.

14



Suppose for the moment that the topology on V is determined by a nonempty
collection N of q-seminorms on V with respect to | · | on k. In this case, E ⊆ V
is bounded if and only if each N ∈ N is bounded on E. To see this, suppose first
that E is bounded in V , and let N ∈ N be given. Remember that the open unit
ball BN (0, 1) in V with respect to N is an open set in V in this situation, as in
Section 4. Thus we can apply (9.1) with U = BN (0, 1), since this set obviously
contains 0. This implies that N is bounded on E, by (7.6). Conversely, suppose
that each N ∈ N is bounded on E. This implies that (9.1) holds whenever U
is an open ball in V with respect to any element of N centered at 0 and with
positive radius, and |t| is sufficiently large. Similarly, (9.1) holds when U is the
intersection of finitely many such balls, and |t| is sufficiently large. It follows
that E is bounded in V under these conditions, because finite intersections of
such balls form a local base for the topology of V at 0, as in Section 4 again.

If E1, E2 are bounded subsets of V , then E1 + E2 is bounded in V as well.
To see this, let U ⊆ V be an open set that contains 0. Continuity of addition
on V at 0 implies that there are open sets U1, U2 ⊆ V that contain 0 and whose
sum U1 + U2 is contained in U . Thus E1 ⊆ t U1 and E2 ⊆ t U2 for every t ∈ k
with |t| sufficiently large, because E1 and E2 are bounded in V . This implies
that

E1 + E2 ⊆ t U1 + t U2 = t (U1 + U2) ⊆ t U(9.3)

for every t ∈ k with |t| sufficiently large, as desired. In particular, it follows
that translates of bounded subsets of V are bounded in V , since any subset of
V with only one element is bounded. It is easy to see that dilates of bounded
subsets of V are bounded too, directly from the definitions.

Let us say that a sequence {vj}∞j=1 of elements of V is bounded in V if the
corresponding set of vj ’s, j ≥ 1, is bounded in V . If {vj}∞j=1 is a sequence
of elements of V that converges to some v ∈ V , then the set of vj ’s together
with v is compact in V . This implies that {vj}∞j=1 is bounded in V , because
compact sets are bounded, as before. Alternatively, if {vj}∞j=1 converges to 0
in V , then one can check that {vj}∞j=1 is bounded in V more directly from the
definitions. If {vj}∞j=1 converges to any v ∈ V , then one can reduce to the case
where v = 0, using the fact that translates of bounded sets in V are bounded,
as in the preceding paragraph.

If {vj}∞j=1 is a bounded sequence in V , and {tj}∞j=1 is a sequence of elements
of k that converges to 0 with respect to | · |, then one can verify that {tj vj}∞j=1

converges to 0 in V . Suppose that E ⊆ V is not bounded in V , so that there is
an open set U ⊆ V that contains 0 such that (9.1) does not hold for any t ∈ k.
If {tj}∞j=1 is any sequence of nonzero elements of k, then it follows that there is
a sequence {vj}∞j=1 of elements of E such that

tj vj ̸∈ U(9.4)

for each j. In particular, this means that {tj vj}∞j=1 does not converge to 0 in
V . Of course, one can choose {tj}∞j=1 so that it converges to 0 with respect to
| · | on k, because | · | is supposed to be nontrivial on k.
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10 Semimetrization

Let X be a set, let l be a positive integer, and let dj(x, y) be a qj-semimetric
on X for some qj > 0 and each j = 1, . . . , l. If we put

q = min(q1, . . . , ql),(10.1)

then it follows that dj(x, y) is a q-semimetric on X for each j, as in Section 1.
Under these conditions, one can check that

d(x, y) = max
1≤j≤l

dj(x, y)(10.2)

defines a q-semimetric on X as well. Observe that

Bd(x, r) =

l∩
j=1

Bdj
(x, r)(10.3)

for every x ∈ X and r > 0, where these open balls are defined as in (4.1). This
implies that the topology on X determined by d as in Section 4 is the same as
the topology determined by the collection d1, . . . , dl.

Now let d(x, y) be any q-semimetric on X, for any q > 0. Also let r0 be a
positive real number, and put

d′(x, y) = min(d(x, y), r0)(10.4)

for each x, y ∈ X. It is easy to see that (10.4) defines a q-semimetric on X
too. By construction, the open ball in X centered at x ∈ X with radius r > 0
with respect to (10.4) is the same as the corresponding open ball with respect
to d(·, ·) when r ≤ r0, and it is the whole space X when r > r0. It follows that
(10.4) determines the same topology on X as d(·, ·).

Let dj(x, y) be a qj-semimetric on X for some qj > 0, for each positive
integer j. As in the previous paragraph,

d′j(x, y) = min(dj(x, y), 1/j)(10.5)

defines a qj-semimetric on X for each j ≥ 1, and (10.5) determines the same
topology on X as dj(x, y). Similarly, the collection of d′j(x, y) with j ≥ 1
determines the same topology on X as the collection of dj(x, y) with j ≥ 1. Put

d(x, y) = max
j≥1

d′j(x, y)(10.6)

for every x, y ∈ X, which is equal to 0 when d′j(x, y) = 0 for each j, and
otherwise reduces to the maximum over finitely many j. If q > 0 satisfies

qj ≥ q(10.7)

for each j, then (10.5) is a q-semimetric on X for each j ≥ 1, as in Section
1. In this case, (10.6) defines a q-semimetric on X too, for basically the same
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reasons as for (10.2). One can also check that the topology determined on X by
(10.6) is the same as the topology determined by the collection of d′j(x, y) with
j ≥ 1, which is the same as the topology determined by the collection of dj(x, y)
with j ≥ 1, as before. This uses the fact that the ball in X centered at a point
x ∈ X with radius r > 0 with respect to (10.6) is the same as the intersection
of the corresponding balls with respect to (10.5) for j ≥ 1, which reduces to the
intersection of the corresponding balls with respect to dj(x, y) for j ≤ 1/r.

One can always reduce to the case where the qj ’s have a positive lower
bound, as in (10.7), as follows. If qj < ∞ for some j, then dj(x, y)

qj is an
ordinary semimetric on X, as in Section 1, and this semimetric determines the
same topology on X as dj(x, y), as in Section 4. Of course, if qj ≥ 1, then
dj(x, y) is already an ordinary semimetric on X, as in Section 1. This permits
us to get a sequence of ordinary semimetrics on X that determines the same
topology on X as the initial sequence of qj-semimetrics dj(x, y). Applying the
construction described in the preceding paragraph to such a sequence of ordinary
semimetrics on X, we get a single ordinary semimetric on X that determines
the same topology on X.

11 q-Subadditivity

Let k be a field, and let V be a vector space over k. Let us say that a nonnegative
real-valued function N on V is q-subadditive for some positive real number q if

N(v + w)q ≤ N(v)q +N(w)q(11.1)

for every v, w ∈ V . If this holds with q = 1, then we may simply say that N is
subadditive on V . As usual, (11.1) is the same as saying that

N(v + w) ≤ (N(v)q +N(w)q)1/q(11.2)

for every v, w ∈ V . The ultrametric version of subadditivity is defined by the
condition that

N(v + w) ≤ max(N(v), N(w))(11.3)

for every v, w ∈ V , which may be considered as q-subadditivity with q = ∞,
because of (1.5). If 0 < q1 ≤ q2 ≤ ∞ and N is q2-subadditive on V , then N is
q1-subadditive on V as well, by (1.1) and (1.3). Note that q-subadditivity could
be defined in the same way on any commutative group, instead of a vector space.

Let us say that N is symmetric on V if

N(−v) = N(v)(11.4)

for every v ∈ V , which could also be defined in the same way on any commutative
group. This implies that

d(v, w) = N(v − w)(11.5)
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is symmetric in v and w. If a nonnegative real-valued function N on V satisfies
N(0) = 0, is symmetric, and is q-subadditive for some q > 0, then (11.5) is a
q-semimetric on V . Observe that

d(v + a,w + a) = d(v, w)(11.6)

for every a, v, w ∈ V in this case, so that (11.5) is invariant under translations
on V . Similarly,

d(v, w) = d(−v,−w)(11.7)

for every v, w ∈ V in this situation, so that (11.5) is invariant under reflection
on V .

Suppose now that | · | is a qk-absolute value function on k for some qk > 0.
Let us say that N is balanced on V with respect to | · | on k if

N(t v) ≤ N(v)(11.8)

for every v ∈ V and t ∈ k with |t| ≤ 1. This implies that

N(t v) = N(v)(11.9)

for every v ∈ V and t ∈ k with |t| = 1, by applying (11.8) to t and to 1/t. In
particular, (11.9) implies that N is symmetric, by taking t = −1. If N satisfies
the homogeneity condition (3.1), then it is easy to see that N is balanced. If | · |
is the trivial absolute value function on k, then the homogeneity condition (3.1)
reduces to (11.9) and the requirement that N(0) = 0. If | · | is any qk-absolute
value function on k and N is balanced on V with respect to | · | on k, then the
open and closed balls in V centered at 0 associated to N as in (7.4) and (7.5)
are balanced as subsets of V .

Let r0 be a positive real number, and put

N ′(v) = min(N(v), r0)(11.10)

for each v ∈ V . If N(0) = 0, N is symmetric on V , or N is balanced on V , then
it is easy to see that N ′ has the same property. Similarly, if N is q-subadditive
for some q > 0, then N ′ is q-subadditive too. Let d(v, w) be associated to N
as in (11.7), and let d′(v, w) be associated to N ′ in the same way. Under these
conditions, d′(v, w) can be given in terms of d(v, w) as in (10.4).

12 Semimetrization, continued

Let k be a field with a qk-absolute value function | · | for some qk > 0, and
let V be a vector space over k. Also let l be a positive integer, and for each
j = 1, . . . , l, let Nj be a qj-seminorm on V for some qj > 0, with respect to | · |
on k. Put

q = min(q1, . . . , ql),(12.1)
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as before, so that Nj is a q-seminorm on V for each j, as in Section 3. Under
these conditions, it is easy to see that

N(v) = max
1≤j≤l

Nj(v)(12.2)

defines a q-seminorm on V too. If dj(v, w) corresponds to Nj on V as in (3.5)
for each j, and d(v, w) corresponds to N in the same way, then d(v, w) can be
given in terms of dj(v, w) as in (10.2).

Suppose now that for each positive integer j, Nj is a qj-seminorm on V for
some qj > 0, with respect to | · | on k. Put

N ′
j(v) = min(Nj(v), 1/j)(12.3)

for each j ≥ 1 and v ∈ V , so that N ′
j(0) = 0 and N ′

j is balanced and qj-
subadditive for each j, as in the previous section. Also put

N(v) = max
j≥1

N ′
j(v)(12.4)

for every v ∈ V , which is equal to 0 when Nj(v) = 0 for every j, and otherwise
reduces to the maximum over finitely many j. In particular, N(0) = 0, and it
is easy to see that N is balanced on V . If q > 0 and

qj ≥ q(12.5)

for each j ≥ 1, then N ′
j is q-subadditive for each j ≥ 1, and one can check

that N is q-subadditive on V as well. Let d(v, w) correspond to N as in (11.5),
and let dj(v, w), d

′
j(v, w) correspond to Nj , N

′
j in the same way for each j. As

before, d′j(v, w) can be given in terms of dj(v, w) as in (10.5), and d(v, w) can
be given in terms of d′j(v, w) as in (10.6).

If qj < ∞ for some j, then
Nj(v)

qj(12.6)

is a balanced subadditive nonnegative real-valued function on V that vanishes
at 0. Of course, Nj already has these properties when qj ≥ 1, and in particular
when qj = ∞. Thus we can reduce to the case where qj ≥ 1 for every j, using
balanced qj-subadditive nonnegative real-valued functions on V that vanish at
0 instead of qj-seminorms. It is easy to see that the discussion in the preceding
paragraph works as well in this case. Of course, if dj(v, w) corresponds to Nj

as in (11.5), then (12.6) corresponds to

dj(v, w)
qj(12.7)

in the same way.
If A is a commutative topological group, then it is well known that there is

a collection of translation-invariant semimetrics on A that determines the same
topology on A. If there is a local base for the topology of A at 0 with only finitely
or countably many elements, then there is a single translation-invariant semi-
metric on A that determines the same topology. Note that a topological vector
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space V over k is a commutative topological group with respect to addition in
particular. If N is a q-seminorm on V for some q > 0, then the corresponding
q-semimetric (11.5) is automatically invariant under translations, as in (11.6).
If the topology on V is determined by a collection of finitely or countably many
q-seminorms on V , then one can use the constructions described in the previous
paragraphs to get a single q-seminorm or translation-invariant q-semimetric.

13 Continuous linear mappings

Let k be a field with a qk-absolute value function | · | for some qk > 0, and let V ,
W be topological vector spaces over k. Also let T be a linear mapping from V
intoW . If T is continuous at 0, then it is easy to see that T is continuous at every
point in V , by continuity of translations. As usual, T is said to be sequentially
continuous at 0 if for every sequence {vj}∞j=1 of vectors in V that converges to 0,
{T (vj)}∞j=1 converges to 0 in W . This implies that T is sequentially continuous
at every point in V , using continuity of translations again. If T is continuous
at 0, then one can check directly that T is sequentially continuous at 0. In the
other direction, if there is a local base for the topology of V at 0 with only
finitely or countably many elements, and if T is sequentially continuous at 0,
then T is continuous at 0, by a standard argument.

Suppose that the topology on W is determined by a nonempty collection
NW of q-seminorms on W with respect to | · | on k, where q > 0 is allowed to
depend on the element of NW , as before. Let NW ∈ NW and r > 0 be given,
and remember that

{w ∈ W : NW (w) < r}(13.1)

is an open set in W that contains 0, as in Section 4. If T is continuous at 0,
then there is an open set U ⊆ V such that 0 ∈ U and T (U) is contained in
(13.1), which means that

NW (T (v)) < r(13.2)

for every v ∈ U . Conversely, if for each NW ∈ NW and r > 0 there is an open
set U ⊆ V with these properties, then T is continuous at 0. This is because
subsets of W of the form (13.1) determine a local sub-base for the topology of
W at 0 in this situation.

Suppose that the topology on V is also determined by a nonempty collection
NV of q-seminorms on V with respect to | · | on k, where q > 0 may depend
on the element of NV . If NV,1, . . . , NV,l are finitely many elements of NV and
r1, . . . , rl are finitely many positive real numbers, then

{v ∈ V : NV,j(v) < rj for every j = 1, . . . , l}(13.3)

is an open set in V that contains 0. If U ⊆ V is any open set that contains
0, then there are finitely many elements NV,1, . . . , NV,l of NV and positive real
numbers r1, . . . , rl such that (13.3) is contained in U . If T is continuous at
0, then it follows that for each NW ∈ NW and r > 0 there are finitely many
elements NV,1, . . . , NV,l of NV and positive real numbers r1, . . . , rl such that
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(13.2) holds for every v ∈ V that satisfies NV,j(v) < rj for each j = 1, . . . , l.
Conversely, this property implies that T is continuous at 0, by the remarks
in the preceding paragraph and the fact that (13.3) is an open set in V that
contains 0.

Suppose now that for each NW ∈ NW there are finitely many elements
NV,1, . . . , NV,l of NV and a nonnegative real number C such that

NW (T (v)) ≤ C max
1≤j≤l

NV,j(v)(13.4)

for every v ∈ V . This implies that T is continuous at 0, by the criterion
mentioned in the previous paragraph. In the other direction, if T is continuous
at 0, and if | · | is nontrivial on k, then T has the property just described. To see
this, it suffices to take r = 1 in the earlier discussion. Note that the C ≥ 0 in
(13.4) may depend on the nontriviality of | · | on k as well as the finitely many
positive real numbers r1, . . . , rl obtained from the continuity of T at 0.

14 Bounded linear mappings

Let k be a field with a nontrivial qk-absolute value function | · | for some qk > 0,
and let V , W be topological vector spaces over k. Thus the notion of bounded
subsets of V , W can be defined as in Section 9. A linear mapping T from V
into W is said to be bounded if for each bounded set E ⊆ V we have that
T (E) is a bounded set in W . It is easy to see that continuous linear mappings
are bounded, directly from the definitions. More precisely, if T is sequentially
continuous at 0, then one can check that T is bounded using the characterization
of bounded sets in terms of sequences mentioned in Section 9.

Let us say that T is strongly bounded if there is an open set U ⊆ V such that
0 ∈ U and T (U) is bounded in W . It is easy to see that this implies that T is
continuous at 0. Of course, if U is a bounded open set in V that contains 0 and
T is a bounded linear mapping, then T (U) is bounded in V , so that T is strongly
bounded. In particular, if there is a bounded open set in V that contains 0 and
T is continuous, then T is strongly bounded. Similarly, if there is a bounded
open set in W that contains 0 and T is continuous, then T is strongly bounded.

If there is a local base for the topology of V at 0 with only finitely or count-
ably many elements, then it is well known that every bounded linear mapping
T from V into W is continuous. To be more precise, let {vj}∞j=1 be a sequence
of elements of V that converges to 0. Under these conditions on V , it can be
shown that there is a sequence {tj}∞j=1 of nonzero elements of k that converges
to 0 with respect to | · |, and with the additional property that

{t−1
j vj}∞j=1(14.1)

converges to 0 in V . This implies that (14.1) is a bounded sequence in V , as in
Section 9. If T is bounded, then it follows that

{T (t−1
j vj)}∞j=1(14.2)
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is a bounded sequence in W . Because {tj}∞j=1 converges to 0 in k, we get that

T (vj) = tj T (t
−1
j vj) → 0 as j → ∞(14.3)

in W , as in Section 9 again. This means that T is sequentially continuous at 0,
which implies that T is continuous in this situation.

Alternatively, suppose that T is not continuous at 0. This means that there
is an open subset UW of W such that 0 ∈ UW and T−1(UW ) does not con-
tain any open subset of V that contains 0. By hypothesis, there is a sequence
U1, U2, U3, . . . of open subsets of V that contain 0 and form a local base for the
topology of V at 0. We may also ask that Uj+1 ⊆ Uj for each j ≥ 1, since
otherwise we can replace Uj with the intersection of U1, . . . , Uj for each j. Let
t0 be an element of k such that |t0| > 1, which exists because | · | is nontrivial on
k. Thus t−j

0 Uj is also an open set in V that contains 0 for each positive integer
j. It follows that for each positive integer j there is a uj ∈ Uj such that

t−j
0 T (uj) = T (t−j

0 uj) ̸∈ UW .(14.4)

Note that {uj}∞j=1 converges to 0 in V , because uj ∈ Uj for each j. This implies
that {uj}∞j=1 is a bounded sequence in V , as in Section 9. If T is a bounded
linear mapping from V into W , then {T (uj)}∞j=1 should be a bounded sequence

in W . This implies that {t−j
0 T (uj)}∞j=1 converges to 0 in W , as in Section 9

again, because {t−j
0 }∞j=1 converges to 0 in k. This contradicts (14.4), as desired.

15 Bounded linear mappings, continued

Let k be a field with a qk-absolute value function | · | for some qk > 0 again,
and let V , W be vector spaces over k. Also let NV , NW be qV , qW -seminorms
on V , W , respectively, for some qV , qW > 0, and with respect to | · | on k.
Thus V , W are topological vector spaces over k with respect to the topologies
corresponding to NV , NW , respectively. A linear mapping T from V into W
is said to be bounded with respect to NV , NW if there is a nonnegative real
number C such that

NW (T (v)) ≤ C NV (v)(15.1)

for every v ∈ V . This is a bit different from the situation considered in the
previous section, but the terminology is still basically compatible, as follows.

Suppose for the moment that | · | is nontrivial on k, so that the discussion
in the previous section is also applicable. In this situation, a subset of V or W
is bounded in the sense of Section 9 if and only if NV or NW is bounded on
that set, as appropriate. If T satisfies (15.1) for some C ≥ 0, then it is easy to
see that T is bounded in the sense of the previous section. Conversely, suppose
that T is bounded in the sense described in the previous section. Note that

BV = {v ∈ V : NV (v) ≤ 1}(15.2)
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is bounded in V , so that T (BV ) is bounded in W , by hypothesis. Equivalently,
this means that there is a C1 ≥ 0 such that

NW (T (v)) ≤ C1(15.3)

for every v ∈ V with NV (v) ≤ 1. Using this and the nontriviality of | · | on k,
one can check that (15.1) holds for some C ≥ 0.

As in Section 13, (15.1) implies that T is continuous as a mapping from
V into W . More precisely, one can apply the discussion in Section 13 with
NV = {NV } and NW = {NW }, so that (15.1) corresponds to (13.4). Similarly,
if T is continuous and | · | is nontrivial on k, then (15.1) holds for some C ≥ 0,
as before. Of course, open balls in V and W centered at 0 of any positive radius
with respect to NV , NW , respectively, are open sets, as in Section 4. They are
also bounded sets in the sense of Section 9 when | · | is nontrivial on k.

If T satisfies (15.1) for some C ≥ 0, then we put

∥T∥op = ∥T∥op,VW = inf{C ≥ 0 : (15.1) holds for this C}.(15.4)

More precisely, this is the infimum of all nonnegative real numbers C such
that (15.1) holds for this C and every v ∈ V . Observe that (15.1) holds with
C = ∥T∥op, which is to say that the infimum is automatically attained.

16 Spaces of linear mappings

Let k be a field with a qk-absolute value function | · | for some qk > 0, and
let V , W be topological vector spaces over k. The space of all mappings from
a nonempty set X into W is a vector space over k as well, with respect to
pointwise addition and scalar multiplication. In particular, the space of all
linear mappings from V into W may be considered as a linear subspace of
the space of all mappings from V into W . Similarly, the space of continuous
mappings from a nonempty topological space X into W is a linear subspace
of the space of all mappings from X into W , because of the continuity of the
vector space operations on W . It follows that the space CL(V,W ) of continuous
linear mappings from V into W is a vector space over k too.

Suppose for the moment that | · | is nontrivial on k, so that boundedness
of subsets of V , W can be defined as in Section 9, and boundedness of linear
mappings can be defined as in Section 14. It is easy to see that the space of
bounded linear mappings from V into W is a linear subspace of the space of
all linear mappings from V into W . This uses the fact that sums of bounded
subsets of W are also bounded in W , as in Section 9, and the observation that
scalar multiples of bounded sets are bounded. Similarly, the space of strongly
bounded linear mappings from V into W is a linear space. More precisely, if
T1, T2 are strongly bounded linear mappings from V into W , then there are
open subsets U1, U2 of V such that 0 ∈ U1, U2 and T1(U1), T2(U2) are bounded
subsets of W . In this case, U1 ∩ U2 is an open set in V that contains 0, and so

23



one would like to verify that T1+T2 maps U1∩U2 to a bounded set in W . This
follows from

(T1 + T2)(U1 ∩ U2) ⊆ T1(U1 ∩ U2) + T2(U1 ∩ U2) ⊆ T1(U1) + T2(U2),(16.1)

since T1(U1) + T2(U2) is a bounded subset of W , as before.
Suppose now that NV , NW are qV , qW -seminorms on V , W , respectively,

for some qV , qW > 0, and with respect to | · | on k. Let BL(V,W ) be the
space of linear mappings from V into W that are bounded, in the sense of the
previous section. One can check that BL(V,W ) is a linear space with respect
to pointwise addition and scalar multiplication again. Moreover, (15.4) defines
a qW -seminorm on BL(V,W ), which may be described as the operator qW -
seminorm associated to NV and NW . If NW is a qW -norm on W , then (15.4)
defines a qW -norm on BL(V,W ).

Let Z be another topological vector space over k, and let T1 : V → W and
T2 : W → Z be linear mappings, so that their composition T2 ◦ T1 is a linear
mapping from V into Z. Of course, if T1, T2 are continuous, then T2 ◦ T1 is
continuous as well. If |·| is nontrivial on k, and if T1, T2 are bounded in the sense
of Section 14, then T2 ◦ T1 is bounded too. Similarly, if T1 is strongly bounded
and T2 is bounded, then T2 ◦ T1 is strongly bounded. The same conclusion
holds when T1 is continuous and T2 is strongly bounded. Now let NV , NW ,
and NZ be qV , qW , and qZ-seminorms on V , W , and Z, respectively, for some
qV , qW , qZ > 0, as in the preceding paragraph. If T1 and T2 are bounded in the
sense of the previous section, then one can check that T2 ◦ T1 is bounded, with

∥T2 ◦ T1∥op,V Z ≤ ∥T1∥op,VW ∥T2∥op,WZ .(16.2)

Here the subscripts are used to indicate which spaces and seminorms are used
in the particular operator seminorm.

17 Cartesian products

Let I be a nonempty set, let Xj be a topological space for each j ∈ I, and
consider the corresponding Cartesian product

X =
∏
j∈I

Xj ,(17.1)

equipped with the product topology. Remember that the standard coordinate
mappings fromX onto the individualXj ’s are continuous mappings. A sequence
of elements of X converges to another element of X if and only if for each
j ∈ I, the corresponding sequence of jth coordinates in Xj converges to the
jth coordinate of the limit. If Xj satisfies the first, second, or third separation
conditions for each j ∈ I, then X has the same property.

Suppose for the moment that I has only finitely or countably many elements.
Suppose also that for each j ∈ I, there is a local base for the topology of Xj

at a point xj ∈ Xj with only finitely or countably many elements. If x is the
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element of X whose jth coordinate is xj for each j ∈ I, then there is a local
base for the product topology on X at x with only finitely or countably many
elements. Similarly, if there is a base for the topology of Xj with only finitely
or countably many elements for each j ∈ I, then there is a base for the product
topology on X with only finitely or countably many elements.

Let dl be a qdl
-semimetric on Xl for some l ∈ I and qdl

> 0. Put

d̃l(x, y) = dl(xl, yl)(17.2)

for every x, y ∈ X, where xl, yl are the lth coordinates of x, y in Xl. It is easy
to see that this defines a qdl

-semimetric on X. Suppose that for each l ∈ I, the
topology on Xl is determined by a nonempty collection Ml of q-semimetrics on
Xl as in Section 4, where q > 0 is allowed to depend on the element of Ml. Let

M̃l = {d̃l : dl ∈ Ml}(17.3)

be the collection of q-semimetrics on X that correspond to elements of Ml as
in (17.2) for each l ∈ I. Thus ∪

l∈I

M̃l(17.4)

is a nonempty collection of q-semimetrics on X. Under these conditions, one can
check that the product topology on X is the same as the topology determined
on X by (17.4) as in Section 4.

Of course, M̃l has the same cardinality as Ml for each l ∈ I. If I has
only finitely many elements, and Ml has only finitely many elements for each
l ∈ I, then it follows that (17.4) has only finitely many elements too. Similarly,
if I has only finitely or countably many elements, and if Ml has only finitely
or countably many elements for each l ∈ I, then (17.4) has only finitely or
countably many elements as well. The discussion in Section 10 can be applied
in these cases.

18 Cartesian products, continued

Let k be a field with a qk-absolute value function | · | for some qk > 0, let I be
a nonempty set, and let Vj be a topological vector space over k for each j ∈ I.
Of course, the corresponding Cartesian product

V =
∏
j∈I

Vj .(18.1)

is a vector space over k with respect to coordinatewise addition and scalar
multiplication. One can also verify that V is a topological vector space over
k with respect to the corresponding product topology. Note that the standard
coordinate mappings from V onto the individual factors are linear as well as
continuous.
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If dl is a qdl
-semimetric on Vl for some l ∈ I and qdl

> 0, then we get a

qdl
-semimetric d̃l on V by applying dl to the lth coordinates of pairs of elements

of V , as in (17.2). If dl is also translation-invariant on Vl, then it is easy to

see that d̃l is invariant under translations on V too. Thus a collection Ml of
translation-invariant q-semimetrics on Vl leads to a collection M̃l of translation-
invariant q-semimetrics on V as in (17.3). If the topology on Vl is determined by
a nonempty collection Ml of translation-invariant q-semimetrics for each l ∈ I,
then the product topology on V is determined by the corresponding collection
of translation-invariant q-semimetrics (17.4).

Similarly, let Nl be a qNl
-seminorm on Vl for some l ∈ I and qNl

> 0, with
respect to | · | on k. Put

Ñl(v) = Nl(vl)(18.2)

for every v ∈ V , where vl is the lth coordinate of v in Vl. It is easy to see that
this defines a qNl

-seminorm on V . Let

dl(vl, wl) = Nl(vl − wl)(18.3)

be the qNl
-semimetric on Vl associated to Nl in the usual way, and let

d̃l(v, w) = Ñl(v − w)(18.4)

be the qNl
-semimetric on V associated to Ñl in the same way. Under these

conditions, dl and d̃l are also related to each other as in (17.2), because of
(18.2).

Suppose that for each l ∈ I, the topology on Vl is determined by a nonempty
collection Nl of q-seminorms on Vl as in Section 4, where q > 0 is allowed to
depend on the element of Nl. Let

Ñl = {Ñl : Nl ∈ Nl}(18.5)

be the collection of q-seminorms on V that correspond to elements of Nl as in
(18.2) for each l ∈ I. Thus ∪

l∈I

Ñl(18.6)

is a nonempty collection of q-seminorms on V , and one can check that the
product topology on V is the same as the topology determined on V by (18.6)
as in Section 4.

More precisely, let
Ml = M(Nl)(18.7)

be the collection of q-semimetrics on Vl corresponding to elements of Nl as in
(18.3) for each l ∈ I, which is the same as (4.8) in this situation. Similarly, for
each l ∈ I, let

M̃l = M(Ñl)(18.8)

be the collection of q-semimetrics on V that correspond to elements of Ñl as
in (18.4). Equivalently, M̃l is related to Ml as in (17.3). Taking the union
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over l ∈ I, we get that (17.4) consists in this situation of q-semimetrics on V
that correspond to elements of (18.6) in the usual way, as in (18.4). Thus the
description of the product topology on V in terms of (18.6) in the preceding
paragraph corresponds exactly to the analogous statement for collections of q-
semimetrics in the previous section.

Suppose that I has only finitely or countably many elements, and that for
each j ∈ I, Vj is a topological vector space over k with a local base for its
topology at 0 with only finitely or countably many elements. This implies that
there is a local base for the product topology on V at 0 with only finitely or
countably many elements, as mentioned in the previous section. Similarly, in
the context of the preceding paragraphs, if I has only finitely or countably many
elements, and if Nl has only finitely or countably many elements for each l ∈ I,
then (18.6) has only finitely or countably many elements. If I has only finitely
many elements, and if Nl has only finitely many elements for each l ∈ I, then
(18.6) has only finitely many elements. In these cases, the discussion in Section
12 can be applied.

Suppose now that | · | is nontrivial on k. If E is a bounded subset of V
with respect to the product topology, as in Section 9, then the image of E in Vj

under the standard coordinate mapping is bounded for each j ∈ I. Conversely,
if the image of E in each Vj is bounded, then one can check that E is bounded
in V . This is basically the same as saying that if Ej is a bounded subset of Vj

for each j ∈ I, then ∏
j∈I

Ej(18.9)

is a bounded set in V . It follows that every bounded subset of V is contained
in a product of bounded subsets of the Vj ’s, as in (18.9).

19 Equicontinuity

Let k be a field with a qk-absolute value function | · | for some qk > 0, and let
V , W be topological vector spaces over k. Also let E be a collection of linear
mappings from V into W . We say that E is equicontinuous on V if for each open
set UW in W that contains 0 there is an open set UV in V such that 0 ∈ UV

and
T (UV ) ⊆ UW(19.1)

for every T ∈ E . Of course, this implies that each T ∈ E is continuous as a
mapping from V into W . If E has only finitely many elements, and if each
element of E is continuous, then it is easy to see that E is equicontinuous.

Put
δa(v) = a v(19.2)

for each a ∈ k and v ∈ V , so that δa defines a continuous linear mapping from
V into itself for each a ∈ k, by continuity of scalar multiplication. If | · | is
nontrivial on k, then

{δa : a ∈ k, |a| ≤ 1}(19.3)
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is equicontinuous on V . This follows from the fact that nonempty balanced
open subsets of V form a local base for the topology of V at 0 in this case, as
in Section 7. Using this, one can check that

{δa : a ∈ k, |a| ≤ r}(19.4)

is equicontinuous on V for each positive real number r. More precisely, one can
reduce to showing that this holds when r = |t| for some t ∈ k. One can also
look at this more directly in terms of continuity of scalar multiplication on V ,
as a mapping from k× V into V . Continuity of this mapping at (0, 0) basically
corresponds to the equicontinuity of (19.4) for some r > 0. If | · | is nontrivial
on k, then one can use this and the continuity of δt for each t ∈ k to get that
(19.4) is equicontinuous on V for every r > 0.

Suppose for the moment that | · | is trivial on k, so that (19.4) contains only
δ0 when r < 1, and (19.4) is the same as

{δa : a ∈ k}(19.5)

when r ≥ 1. Thus the equicontinuity of (19.4) is trivial when r < 1. If there is
a local base for the topology of V at 0 consisting of balanced open sets in V ,
then (19.5) is equicontinuous on V , as before. In particular, this holds when
the topology on V is determined by a collection of q-seminorms with respect
to the trivial absolute function on k. Conversely, if (19.5) is equicontinuous on
V , then one can check that nonempty balanced open subsets of V form a local
base for the topology of V at 0, using an argument like the one in Section 7.

Suppose that | · | is nontrivial on k again, and let E is an equicontinuous
collection of linear mappings from V into W . If A is a bounded subset of V ,
then it is easy to see that ∪

T∈E
T (A)(19.6)

is a bounded subset ofW , directly from the definitions. This is a type of uniform
boundedness property for E . Now let E be any collection of linear mappings from
V into W , and suppose that there is an open set U0 in V such that 0 ∈ U0 and∪

T∈E
T (U0)(19.7)

is a bounded set in W . This implies that each T ∈ E is strongly bounded in
the sense defined in Section 14, and indeed this condition may be considered as
a uniform version of strong boundedness. It is easy to see that this condition
implies that E is equicontinuous, just as strong boundedness implies continuity.
If there is a bounded open set U0 in V that contains 0, then the uniform bound-
edness property mentioned earlier implies this condition, and in particular this
holds when E is equicontinuous. Similarly, if there is a bounded open set in W
that contains 0, and if E is equicontinuous, then E satisfies this condition.
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20 Equicontinuity, continued

Let k be a field with a qk-absolute value function | · | for some qk > 0 again,
let V , W be topological vector spaces over k, and let E be a collection of linear
mappings from V into W . Suppose that the topology on W is determined by
a nonempty collection NW of q-seminorms on W with respect to | · | on k,
where q > 0 is allowed to depend on the element of NW , as usual. Under these
conditions, E is equicontinuous if and only if for each NW ∈ NW and r > 0
there is an open set U ⊆ V such that 0 ∈ U and

T (U) ⊆ {w ∈ W : NW (w) < r}(20.1)

for every T ∈ E . Equivalently, (20.1) means that

NW (T (v)) < r(20.2)

for every v ∈ U and T ∈ E . This characterization of equicontinuity is analogous
to the corresponding statement for continuous linear mappings in Section 13.

Suppose now that the topology on V is also determined by a nonempty
collection NV of q-seminorms on V with respect to | · | on k, where q > 0 is may
depend on the element of NV . In this case, E is equicontinuous if and only if
for every NW ∈ NW and r > 0 there are finitely many elements NV,1, . . . , NV,l

of NV and positive real numbers r1, . . . , rl such that (20.1) holds with U equal
to

{v ∈ V : NV,j(v) < rj for every j = 1, . . . , l}.(20.3)

Equivalently, this means that (20.2) holds for every T ∈ E and v ∈ V such that

NV,j(v) < rj(20.4)

for each j = 1, . . . , l. As before, this is very similar to the analogous character-
ization of continuity in Section 13.

If for each NW ∈ NW there are finitely many elements NV,1, . . . , NV,l of NV

and a nonnegative real number C such that

NW (T (v)) ≤ C max
1≤j≤l

NV,j(v)(20.5)

for every T ∈ E and v ∈ V , then E is equicontinuous. This follows from the
remarks in the preceding paragraph, since (20.5) implies that (20.2) holds when
v ∈ V satisfies (20.4) and r1, . . . , rl are sufficiently small. In the other direction,
if E is equicontinuous, and | · | is nontrivial on k, then E satisfies the condition
that was just described. This is analogous to another statement for continuous
linear mappings in Section 13.

Suppose that the topologies on V , W are determined by single qV , qW -
seminorms NV , NW , respectively, for some qV , qW > 0, and with respect to | · |
on k. If T is a bounded linear mapping from V into W with respect to NV

and NW , in the sense of Section 15, then we let ∥T∥op be the corresponding
operator qW -seminorm of T , as in (15.4). Let E be a collection of bounded
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linear mappings from V into W in this sense, with uniformly bounded operator
qW -seminorms. This means that there is a nonnegative real number C such that

∥T∥op ≤ C(20.6)

for every T ∈ E . This is the same as saying that

NW (T (v)) ≤ C NV (v)(20.7)

for every T ∈ E and v ∈ V , as in (15.1). This condition implies that E is
equicontinuous, and indeed it corresponds to (20.5) in this case. In the other
direction, if E is equicontinuous, and if | · | is nontrivial on k, then (20.6) holds
for some C ≥ 0. This follows from the analogous statement in the previous
paragraph, since (20.5) reduces to (20.7) in this situation.

21 Cauchy sequences

Let k be a field with a qk-absolute value function | · | for some qk > 0, and let
V be a topological vector space over k. A sequence {vj}∞j=1 of elements of V is
said to be a Cauchy sequence in V if for each open set U ⊆ V with 0 ∈ U there
is a positive integer L such that

vj − vl ∈ U(21.1)

for every j, l ≥ L. One can check that convergent sequences in V are Cauchy
sequences, using continuity of addition on V at 0. Suppose for the moment that
the topology on V is determined by a nonempty collection M of translation-
invariant q-semimetrics, where q > 0 is allowed to depend on the element of M.
In this case, a sequence {vj}∞j=1 of elements of V is a Cauchy sequence in the
sense just described if and only if {vj}∞j=1 is a Cauchy sequence with respect to
each d ∈ M in the usual sense, so that

lim
j,l→∞

d(vj , vl) = 0(21.2)

for every d ∈ M.
Let us say that a topological vector space V over k is sequentially complete if

every Cauchy sequence of elements of V converges to an element of V . If there
is a local base for the topology of V at 0 with only finitely or countably many
elements, then one might simply say that V is complete. Otherwise, one should
normally consider Cauchy nets or filters in V as well. If the topology on V
is determined by a translation-invariant metric d(·, ·), then it follows that V is
sequentially complete as a topological vector space if and only if V is complete as
a metric space with respect to d(·, ·). In particular, the Baire category theorem
holds on V under these conditions. If there is a local base for the topology of V
at 0 with only finitely or countably many elements, then there is a translation-
invariant semimetric d(·, ·) on V that determines the same topology on V , as
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mentioned in Section 12. If we also ask that {0} be a closed set in V , then d(·, ·)
is a metric on V .

Let I be a nonempty set, and let Vj be a topoogical vector space over k for
each j ∈ I. Thus the Cartesian product

V =
∏
j∈I

Vj(21.3)

is also a topological vector space over k with respect to the corresponding prod-
uct topology, as in Section 18. Remember that a sequence of elements of V
converges to some element of V with respect to the product topology if and
only if the corresponding sequences of jth coordinates converge to the appro-
priate limit in Vj for each j ∈ I, as in Section 17. Similarly, one can check that
a sequence of elements of V is a Cauchy sequence in this situation if and only if
the corresponding sequences of jth coordinates are Cauchy sequences in Vj for
each j ∈ I. If Vj is sequentially complete as a topological vector space over k
for each j ∈ I, then it follows that V is sequentially complete too.

Let V be any topological vector space over k again, and let {vj}∞j=1 be a
Cauchy sequence of elements of V . We would like to verify that the set of vj ’s
is bounded in V when | · | is nontrivial on k. Let U be an open subset of V
that contains 0, and remember that U is absorbing in V , as in Section 8. This
implies that for each positive integer j, we have that

vj ∈ t U(21.4)

for every t ∈ k such that |t| is sufficiently large, depending on j. We want to
show that if |t| is sufficiently large, then (21.4) holds for every j simultaneously.
Let U1, U2 be open subsets of V that contain 0 and satisfy

U1 + U2 ⊆ U,(21.5)

which exist by the continuity of addition on V at 0. We may as well ask that
U1, U2 be balanced in V too, as in Section 7. Because {vj}∞j=1 is a Cauchy
sequence, there is a positive integer L such that

vj ∈ vL + U2(21.6)

for every j ≥ L. We also have that vL ∈ t U1 for every t ∈ k such that |t| is
sufficiently large, because U1 is absorbing in V , as before. It follows that

vj ∈ vL + U2 ⊆ t U1 + U2 ⊆ t U1 + t U2 ⊆ t U(21.7)

for every j ≥ L when |t| is sufficiently large, using the condition that U2 be
balanced to get the second inclusion. This implies that (21.4) holds simulata-
neously for every j ≥ 1 when |t| is sufficiently large, using the fact that U is
absorbing to deal with j < L.
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22 Open subgroups

Let k be a field with a qk-absolute value function | · | for some qk > 0, although
we are essentially only concerned with qk = ∞ in this section, so that | · | is
an ultrametric absolute value function on k. Let V be a vector space over k,
which is a commutative group with respect to addition in particular. If N is
a semi-ultranorm on V , then it is easy to see that open and closed balls in V
centered at 0 with respect to N are subgroups of V as a commutative group
with respect to addition. As in Section 4, open and closed balls in V centered
at 0 of positive radius are open sets with respect to the topology determined on
V by the semi-ultrametric associated to N .

Now let V be a topological vector space over k. If U is an open subset of V
that is also a subgroup of V as a commutative group with respect to addition,
then it is well known that U is a closed set in V too. This is because the
complement of U in V can be expressed as a union of translates of U in V ,
which are cosets of U in V , so that the complement of U in V is an open set in
V as well. Similarly, open subgroups of any topological group are closed sets.

Let A be any subset of V that contains 0, and put

A1 = A ∪ (−A).(22.1)

Define Aj recursively for each positive integer j by putting

Aj+1 = Aj +A1,(22.2)

which is the same as taking Aj to be the sum of j copies of A1. It is easy to see
that

∞∪
j=1

Aj(22.3)

is the subgroup of V as a commutative group with respect to addition generated
by A. If A is an open set in V , then A1 is an open set in V , which implies that
Aj is an open set in V for each j ≥ 1, and hence that (22.3) is an open set in V .
If A is balanced in V , then A1 = A, Aj is balanced in V for each j, and (22.3)
is balanced in V as well.

Let W be another topological vector space over k, and let T be a continuous
linear mapping from V into W . If UW is an open set in W , then T−1(UW ) is
an open set in V , by continuity. If UW is a subgroup of W as a commutative
group with respect to addition, then T−1(UW ) is a subgroup of V with respect
to addition, because linear mappings are group homomorphisms with respect
to addition. Thus T−1(UW ) is an open subgroup of V with respect to addition
when UW is an open subgroup in W with respect to addition.

Let E be an equicontinuous collection of linear mappings from V into W ,
and let UW be an open subgroup of W as a commutative group with respect to
addition. Thus 0 ∈ UW , and so the equicontinuity of E implies that there is an
open set UV ⊆ V with 0 ∈ UV that satisfies (19.1) for every T ∈ E . Let ŨV be
the subgroup of V as a commutative group with respect to addition generated
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by UV . Equivalently, if we take A = UV , then ŨV is given as in (22.3), which is
an open set in V too, as before. Under these conditions, one can check that

T (ŨV ) ⊆ UW(22.4)

for every T ∈ E .
Let U be an open subgroup of V as a commutative group with respect to

addition again. If | · | is not the trivial absolute value function on k, then there
is a nonempty balanced open set U1 ⊆ V such that U1 ⊆ U , as in Section 7. Let
Ũ1 be the subgroup of V with respect to addition generated by U1, which can
be given as in (22.3) with A = U1. Thus Ũ1 is an open set in V , and Ũ1 ⊆ U ,

because U is a subgroup of V with respect to addition. We also have that Ũ1 is
balanced in this situation, as mentioned earlier.

Suppose now that | · | is the trivial absolute value function on V . In this
case, a balanced subgroup of V with respect to addition is the same as a linear
subspace of V . If there is a nonempty balanced open set U1 ⊆ V such that
U1 ⊆ U , then the other remarks in the preceding paragraph still work.

Part II

The strong operator topology

23 Definitions

Let k be a field with a qk-absolute value function | · | for some qk > 0, and let
V , W be topological vector spaces over k. Remember that the space CL(V,W )
of continuous linear mappings from V into W is also a vector space over k with
respect to pointwise addition and scalar multiplication, as in Section 16. Put

Lv(T ) = T (v)(23.1)

for each v ∈ V and T ∈ CL(V,W ), which defines a linear mapping from
CL(V,W ) into W for each v ∈ V . The strong operator topology on CL(V,W ) is
defined to be the weakest topology on CL(V,W ) such that Lv is continuous for
every v ∈ V .

More precisely, if v ∈ V and UW is an open set in W , then

L−1
v (UW ) = {T ∈ CL(V,W ) : T (v) ∈ UW }(23.2)

is an open set in CL(V,W ) with respect to the strong operator topology. The
collection of subsets of CL(V,W ) of this form define a sub-base for the strong
operator topology on CL(V,W ). Thus U ⊆ CL(V,W ) is an open set with respect
to the strong operator topology if for each T0 ∈ U there are finitely many vectors
v1, . . . , vl in V and open sets U1, . . . , Ul in W such that T0(vj) ∈ Uj for each
j = 1, . . . , l and

n∩
j=1

L−1
vj (Uj) = {T ∈ CL(V,W ) : T (vj) ∈ Uj for each j = 1, . . . , l} ⊆ U .(23.3)
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One can start with this as the definition of an open set in CL(V,W ) with re-
spect to the strong operator topology, and check that this defines a topology on
CL(V,W ). Using this as the definition, it is easy to see that (23.2) is an open
set in CL(V,W ) with respect to the strong operator topology for every v ∈ V
and open set U ⊆ W , and that these open sets form a sub-base for the strong
operator topology on CL(V,W ).

The strong operator topology on CL(V,W ) can also be described as the
topology of pointwise convergence on V . This can be defined on the space of
mappings from a nonempty set X into a topological space Y . This space can
be identified with the Cartesian product of copies of Y indexed by X, so that
the topology of pointwise convergence on X corresponds exactly to the product
topology on this Cartesian product, using the given topology on Y on each
factor. In particular, the strong operator topology could be defined in the same
way on the space of all linear mappings from V into W .

Note that Lv in (23.1) depends linearly on v, because T is linear. Suppose
that A is a subset of V whose linear span in V is all of V , so that each element
of V can be expressed as a linear combination of finitely many elements of A
with coefficients in k. This implies that for every v ∈ V , Lv can be expressed as
a linear combination of finitely many mappings of the form La with a ∈ A. If La

is continuous with respect to some topology on CL(V,W ) for every a ∈ A, then
it follows that Lv is continuous with respect to the same topology on CL(V,W )
for every v ∈ V . This uses the hypothesis that W be a topological vector space,
so that the vector space operations on W are continuous. Thus the strong
operator topology on CL(V,W ) can also be described as the weakest topology
on CL(V,W ) such that La is continuous for every a ∈ A in this case. Similarly,
one can restrict one’s attention to vj ∈ A in (23.3), and get an equivalent
definition of the strong operator topology on CL(V,W ). One can also restrict
one’s attention to v ∈ A in (23.2), to get a sub-base for the strong operator
topology on CL(V,W ). This would work as well for the space of all linear
mappings from V into W , as in the preceding paragraph.

24 Some basic properties

Let k be a field with a qk-absolute value function | · | for some qk > 0 again, and
letW be a topological vector space over k. Let us consider the case where V = k,
as a one-dimensional vector space over itself, and equipped with the topology
determined by the qk-metric associated to the qk-absolute value function | · |. If
w ∈ W , then

t 7→ t w(24.1)

defines a continuous linear mapping from k into W , by continuity of scalar
multiplication on W , as in Section 5. Every linear mapping from k into W is
of this form, so that CL(k,W ) can be identified with W . In this situation, the
strong operator topology on CL(k,W ) corresponds exactly to the given topology
on W with respect to this identification.
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Let V be any topological vector space over k again, and suppose that the
topology on W is determined by a nonempty collection MW of translation-
invariant q-semimetrics on W , where q > 0 may depend on the element of MW ,
as usual. Let d be an element of MW , so that d is a translation-invariant
qd-semimetric on W for some qd > 0, and put

dv(T1, T2) = d(T1(v), T2(v))(24.2)

for every v ∈ V and T1, T2 ∈ CL(V,W ). This defines a translation-invariant
qd-semimetric on CL(V,W ) for each v ∈ V , so that

M = {dv : d ∈ MW , v ∈ V }(24.3)

is a nonempty collection of translation-invariant q-semimetrics on CL(V,W ).
Under these conditions, the strong operator topology on CL(V,W ) is the same
as the topology determined by (24.3). There is an analogous statement for the
topology of pointwise convergence on the space of all mappings from V into W ,
as in Sections 17 and 18. If A is a subset of V whose linear span in V is equal
to V , then the subcollection

{dv : d ∈ MW , v ∈ A}(24.4)

of (24.3) determines the same topology on CL(V,W ). This uses the remarks
about the same situation in the previous section, and there is an analogous
statement for the space of all linear mappings from V into W .

Similarly, suppose that the topology on W is determined by a nonempty
collection NW of q-seminorms on W with respect to | · | on k, where q > 0 may
depend on the element of NW , as usual. Let N be an element of NW , so that
N is a qN -seminorm on W for some qN > 0, and put

Nv(T ) = N(T (v))(24.5)

for every v ∈ V and T ∈ CL(V,W ). This defines a qN -seminorm on CL(V,W )
for each v ∈ V , so that

N = {Nv : N ∈ NW , v ∈ V }(24.6)

defines a nonempty collection of q-seminorms on CL(V,W ). As before, the
strong operator topology on CL(V,W ) is the same as the topology associated
to this collection of q-seminorms, and there is an analogous statement for the
topology of pointwise convergence on the space of all mappings from V into W .
Of course, q-seminorms lead to translation-invariant q-semimetrics in the usual
way, and this case is related to the previous one as in Section 18. If A is a subset
of V whose linear span is all of V , then the subcollection

{Nv : N ∈ NW , v ∈ A}(24.7)

of (24.6) determines the same topology on CL(V,W ), as in the preceding para-
graph. There is an analogous statement for the space of all linear mappings
from V into W again.
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Suppose now that W = k, as a one-dimensional vector space over itself, and
with the topology associated to the qk-absolute value function | · |, as before. A
linear mapping from V into k is also known as a linear functional on V , so that
CL(V, k) is the dual space of continuous linear functionals on V , which may be
denoted V ∗ or V ′. In this case, the strong operator topology on CL(V, k) is also
known as the weak∗ topology. Of course, | · | may be considered as a qk-norm
on k as a one-dimensional vector space over itself. Thus the remarks in the
preceding paragraph can be applied to this situation.

25 Equicontinuous sets

Let k be a field with a qk-absolute value function | · | for some qk > 0, and let V ,
W be topological vector spaces over k. If UW ⊆ W is an open set that contains
0, then there is an open set ŨW ⊆ W that contains 0 and satisfies

ŨW + ŨW + ŨW ⊆ UW ,(25.1)

because of continuity of addition on W at 0. We may also ask that ŨW be
symmetric about 0, in the sense that

−ŨW = ŨW ,(25.2)

because of continuity of w 7→ −w on W . Suppose that E is an equicontinuous
collection of linear mappings from V intoW , so that there is an open set UV ⊆ V
that contains 0 and satisfies

T (UV ) ⊆ ŨW(25.3)

for every T ∈ E . If u, v ∈ V satisfy

u− v ∈ UV ,(25.4)

then it follows that
T (u)− T (v) = T (u− v) ∈ ŨW(25.5)

for every T ∈ E .
Let T1, T2 ∈ E be given, and observe that

T1(u)− T2(u) = (T1(u)− T1(v)) + (T1(v)− T2(v)) + (T2(v)− T2(u))(25.6)

for every u, v ∈ V . If u, v ∈ V satisfy (25.4), then we can apply (25.5) to T1

and T2, to get that

T1(u)− T1(v), T2(u)− T2(v) ∈ ŨW .(25.7)

Combining this with (25.6), we obtain that

T1(u)− T2(u) ∈ (T1(v)− T2(v)) + ŨW + ŨW(25.8)
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when (25.4) holds, using (25.2) as well. If we also have that

T1(v)− T2(v) ∈ ŨW ,(25.9)

then it follows that

T1(u)− T2(u) ∈ ŨW + ŨW + ŨW ⊆ UW(25.10)

under these conditions, because of (25.1). To summarize, (25.10) holds for every
T1, T2 ∈ E and u, v ∈ V that satisfy (25.4) and (25.9).

Let A be a nonempty subset of V , and let τA be the analogue of the strong
operator topology on CL(V,W ) in which we restrict our attention to v ∈ A.
This is the weakest topology on CL(V,W ) such that (23.1) is continuous for
every v ∈ A, which can be described more precisely as in (23.2) and (23.3),
but with the v’s in A. This can also be described in terms of the topology of
pointwise convergence on A. If the topology on W is determined by a nonempty
collection MW of translation-invariant q-semimetrics, as in Section 24, then τA
is determined by the corresponding collection (24.4) of translation-invariant q-
semimetrics on CL(V,W ). Similarly, if the topology on W is determined by a
nonempty collection NW of q-seminorms, as in Section 24, then τA is determined
by the corresponding collection (24.7) of q-seminorms on CL(V,W ). Of course,
τA is the same as the strong operator topology on CL(V,W ) when A = V , and
the same conclusion holds when the linear span of A is equal to V , as in Section
23. If A is any subset of V , then one can check that τA is the same as the
topology on CL(V,W ) that corresponds to the linear span of A in the same way,
as in Section 23.

Let A1, A2 be nonempty subsets of V . If A1 ⊆ A2, then

τA1
⊆ τA2

,(25.11)

and the same conclusion holds when A1 is contained in the linear span of A2.
Suppose now that

A1 ⊆ A2,(25.12)

where A2 is the closure of A2 in V . If E is an equicontinuous collection of linear
mappings from V into W , then the topology induced on E by τA2

is at least as
strong as the topology induced by τA1

. To see this, let u ∈ A1 be given, and let
UW be an open subset of W that contains 0. This leads to a symmetric open
subset ŨW of W that contains 0 and satisfies (25.1), and an open subset UV of
V that contains 0 and satisfies (25.3), using the equicontinuity of E to get UV .
If (25.12) holds, then there is a v ∈ A2 that satisfies (25.4). Thus (25.9) implies
(25.10) for every T1, T2 ∈ E in this situation, as before. This can be used to
verify that every relatively open set in E with respect to the topology induced
by τA1

is also relatively open with respect to the topology induced by τA2
when

(25.12) holds. As before, the same conclusion holds when A1 is contained in the
closure of the linear span of A2 in V . In particular, if the closure of the linear
span of A ⊆ V is dense in V , and if E is equicontinuous, then the topology
induced on E by τA is the same as the one induced by the strong operator
topology on CL(V,W ).
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26 Closed sets

Let k be a field with a qk-absolute value function | · | for some qk > 0, and let
V , W be topological vector spaces over k. Also let v be an element of V , and
let Lv be defined as in (23.1). If E is a closed subset of W , then

L−1
v (E) = {T ∈ CL(V,W ) : T (v) ∈ E}(26.1)

is a closed set in CL(V,W ) with respect to the strong operator topology. In
particular, if {0} is a closed set in W , then we can take E = {0} in (26.1), to
get that

{T ∈ CL(V,W ) : T (v) = 0}(26.2)

is a closed set in CL(V,W ) with respect to the strong operator topology. This
implies that {0} is a closed set in CL(V,W ) with respect to the strong operator
topology, by taking the intersection of (26.2) over all v ∈ V .

As in Section 23, one can define the topology of pointwise convergence on
the space of arbitrary mappings from V into W . If {0} is a closed set in W ,
then it is easy to see that the space of arbitrary linear mappings from V into W
is a closed set in the space of arbitrary mappings from V into W with respect
to this topology. Suppose that E is an equicontinuous collection of continuous
linear mappings from V into W , and let E be the closure of E in the space
of arbitrary linear mappings from V into W , with respect to the topology of
pointwise convergence. Thus E consists of the linear mappings from V into W
that can be approximated by elements of E on finite subsets of V , and using
the given topology on W . If {0} is a closed set in W , then E is the same as the
closure of E in the space of arbitrary mappings from V into W with respect to
the topology of pointwise convergence, by the previous remark.

Let UW be an open subset ofW that contains 0. Because E is equicontinuous,
there is an open set UV in V such that 0 ∈ UV and

T (UV ) ⊆ UW(26.3)

for every T ∈ E . Equivalently, this means that

T (v) ∈ UW(26.4)

for every v ∈ V and T ∈ E . It follows that

T (v) ∈ UW(26.5)

for every v ∈ UV and T ∈ E , where UW is the closure of UW in W . This is the
same as saying that

T (UV ) ⊆ UW(26.6)

for every T ∈ E . This implies that each T ∈ E is continuous at 0, because
W is regular in the strict sense as a topological space. Thus E is contained in
CL(V,W ), so that E is the same as the closure of E in CL(V,W ) with respect
to the strong operator topology in this situation. More precisely, (26.6) implies

38



that E is equicontinuous as well, using the regularity of W in the strict sense
again. We also get that

T (UV ) ⊆ UW(26.7)

for every T ∈ E , where UV is the closure of UV in V , because each T ∈ E is
continuous.

Note that a condition like (26.5) defines a closed set of T ’s with respect to
the strong operator topology, by the remarks at the beginning of the section.
Hence conditions like (26.6) and (26.7) also define closed sets of T ’s with respect
to the strong operator topology, since they correspond to families of conditions
of the previous type. Similarly, families of conditions of this type corresponding
to families of open subsets UW of W that contain 0 define closed sets of T ’s
with respect to the strong operator topology. If one uses a family of UW ’s in a
local base for the topology of W at 0, and for which the corresponding UV ’s are
open subsets of V that contain 0, then one gets a closed set of T ’s with respect
to the strong product topology which is equicontinuous as well.

27 Convergence of sequences

Let k be a field with a qk-absolute value function | · | for some qk > 0 again, and
let V , W be topological vector spaces over k. Also let {Tj}∞j=1 be a sequence
of continuous linear mappings from V into W . If {Tj(v)}∞j=1 converges as a
sequence of elements of W for every v ∈ V , then we say that {Tj}∞j=1 converges
pointwise on V . If T is a mapping from V into W and {Tj(v)}∞j=1 converges
to T (v) in W for every v ∈ V , then we may say that {Tj}∞j=1 converges to T
pointwise on V . It is easy to see that {Tj}∞j=1 converges to a continuous linear
mapping T from V into W pointwise on V if and only if {Tj}∞j=1 converges to
T with respect to the strong operator topology on CL(V,W ).

Of course, if {0} is a closed set in W , then W is Hausdorff, and the limit
of any convergent sequence of elements of W is unique. In this case, if {Tj}∞j=1

converges pointwise on V , then we can put

T (v) = lim
j→∞

Tj(v)(27.1)

for each v ∈ V . This defines a mapping from V into W , and {Tj}∞j=1 converges
to T pointwise on V . We also have that T is linear under these conditions, as
in the previous section. Otherwise, if {0} is not a closed set in W , then we can
choose a limit T (v) of {Tj(v)}∞j=1 in W for each vector v in a basis for V as a
vector space. This defines T as a mapping from the basis for V into W , which
can be extended to a linear mapping from V into W . Using this choice of T on
V , one can check that {Tj(v)}∞j=1 converges to T (V ) for every v ∈ V , so that
{Tj}∞j=1 converges to T pointwise on V .

Let us say that {Tj}∞j=1 is equicontinuous on V if the corresponding set of
Tj ’s is equicontinuous on V , as in Section 19. If {Tj}∞j=1 is equicontinuous on
V and {Tj}∞j=1 converges pointwise to a linear mapping T from V into W , then
T is continuous as well, as in the previous section again.
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Let us say that {Tj}∞j=1 satisfies the pointwise Cauchy condition on V if
{Tj(v)}∞j=1 is a Cauchy sequence in W for every v ∈ V . It is easy to see that
this happens if and only if {Tj}∞j=1 is a Cauchy sequence with respect to the
strong operator topology on CL(V,W ). If {Tj}∞j=1 converges pointwise on V ,
then {Tj}∞j=1 satisfies the pointwise Cauchy condition on V , since convergent
sequences are Cauchy sequences, as in Section 21. If W is sequentially com-
plete and {Tj}∞j=1 satisfies the pointwise Cauchy condition on V , then {Tj}∞j=1

converges pointwise on V .
Let A be a subset of V , and let us say that {Tj}∞j=1 converges pointwise on

A if {Tj(v)}∞j=1 converges in W for every v ∈ A. As before, if T is a mapping
from A into W , and if {Tj(v)}∞j=1 converges to T (v) in W for every v ∈ A, then
we may say that {Tj}∞j=1 converges to T pointwise on A. If {Tj}∞j=1 converges
pointwise on A, then {Tj}∞j=1 also converges pointwise on the linear span of A in
V . Similarly, if T is a linear mapping from V into W , and if {Tj}∞j=1 converges
to T pointwise on A, then {Tj}∞j=1 converges to T pointwise on the linear span
of A in V .

If {Tj(v)}∞j=1 is a Cauchy sequence in W for each v ∈ A, then we say
that {Tj}∞j=1 satisfies the pointwise Cauchy condition on A. This implies that
{Tj}∞j=1 satisfies the pointwise Cauchy condition on the linear span of A in V ,
as before. Of course, pointwise convergence on A implies the pointwise Cauchy
condition on A, and the converse holds when W is sequentially complete.

Suppose that T is a continuous mapping from V into W , and that {Tj}∞j=1

converges to T pointwise on a set A ⊆ V . If {Tj}∞j=1 is also equicontinuous on V ,

then one can check that {Tj}∞j=1 converges to T pointwise on the closure A of A
in V . This uses the same type of argument as in Section 25. If T is linear, then
{Tj}∞j=1 converges pointwise to T on the linear span of A in V , as mentioned
earlier. If T is linear and continuous, then we get that {Tj}∞j=1 converges to T
on the closure of the linear span of A in V when {Tj}∞j=1 is equicontinuous.

Similarly, if {Tj}∞j=1 satisfies the pointwise Cauchy condition on a set A ⊆ V ,
and if {Tj}∞j=1 is equicontinuous on V , then one can verify that {Tj}∞j=1 satisfies

the pointwise Cauchy condition on the closure A of A in V . As before, this
uses arguments like those in Section 25. One might as well pass to the linear
span of A in V first, as mentioned earlier. It follows that {Tj}∞j=1 satisfies the
pointwise Cauchy condition on the closure of the linear span of A in V under
these conditions.

28 Pointwise boundedness

Let k be a field with a nontrivial qk-absolute value function | · | for some qk > 0,
and let V , W be topological vector spaces over k. Also let E be a collection of
continuous linear mappings from V into W , and put

Ev = {T (v) : T ∈ E}(28.1)

for each v ∈ V . If Ev is a bounded subset of W for every v ∈ V , then we say
that E is bounded pointwise on V . One can check that this happens if and
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only if E is bounded with respect to the strong operator topology on CL(V,W ).
This basically corresponds to the discussion of bounded subsets of Cartesian
products of topological vector spaces over k in Section 18.

If E is equicontinuous, then E is uniformly bounded on bounded subsets of
V , as in Section 19. Of course, this implies that E is bounded pointwise on V ,
because subsets of V with only one element are bounded, as in Section 9. In
some situations, it is well known that pointwise bounded subsets of CL(V,W )
are equicontinuous. In particular, the theorem of Banach and Steinhaus implies
that this is the case when V is of second category, in the sense of Baire category.
More precisely, it suffices to ask that (28.1) be a bounded subset of W for a set
of v of second category in V .

A sequence {Tj}∞j=1 of countinuous linear mappings from V into W is said to
be bounded pointwise on V if {Tj(v)}∞j=1 is a bounded sequence in W for every
v ∈ V . This is the same as saying that the set E of the Tj ’s is bounded pointwise
on V . As before, this is equivalent to the condition that E be a bounded subset
of CL(V,W ) with respect to the strong operator topology, which is the same
as saying that {Tj}∞j=1 is a bounded sequence in CL(V,W ) with respect to the
strong product topology. If {Tj}∞j=1 converges pointwise on V , then {Tj}∞j=1

is bounded pointwise on V . This is because convergent sequences in W are
bounded, as in Section 9. Similarly, if {Tj}∞j=1 satisfies the pointwise Cauchy
condition on V , then {Tj}∞j=1 is bounded pointwise on V . This follows from the
fact that Cauchy sequences in W are bounded, as in Section 21.

Suppose that {Tj}∞j=1 is a sequence of continuous linear mappings from V
into W that satisfies the pointwise Cauchy condition. Suppose also that W is
sequentially complete, so that {Tj}∞j=1 converges pointwise on V . It follows that
there is a linear mapping T from V into W such that {Tj}∞j=1 converges to T
pointwise on V , as in the previous section. If {Tj}∞j=1 is equicontinuous too,
then T is continuous, as in the previous two sections. This type of argument
can be used to show that CL(V,W ) is sequentially complete with respect to the
strong operator topology in some situations.

29 Bounded linear mappings, revisited

Let k be a field with a qk-absolute value function | · | for some qk > 0, and
let V , W be vector spaces over k. Also let NV , NW be qV , qW -seminorms on
V , W , respectively, for some qV , qW > 0, and with respect to | · | on k. As in
Section 16, we let BL(V,W ) be the space of bounded linear mappings from V
into W in the sense of Section 15, equipped with the corresponding operator
qW -seminorm ∥ · ∥op. Remember that bounded linear mappings from V into W
in this sense are continuous, with respect to the topologies on V , W associated
to NV , NW , respectively. If | · | is nontrivial on k, then we have seen that the
converse holds as well.

If T is a bounded linear mapping from V into W and v ∈ V , then

NW (T (v)) ≤ ∥T∥op NV (v).(29.1)
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This is because (15.1) holds with C = ∥T∥op, as mentioned just after (15.4).
Hence the topology on BL(V,W ) associated to the operator qW -seminorm is at
least as strong as the one induced by the strong operator topology on CL(V,W ).

Let E be a subset of BL(V,W ). Suppose that the elements of E have uni-
formly bounded operator qW -seminorms, in the sense that there is a nonnegative
real number C such that

∥T∥op ≤ C(29.2)

for every T ∈ E . Equivalently, this means that

NW (T (v)) ≤ C NV (v)(29.3)

for every T ∈ E and v ∈ V , which implies that E is equicontinuous, as in Section
20. Thus the remarks in Section 25 can be applied in this situation, and indeed
some of the arguments could be simplified. Similarly, let E be the closure of E
in the space of all linear mappings from V into W with respect to the topology
of pointwise convergence, as in Section 26. It is easy to see that the elements of
E satisfy (29.3) with the same constant C in this situation. It follows that E is
contained in BL(V,W ), and that the elements of E satisfy (29.2) as well.

Suppose now that | · | is nontrivial on k, so that BL(V,W ) is the same as
CL(V,W ), as before. Let E be a subset of BL(V,W ) again, and note that the
elements of E have uniformly bounded operator qW -seminorms if and only if E
is bounded with respect to the topology on BL(V,W ) associated to the operator
qW -seminorm, as in Section 9. If E is equicontinuous, then the elements of E
have uniformly bounded operator qW -seminorms in this case, as in Section 20.
Pointwise boundedness of E on V reduces in this situation to the boundedness
of

{NW (T (v)) : T ∈ E}(29.4)

as a set of nonnegative real numbers for each v ∈ V . If (29.4) is bounded for
a set of v of second category in V , then the Banach–Steinhaus theorem implies
that the elements of E have uniformly bounded operator qW -seminorms.

30 Continuity of compositions

Let k be a field with a qk-absolute value function | · | for some qk > 0, and let
V , W , and Z be topological vector spaces over k. If R is a continuous linear
mapping from V into W , and T is a continuous linear mapping from W into Z,
then their composition T ◦R is a continuous linear mapping from V into Z. If
T is a continuous linear mapping from W into Z, then

R 7→ T ◦R(30.1)

defines a linear mapping from CL(V,W ) into CL(V, Z). It is easy to see that
this mapping is continuous with respect to the corresponding strong operator
topologies, directly from the definitions. Similarly, if R is a continuous linear
mapping from V into W , then

T 7→ T ◦R(30.2)
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defines a continuous linear mapping from CL(W,Z) into CL(V, Z) with respect
to the corresponding strong product topologies.

Let us now consider the continuity properties of

(R, T ) 7→ T ◦R(30.3)

as a mapping from CL(V,W )×CL(W,Z) into CL(V, Z), using the corresponding
strong operator topologies. This amounts to looking at

(R, T ) 7→ T (R(v))(30.4)

as a mapping from CL(V,W )×CL(W,Z) into W for each v ∈ V . Let R0, R be
continuous linear mappings from V into W , and let T0, T be continuous linear
mappings from W into Z. Here R0 and T0 should be considered as fixed for the
moment, and we would like to consider the behavior of (30.3) or (30.4) when R
is close to R0 and T is close to T0. Basically, we would like to understand when
T (R(v)) is close to T0(R0(v)) in Z.

Let v ∈ V be given, and observe that

T (R(v))− T0(R0(v))(30.5)

= (T (R(v))− T (R0(v))) + (T (R0(v))− T0(R0(v))).

The second part on the right side of (30.5),

T (R0(v))− T0(R0(v)),(30.6)

is obviously close to 0 in Z when T is close to T0 with respect to the strong
operator topology on CL(W,Z), in a suitable sense. The first part on the right
side of (30.5) is more complicated, and can be reexpressed as

T (R(v)−R0(v)).(30.7)

Of course, one can get R(v)−R0(v) to be small in W by taking R close to R0

with respect to the strong operator topology on CL(V,W ). This implies that
(30.7) is small in Z when T is fixed, and otherwise one should be more careful.

Let E be an equicontinuous collection of linear mappings from W into Z.
If we restrict our attention to T ∈ E , then we can say that (30.7) is uniformly
small in Z when R(v)−R0(v) is small in W , which can be arranged by taking
R close to R0 with respect to the strong product topology on CL(V,W ). It
follows that (30.5) is small in Z when R is close to R0 with respect to the
strong operator topology on CL(V,W ), T is close to T0 with respect to the
strong operator topology on CL(W,Z), and T ∈ E . This implies that for each
v ∈ V , (30.4) is continuous as a mapping from CL(V,W ) × E into W , with
respect to the strong operator topology on CL(V,W ), the topology induced on
E by the strong operator topology on CL(W,Z), and the associated product
topology on their Cartesian product. Thus (30.3) is continuous as a mapping
from CL(V,W )×E into CL(V, Z), with respect to the strong operator topologies
on CL(V,W ) and CL(V, Z), the topology induced on E by the strong product
topology on CL(W,Z), and the associated product topology on CL(V,W )× E .
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31 Continuity of inverses

Let k be a field with a qk-absolute value function | · | for some qk > 0 again,
and let V , W be topological vector spaces over k. Also let T be a one-to-one
continuous linear mapping from V onto W , whose inverse T−1 is continuous
as a mapping from W into V . In this section, we would like to consider the
continuity of

T 7→ T−1(31.1)

for such mappings T , with respect to the appropriate strong operator topologies.
As before, this amounts to looking at

T 7→ T−1(w)(31.2)

as a mapping into V for each w ∈ W . Let T0 be a fixed one-to-one continuous
linear mapping from V onto W with continuous inverse, and let us consider the
continuity properties of (31.1) and (31.2) at T0.

Observe that

T−1 − T−1
0 = T−1 ◦ T0 ◦ T−1

0 − T−1 ◦ T ◦ T−1
0 = T−1 ◦ (T0 − T ) ◦ T−1

0(31.3)

as linear mappings fromW into V . Let w0 ∈ W be given, and put v0 = T−1
0 (w0),

so that
T−1(w0)− T−1

0 (w0) = T−1(T0(v0)− T (v0))(31.4)

by (31.3). It is easy to have T0(v0)− T (v0) be small in W , by taking T close to
T0 with respect to the strong operator topology on CL(V,W ). In order to get
(31.4) to be small in V , we shall impose additional restrictions on T , as in the
previous section.

Let E be a collection of one-to-one continuous linear mappings from V onto
W with continuous inverses, and let E−1 be the corresponding collection of
inverse mappings from W onto V . Suppose that E−1 is equicontinuous as a
collection of linear mappings from W into V . If T ∈ E and T0(v0) − T (v0) is
small in W , then we get that (31.4) is small in V . This implies that (31.2) is
continuous as a mapping from E into V for each w ∈ W , with respect to the
topology induced on E by the strong operator topology on CL(V,W ). It follows
that (31.1) is continuous as a mapping from E into CL(W,V ), with respect to
the strong operator topology on CL(W,V ), and the topology induced on E by
the strong operator topology on CL(V,W ).

Let CL(V ) = CL(V, V ) be the space of continuous linear mappings from V
into itself. This is an algebra over k, with composition of linear mappings as
multiplication. Of course, the identity mapping I = IV on V is continuous and
linear, and is the multiplicative identity element in CL(V ). The collection of one-
to-one continuous linear mappings from V onto itself with continuous inverses
is a group with respect to composition of mappings. Let G be a subgroup
of this group, and suppose that G is equicontinuous as a collection of linear
mappings from V into itself. Let us also consider G to be equipped with the
topology induced by the strong operator topology on CL(V ). With respect to
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this topology, multiplication on G is continuous as a mapping from G × G into
G, using the product topology on the domain. This follows from the discussion
in the previous section. Similarly, (31.1) is continuous as a mapping from G
into itself, by the remarks in the preceding paragraph. More precisely, this uses
the fact that G−1 = G, since G is a group, so that G−1 is equicontinuous, by
hypothesis. This shows that G is a topological group under these conditions.

32 Some related continuity properties

Let k be a field with a qk-absolute value function | · | for some qk > 0, and let
V , W , Z be vector spaces over k. Also let NV , NW , and NZ be qV , qW , and
qZ-seminorms on V , W , and Z, respectively, for some qV , qW , qZ > 0, and with
respect to | · | on k. This leads to spaces BL(V,W ), BL(W,Z), and BL(V, Z) of
bounded linear mappings between these vector spaces in the sense of Section 15,
with the corresponding operator qW and qZ-seminorms ∥ · ∥op,VW , ∥ · ∥op,WZ ,
and ∥ · ∥op,V Z , respectively. Remember that compositions of bounded linear
mappings are bounded, as in Section 16. Thus

(R, T ) 7→ T ◦R(32.1)

defines a mapping from BL(V,W )× BL(W,Z) into BL(V, Z), as in Section 30.
It is easy to see that this mapping is continuous with respect to the topologies
on these spaces determined by the corresponding operator seminorms, and using
the associated product topology on the Cartesian product in the domain of this
mapping. This uses (16.2) and standard computations like (30.5), but is a bit
simpler than in Section 30.

Suppose now that V is a topological vector space over k, but where the topol-
ogy is not necessarily determined by a singe q-seminorm. As before, bounded
linear mappings fromW into Z are continuous, so that (32.1) also defines a map-
ping from CL(V,W )×BL(W,Z) into CL(V, Z). One can check that this mapping
is continuous with respect to the strong operator topologies on CL(V,W ) and
CL(V, Z), the topology on BL(W,Z) determined by ∥ · ∥op,WZ , and the cor-
responding product topology on the Cartesian product. This can be derived
from the discussion in Section 30, using the fact that the topology determined
on BL(W,Z) by ∥ · ∥op,WZ is at least as strong as the one induced by the
strong operator topology on CL(W,Z), as in Section 29. In this situation, it
is not necessary to restrict one’s attention to an equicontinuous collection of
mappings from W into Z, because subsets of BL(W,Z) with bounded operator
qZ-seminorm are equicontinuous.

Let us return to the case where V is equipped with a qV -seminorm NV . Let
T0, T be one-to-one bounded linear mappings from V onto W . Suppose that the
inverse T−1

0 of T0 is bounded as a linear mapping from W onto V , in the sense
of Section 15 again. If ∥T − T0∥op,VW is sufficiently small, then one can verify
that T−1 is bounded as a linear mapping from W onto V too, with bounded
operator qV -seminorm ∥T−1∥op,WV . Under suitable conditions, the bijectivity
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of T can be obtained from this as well. Using this, one can show that

T 7→ T−1(32.2)

is continuous for one-to-one bounded linear mappings T from V onto W with
bounded inverse, with respect to the topologies corresponding to the appropriate
operator seminorms on BL(V,W ) and BL(W,V ). More precisely, one can show
that (32.2) is continuous at each such mapping T0, using (16.2) and (31.3).

As in the previous section, we let BL(V ) = BL(V, V ) be the space of bounded
linear mappings from V into itself, in the sense of Section 15. This is an algebra
over k, with composition of linear mappings as multiplication, and with the
identity mapping I = IV as the multiplicative identity element. The group of
invertible elements in BL(V ) consists of the one-to-one bounded linear mappings
from V onto itself with bounded inverse. This is a topological group with respect
to the topology induced by the one determined on BL(V ) by the operator qV -
seminorm, by the remarks in this section. Under suitable conditions, this group
is an open set in BL(V ) too.

33 Open subgroups, continued

Let k be a field with a qk-absolute value function | · | for some qk > 0, although
we are essentially only concerned here with qk = ∞, as in Section 22. Also let
V , W be topological vector spaces over k, let v be an element of V , and let UW

be a subset of W . If UW is balanced in W , then it is easy to see that (23.2)
is balanced as a subset of CL(V,W ), where CL(V,W ) is considered as a vector
space over k. Similarly, if UW is a subgroup of W as a commutative group with
respect to addition, then (23.2) is a subgroup of CL(V,W ), as a commutative
group with respect to addition. Of course, if UW is an open subset of W ,
then (23.2) is an open subset of CL(V,W ) with respect to the strong operator
topology, as in Section 23.

Now let G be a collection of one-to-one continuous linear mappings from V
onto itself with continuous inverses which is a group with respect to composition.
Also let U be a subgroup of V as a commutative group with respect to addition,
and suppose that

T (U) = U(33.1)

for every T ∈ G. Put

Gv,U = {T ∈ G : T (v) ∈ v + U}(33.2)

for each v ∈ V , and let us verify that this defines a subgroup of G. Each element
of G defines an automorphism on V as a commutative group with respect to
addition, and V is partitioned by the cosets of U in V . The elements of G send
cosets of U in V onto other cosets of U , because of (33.1). Thus (33.2) is the
same as

Gv,U = {T ∈ G : T (v + U) = v + U},(33.3)
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which clearly defines a subgroup of G. If U is also an open set in V , then (33.2)
is a relatively open subset of G with respect to the topology induced by the
strong operator topology on CL(V ).

Let G be a group of one-to-one continuous linear mappings from V onto itself
again, and let U0 be a subset of V . Of course,∩

T∈G
T (U0) =

∩
T∈G

T−1(U0)(33.4)

is automatically invariant under the elements of G, because G is a group, by
hypothesis. Note that (33.4) is contained in U0, because the identity mapping I
on V is an element of G. If U0 is a subgroup of V as a commutative group with
respect to addition, then (33.4) is a subgroup of V with respect to addition as
well. Similarly, if U0 is balanced in V , then (33.4) is balanced in V too.

Observe that the interior of (33.4) is invariant under the elements of G, by
continuity. If U0 is an open set in V that contains 0, and if G is equicontinuous
on V , then 0 is an element of the interior of (33.4). If A is any subgroup of V
as commutative group with respect to addition, and if 0 is an element of the
interior of A, then it is easy to see that A is an open set in V . If U0 is a subgroup
of V as a commutative group with respect to addition, and if 0 is an element of
the interior of (33.4), then it follows that (33.4) is an open subset of V . This
gives a way in which to get open subgroups of V with respect to addition that
are invariant under G, as in (33.1).

Part III

Multiplication operators

34 k-Valued functions

Let k be a field, and let X be a nonempty set. Also let c(X, k) be the space
of all k-valued functions on X, which is a vector space over k with respect to
pointwise addition and scalar multiplication. More precisely, c(X, k) is a com-
mutative algebra over k, with respect to pointwise multiplication of functions.
The constant function

1X(34.1)

on X equal to the multiplicative identity element 1 in k is the multiplicative
identity element in c(X, k). A k-valued function f on X has a multiplicative
inverse in c(X, k) if and only if f(x) ̸= 0 for each x ∈ X, in which case the
multiplicative inverse is given by 1/f(x).

If a ∈ c(X, k), then the corresponding multiplication operator Ma on c(X, k)
is defined by

Ma(f) = a f(34.2)
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for each f ∈ c(X, k). This defines a linear mapping from c(X, k) into itself for
each a ∈ c(X, k). Thus

a 7→ Ma(34.3)

defines a mapping from c(X, k) into the algebra of linear mappings from c(X, k)
into itself. It is easy to see that this mapping is injective, linear, and in fact an
algebra homomorphism with respect to composition of linear mappings. Note
that Ma is the identity mapping on c(X, k) when a = 1X .

Suppose now that | · | is a qk-absolute value function on k for some qk > 0.
Observe that

Nx(f) = |f(x)|(34.4)

defines a qk-seminorm on c(X, k) with respect to | · | on k for each x ∈ X. The
collection of these seminorms with x ∈ X determines a topology on c(X, k), as
in Section 4, and c(X, k) is a Hausdorff topological space over k with respect
to this topology. One can also identify c(X, k) with the Cartesian product of
a family of copies of k indexed by X, and the topology on c(X, k) determined
by the collection of seminorms (34.4) corresponds to the product topology on
the Cartesian product, using the topology on k determined by the qk-metric
associated to | · | on each factor.

Of course, c(X, k) is a topological vector space over k with respect to the
topology described in the preceding paragraph, as in Section 5. One can
also check that multiplication is continuous on c(X, k), as a mapping from
c(X, k) × c(X, k) into c(X, k), and using the corresponding product topology
on the domain. This uses the fact that multiplication on k is continuous as a
mapping from k × k into k, by standard arguments. Similarly,

f 7→ 1/f(34.5)

is continuous as a mapping from

{f ∈ c(X, k) : f(x) ̸= 0 for each x ∈ X}(34.6)

into c(X, k), with respect to the topology induced on (34.6) by the topology
already defined on c(X, k). This uses the continuity of t 7→ 1/t on k \ {0}, with
respect to the topology induced on k \ {0} by the one determined on k by the
qk-metric associated to | · |.

Continuity of multiplication on c(X, k) implies in particular that the multi-
plication operator (34.2) is continuous as a mapping from c(X, k) into itself for
each a ∈ c(X, k). Hence (34.3) may be considered as a mapping from c(X, k) into
the algebra CL(c(X, k)) of continuous linear mappings from c(X, k) into itself.
One can check that (34.3) is continuous as well, with respect to the topology
on c(X, k) described earlier, and the corresponding strong operator topology on
CL(c(X, k)). More precisely, (34.3) is a homeomorphism from c(X, k) onto its
image in CL(c(X, k)), using the topology on its image induced by the strong
operator topology on CL(c(X, k)).

Suppose for the moment that | · | is nontrivial on k. Let E be a subset of
c(X, k), and put

Ex = {a(x) : a ∈ E}(34.7)
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for each x ∈ E. Observe that E is bounded as a subset of c(X, k) in the sense
of Section 9 if and only if Ex is bounded as a subset of k with respect to | · | for
every x ∈ X. This condition is the same as saying that the qk-seminorm (34.4)
is bounded on E for each x ∈ X, as in Section 9. One can also look at E as a
subset of a Cartesian product, as in Section 18.

Let
E = {Ma : a ∈ E}(34.8)

be the image of E under the mapping (34.3), so that E is a subset of CL(c(X, k)).
Thus we can define Ef as a subset of c(X, k) for each f ∈ c(X, k) as in (28.1),
which reduces in this case to

Ef = {Ma(f) : a ∈ E} = {a f : a ∈ E}.(34.9)

As in Section 28, E is bounded as a subset of CL(c(X, k)) with respect to the
strong operator topology if and only if (34.9) is bounded in c(X, k) for each
f ∈ c(X, k). In this situation, one can check that this happens if and only if E
is bounded as a subset of c(X, k).

If E is bounded in c(X, k), then it is easy to see that (34.8) is equicontin-
uous as a collection of linear mappings from c(X, k) into itself, directly from
the definitions. Conversely, equicontinuous collections of linear mappings are
bounded pointwise, as in Section 28. If (34.8) is equicontinuous on c(X, k), then
it follows that E is bounded in c(X, k), which can be verified more directly from
the definitions as well.

If | · | is the trivial absolute value function on k, then one can check that the
collection of all multiplication operators on c(X, k) is equicontinuous. Remem-
ber that the corresponding topology on k is discrete in this case, which leads to
other simplifications too.

35 Finite support

Let k be a field again, and let X be a nonempty set. The support of a k-valued
function f on X is defined to be the set of x ∈ X such that f(x) ̸= 0. Let
c00(X, k) be the space of k-valued functions f on X with finite support, so
that f(x) = 0 for all but finitely many x ∈ X. This defines an ideal in the
commutative algebra c(X, k) defined in the previous section. Of course, if X
has only finitely many elements, then every k-valued function on X has finite
support, so that c0(X, k) is the same as c(X, k). If y ∈ X, then let δy be the
k-valued function on X defined by

δy(x) = 1 when x = y(35.1)

= 0 when x ̸= y.

Thus δy ∈ c00(X, k) for every y ∈ X, and the collection of δy with y ∈ X is a
basis for c00(X, k) as a vector space over k.
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If a ∈ c(X, k), then we can define the corresponding multiplication operator
Ma on c(X, k) as in (34.2). Observe that

Ma(c00(X, k)) ⊆ c00(X, k),(35.2)

since c00(X, k) is an ideal in c(X, k). Let us consider Ma as a linear mapping
from c00(X, k) into itself for each a ∈ c(X, k) in this section. Thus (34.3) defines
a mapping from c(X, k) into the algebra of linear mappings from c00(X, k) into
itself, and this mapping is an injective algebra homomorphism, as before. Note
that

Ma(δy) = a(y) δy(35.3)

for every a ∈ c(X, k) and y ∈ X.
Let | · | be a qk-absolute value function on k for some qk > 0, which leads to

a topology on c(X, k) as in the previous section. It is easy to see that c00(X, k)
is dense in c(X, k) with respect to this topology. Of course, for each a in
c(X, k), the restriction of Ma to c00(X, k) is continuous continuous with respect
to the topology induced on c00(X, k) by the one already defined on c(X, k).
Hence (34.3) may be considered as a mapping from c(X, k) into the algebra
CL(c00(X, k)) of countinuous linear mappings from c00(X, k) into itself, with
respect to the induced topology on c00(X, k). As before, one can check that
(34.3) defines a homeomorphism from c(X, k) onto its image in CL(c00(X, k)),
with respect to the topology induced on the image by the strong operator topol-
ogy on CL(c00(X, k)).

Suppose that | · | is nontrivial on k, and let E be a subset of c(X, k). Also let
E be as in (34.8), but considered now as a subset of CL(c00(X, k)). As before,
E is bounded as a subset of CL(c00(X, k)) with respect to the strong operator
topology if and only if (34.9) is bounded in c00(X, k) for every f ∈ c00(X, k).
It is easy to see that this happens if and only if E is bounded as a subset of
c(X, k), for essentially the same reasons as before. Similarly, E is equicontinuous
on c00(X, k) if and only if E is bounded in c(X, k).

36 Bounded functions

Let k be a field with a qk-absolute value function | · | for some qk > 0, and
let X be a nonempty set. As usual, a k-valued function f on X is said to be
bounded on X if |f(x)| is bounded as a nonnegative real-valued function on X.
Let ℓ∞(X, k) be the space of bounded k-valued functions on X, and put

∥f∥∞ = ∥f∥ℓ∞(X,k) = sup
x∈X

|f(x)|(36.1)

for each such function f . It is easy to see that ℓ∞(X, k) is a vector space
with respect to pointwise addition and multiplication on X, and in fact a linear
subspace of the space c(X, k) of all k-valued functions on X discussed in Section
34. One can also check that (36.1) defines a qk-norm on ℓ∞(X, k) with respect
to | · | on k, which is known as the supremum norm on ℓ∞(X, k).
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The qk-metric on ℓ∞(X, k) associated to the supremum norm is known as
the supremum metric. Of course,

ℓ∞(X, k) ⊆ c(X, k),(36.2)

and the topology determined on ℓ∞(X, k) by the supremum metric is at least as
strong as the one induced by the topology defined on c(X, k) in Section 34. If X
has only finitely many elements, then every k-valued function on X is bounded,
so that ℓ∞(X, k) is the same as c(X, k). The topology determined on ℓ∞(X, k)
by the supremum metric is the same as the topology on c(X, k) considered in
Section 34 in this case.

If | · | is the trivial absolute value function on k, then every k-valued function
on X is bounded again, and ℓ∞(X, k) is the same as c(X, k). In this case,
the corresponding supremum norm on ℓ∞(X, k) is the trivial ultranorm, and
the associated supremum metric is the discrete metric, which determines the
discrete topology on ℓ∞(X, k). However, if X has infinitely many elements,
then the topology defined on c(X, k) in Section 34 is not the discrete topology.

If f , g are bounded k-valued functions on X, then their product f g is
bounded on X too, and satisfies

∥f g∥∞ ≤ ∥f∥∞ ∥g∥∞.(36.3)

Thus ℓ∞(X, k) is a commutative algebra with respect to pointwise multiplication
of functions, and more precisely a subalgebra of c(X, k). Note that 1X as in
(34.1) is obviously bounded on X, and is the multiplicative identity element in
ℓ∞(X, k). A bounded k-valued function f on X has a multiplicative inverse in
ℓ∞(X, k) if and only if f(x) ̸= 0 for every x ∈ X and 1/f is bounded on X.
This is the same as saying that |f(x)| has a positive lower bound on X.

Using (36.3), one can check that multiplication is continuous on ℓ∞(X, k), as
a mapping from ℓ∞(X, k)× ℓ∞(X, k) into ℓ∞(X, k). Here we use the topology
determined on ℓ∞(X, k) by the supremum metric, and the corresponding prod-
uct topology on the Cartesian product. It is easy to see that the set of bounded
k-valued functions f on k such that |f(x)| has a positive lower bound on X is
an open set in ℓ∞(X, k) with respect to this topology. One can also verify that

f 7→ 1/f(36.4)

is continuous on this set with respect to this topology on ℓ∞(X, k), by standard
arguments. More precisely, this uses the fact that if f , g are bounded k-valued
functions on X, if there is a positive lower bound for |f(x)| on X, and if g is
sufficiently close to f with respect to the supremum metric, then one can get a
uniform lower bound for |g(x)| on X.

If a is a bounded k-valued function on X, then

Ma(f) = a f(36.5)

defines a bounded linear mapping from ℓ∞(X, k) into itself, in the sense of
Section 15. More precisely,

∥Ma∥op = ∥a∥∞(36.6)
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for every a ∈ ℓ∞(X, k), where ∥ · ∥op is the operator qk-norm on BL(ℓ∞(X, k))
associated to the supremum norm on ℓ∞(X, k). Indeed,

∥Ma(f)∥∞ ≤ ∥a∥∞ ∥f∥∞(36.7)

for every f ∈ ℓ∞(X, k), by (36.3). This implies thatMa is bounded on ℓ∞(X, k),
with operator qk-norm less than or equal to ∥a∥∞. To get the opposite inequal-
ity, one can use (35.3), and the fact that the supremum norm of δy is equal to
1 for every y ∈ X, where δy is as in (35.1).

As in Section 34,
a 7→ Ma(36.8)

is an injective algebra homomorphism from ℓ∞(X, k) into BL(ℓ∞(X, k)). The
isometric property (36.6) implies that this mapping is continuous, and in fact
bounded with respect to the corresponding norms, in the sense of Section 15.
Using (36.6), we also get that (36.8) is a homeomorphism from ℓ∞(X, k) onto
its image in BL(ℓ∞(X, k)), with respect to the topology induced on the image
by the one defined by the operator qk-norm.

As in Section 29, the topology determined on BL(ℓ∞(X, k)) by the operator
qk-norm is at least as strong as the one induced by the strong operator topology.
In particular, (36.8) is continuous as a mapping from ℓ∞(X, k) into BL(X, k),
using the topology determined on ℓ∞(X, k) by the supremum norm and the one
induced on BL(ℓ∞(X, k)) by the strong operator topology. Observe that

Ma(1X) = a(36.9)

for every a ∈ ℓ∞(X, k), where 1X is as in (34.1). This implies that (36.8) is a
homeomorphism from ℓ∞(X, k) onto its image in BL(ℓ∞(X, k)), with respect
to the topology induced on the image by the strong operator topology. One can
also use (36.9) to get that the operator qk-norm of Ma is greater than or equal
to ∥a∥∞, since the supremum norm of 1X is equal to 1.

37 Vanishing at infinity

Let k be a field with a qk-absolute value function | · | for some qk > 0 again,
and let X be a nonempty set. A k-valued function f on X is said to vanish at
infinity if for each ϵ > 0 we have that

|f(x)| < ϵ(37.1)

for all but at most finitely many x ∈ X. Let c0(X, k) be the space of k-valued
functions on X that vanish at infinity. If f has finite support in X, then f
obviously vanishes at infinity on X, so that

c00(X, k) ⊆ c0(X, k).(37.2)

Similarly, if f vanishes at infinity on X, then it is easy to see that f is bounded
on X, so that

c0(X, k) ⊆ ℓ∞(X, k).(37.3)
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Of course, if X has only finitely many elements, then every k-valued function f
on X vanishes at infinity. If | · | is the trivial absolute value function on k, and if
f is a k-valued function on X that vanishes at infinity, then f has finite support
in X. Note that c0(X, k) is a closed set in ℓ∞(X, k) with respect to the topology
determined by the supremum metric, by standard arguments. More precisely,
c0(X, k) is the same as the closure of c00(X, k) in ℓ∞(X, k) with respect to this
topology. Observe also that c0(X, k) is an ideal in ℓ∞(X, k) as a commutative
algebra with respect to pointwise addition and multiplication.

Let a be a bounded k-valued function on X, so that the corresponding mul-
tiplication operator Ma on ℓ∞(X, k) can be defined as in (36.5). This operator
maps c0(X, k) into itself, because c0(X, k) is an ideal in ℓ∞(X, k). Thus, for
each a ∈ ℓ∞(X, k), we may consider Ma as a bounded linear mapping from
c0(X, k) into itself with respect to the supremum norm, in the sense of Section
15. One can check that

∥Ma∥op = ∥a∥∞(37.4)

for every a ∈ ℓ∞(X, k), where ∥ · ∥op is the operator qk-norm on BL(c0(X, k))
associated to the restriction of the supremum norm to c0(X, k). This is not quite
the same operator norm as in (36.6), because of the restriction of the domain
of Ma to c0(X, k).

As before,
a 7→ Ma(37.5)

defines an injective algebra homomorphism from ℓ∞(X, k) into BL(c0(X, k)).
The isometric property (37.4) implies that this mapping is bounded with re-
spect to the corresponding norms, as in Section 15, and hence is continuous.
More precisely, (37.5) defines a homeomorphism from ℓ∞(X, k) onto its im-
age in BL(c0(X, k)), with respect to the topology determined by the operator
qk-norm. As in Section 29, the topology determined on BL(c0(X, k)) by the
operator qk-norm is at least as strong as the one induced by the strong operator
topology. It follows that (37.5) is also continuous as a mapping from ℓ∞(X, k)
into BL(c0(X, k)), using the topology induced on BL(c0(X, k)) by the strong
operator topology.

However, if X has infinitely many elements, then (37.5) is not a homeo-
morphism from ℓ∞(X, k) onto its image in BL(c0(X, k)), with respect to the
topology induced on the image by the strong operator topology. The argument
for the analogous statement in the previous section using (36.9) does not work
in this situation, because 1X does not vanish at infinity on X when X has
infinitely many elements. To be more explicit, put

Nf (a) = ∥Ma(f)∥∞ = ∥a f∥∞(37.6)

for each a ∈ ℓ∞(X, k) and f ∈ c0(X, k). This defines a qk-seminorm on ℓ∞(X, k)
as a function of a for every f ∈ c0(X, k). Thus

{Nf : f ∈ c0(X, k)}(37.7)

is a nonempty collection of qk-seminorms on ℓ∞(X, k), which determines a topol-
ogy on ℓ∞(X, k) as in Section 4. By construction, (37.5) is a homeomorphism
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from ℓ∞(X, k) onto its image in BL(c0(X, k)), using the topology determined on
ℓ∞(X, k) by (37.7), and the topology induced on the image by the strong opera-
tor topology. Of course, the topology determined on ℓ∞(X, k) by the supremum
norm is at least as strong as the one determined by (37.7), because of (36.3).
If X has infinitely many elements, then one can check that the topology de-
termined on ℓ∞(X, k) by the supremum norm is strictly stronger than the one
determined by (37.7).

38 Vanishing at infinity, continued

Let us continue with the same notation and hypotheses as in the previous sec-
tion. Let E be a subset of ℓ∞(X, k), and let

E = {Ma : a ∈ E}(38.1)

be the image of E under (37.5), so that the elements of E are considered as
bounded linear mappings from c0(X, k) into itself. Suppose for the moment
that the elements of E have bounded supremum norm. This is the same as
saying that the elements of E have bounded operator norm on c0(X, k), by
(37.4). In particular, this implies that E is equicontinuous on c0(X, k), as in
Section 20.

Consider the topology induced on E by the strong operator topology. As
in Section 25, this is the same as the topology induced on E by the analogue
of the strong operator topology in which we restrict our attention to elements
of c00(X, k) instead of c0(X, k), because E is equicontinuous on c0(X, k), and
c00(X, k) is dense in c0(X, k). Similarly, we can restrict our attention to elements
of c00(X, k) of the form δy as in (35.1) with y ∈ X, since their linear span is all
of c00(X, k). This topology on E corresponds exactly to the topology induced on
E by the one defined on c(X, k) in Section 34. More precisely, this means that
(37.5) defines a homeomorphism from E onto E with respect to these topologies.

Let E be any subset of ℓ∞(X, k) again, and let E be as in (38.1). Put

Ex = {a(x) : a ∈ E}(38.2)

for each x ∈ X, and

Ef = {Ma(f) : a ∈ E} = {a f : a ∈ E}(38.3)

for every f ∈ c0(X, k), which corresponds to (28.1) in this situation. If the
elements of E have supremum norm bounded by some nonnegative real number
C, then the elements of Ef have supremum norm bounded by C times the
supremum norm of f for every f ∈ c0(X, k). Let y be any element of X, and let
δy be as in (35.1) again. The elements of Eδy correspond exactly to multiples
of δy by elements of Ey, as in (35.3). Thus the elements of Eδy have bounded
supremum norms if and only if the elements of Ey have bounded absolute value.
If this happens for every y ∈ X, then the elements of Ef have bounded supremum
norm for every f ∈ c00(X, k).
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If the elements of Ef have bounded supremum norm for every f ∈ c0(X, k),
then the elements of E have bounded supremum norm too. Of course, this is
trivial when | · | is the trivial absolute value function on k, and so we may as
well suppose that | · | is nontrivial on k. If k is complete with respect to the
qk-metric associated to |·|, then this statement can be derived from the Banach–
Steinhaus theorem. This uses the fact that c0(X, k) is complete with respect
to the corresponding supremum metric in this case. More precisely, ℓ∞(X, k) is
complete with respect to the supremummetric when k is complete, which implies
that c0(X, k) is complete too, because c0(X, k) is a closed set in ℓ∞(X, k). If k
is not already complete, then one can simply pass to a completion. However,
in this situation, passing to a completion does not really do much anyway, and
one can give a more direct argument without asking that k be complete, as
follows. Suppose for the sake of a contradiction that the elements of E do not
have bounded supremum norm. This implies that there is a sequence {aj}∞j=1

of elements of E whose supremum norms tend to +∞ as j → ∞. Hence there
is a sequence {xj}∞j=1 of elements of X such that

|aj(xj)| → ∞ as j → ∞.(38.4)

If x is any element ofX, then the elements of Eδx have bounded supremum norm,
by hypothesis. This implies that the elements of Ex have bounded absolute
value, as in the preceding preceding paragraph. Thus x cannot occur in the
sequence {xj}∞j=1 more than finitely many times. Using this, one can reduce
to the case where the terms of the sequence {xj}∞j=1 are distinct elements of
X, by passing to a subsequence if necessary. At any rate, one can use such
a sequence to get an f ∈ c0(X, k) such that the elements of Ef do not have
bounded supremum norms, as desired.

39 r-Summable functions

Let X be a nonempty set, and let h be a nonnegative real-valued function on
X. The sum ∑

x∈X

h(x)(39.1)

is defined as a nonnegative extended real number to be the supremum of the
collection of sums of h(x) over nonempty finite subsets of X. Thus (39.1) is
finite when the collection of sums of h(x) over finite subsets of X has a finite
upper bound, in which case h is said to be summable on X. If h is summable
on X, then it is easy to see that h vanishes at infinity on X, with respect to the
standard absolute value function on X. Of course, (39.1) reduces to an ordinary
finite sum when h has finite support in X, and in particular when X has only
finitely many elements.

Let k be a field with a qk-absolute value function | · | for some qk > 0, and
let r be a positive real number. A k-valued function f on X is said to be r-
summable if |f(x)|r is summable as a nonnegative real-valued function on X, as
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in the preceding paragraph. Let ℓr(X, k) be the space of k-valued r-summable
functions on X. Note that

c00(X, k) ⊆ ℓr(X, k) ⊆ c0(X, k),(39.2)

by the corresponding remarks in the previous paragraph. If X has only finitely
many elements, then every k-valued function on X is r-summable, so that
ℓr(X, k) reduces to c(X, k).

One can verify that ℓr(X, k) is a vector space with respect to pointwise
addition and scalar multiplication for each r > 0, by standard arguments. Put

∥f∥r = ∥f∥ℓr(X,k) =
( ∑

x∈X

|f(x)|r
)1/r

(39.3)

for each f ∈ ℓr(X, k), where the right side of (39.3) is defined as a nonnegative
real number using the earlier definition of (39.1). If r = qk, then it is easy to
see directly that (39.3) defines a r-norm on ℓr(X, k). The same conclusion holds
when r ≤ qk, because | · | is also an r-absolute value function on k in this case,
as in Section 2. If r ≥ qk, then one can check that (39.3) defines a qk-norm on
ℓr(X, k), using Minkowski’s inequality for sums corresponding to the exponent
r/qk ≥ 1. If f ∈ ℓr(X, k) for any r > 0, then f is bounded on X, and in fact

∥f∥∞ ≤ ∥f∥r.(39.4)

We also have that f ∈ ℓr0(X, k) when r ≤ r0 < ∞, with

∥f∥r0 ≤ ∥f∥r,(39.5)

by the same type of computation as in (1.2). It is not too difficult to show that
c00(X, k) is dense in ℓr(X, k) with respect to the qk or r-metric associated to
∥f∥r, because of the way that a sum of the form (39.1) is approximated by finite
sums.

If a ∈ ℓ∞(X, k) and f ∈ ℓr(X, k), then their product is r-summable on X as
well, with

∥a f∥r ≤ ∥a∥∞ ∥f∥r.(39.6)

Thus
Ma(f) = a f(39.7)

defines a bounded linear mapping from ℓr(X, k) to itself when a ∈ ℓ∞(X, k), in
the sense of Section 15. As before, we have that

∥Ma∥op = ∥a∥∞(39.8)

for every a ∈ ℓ∞(X, k), where ∥Ma∥op is now the operator qk or r-norm on
BL(ℓr(X, k)) associated to ∥f∥r. More precisely, (39.6) implies that ∥Ma∥op is
less than or equal to ∥a∥∞, and the opposite inequality can be obtained from
(35.3). This uses the fact that

∥δy∥r = 1(39.9)

for every y ∈ X, where δy is as in (35.1).
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40 r-Summable functions, continued

Let us continue with the same notation and hypotheses as in the preceding
section. Put

Nf,r(a) = ∥Ma(f)∥r = ∥a f∥r(40.1)

for every a ∈ ℓ∞(X, r) and f ∈ ℓr(X, k). This defines a qk or r-seminorm on
ℓ∞(X, k) as a function of a for every f ∈ ℓr(X, k), depending on whether r ≥ qk
or r ≤ qk, as before. Hence

{Nf,r : f ∈ ℓr(X, k)}(40.2)

is a nonempty collection of qk or r-seminorms on ℓ∞(X, k), as appropriate, which
leads to a topology on ℓ∞(X, k) as in Section 4. The topology determined on
ℓ∞(X, k) by the supremum norm is at least as strong as the one corresponding
to (40.2), by (39.6).

As in analogous situations discussed earlier,

a 7→ Ma(40.3)

defines an injective algebra homomorphism from ℓ∞(X, k) into BL(ℓr(X, k)).
This mapping is an isometry with respect to the corresponding norms, as in
(39.8), and hence a homeomorphism onto its image with respect to the associ-
ated topologies. This mapping is also a homeomorphism onto its image with
respect to the topology determined on ℓ∞(X, k) by (40.2) and the topology in-
duced on the image by the strong operator topology. If X has infinitely many
elements, then the topology determined on ℓ∞(X, k) by the supremum norm is
strictly stronger than the one corresponding to (40.2). Note that the topology
determined on ℓ∞(X, k) by (40.2) is at least as strong as the one induced by
the topology defined on c(X, k) in Section 34, which corresponds to restricting
our attention to f = δy as in (35.1) with y ∈ X in the previous paragraph.

Let E be a subset of ℓ∞(X, k), and let

E = {Ma : a ∈ E}(40.4)

be the image of E under (40.3), so that the elements of E are considered as
bounded linear mappings from ℓr(X, k) into itself, in the sense of Section 15.
Suppose for the moment that the elements of E have bounded supremum norm,
which means that the elements of E have bounded operator norm, by (39.8).
Thus E is equicontinuous on ℓr(X, k), as in Section 20, and we would like to
consider the topology induced on E by the strong operator topology. Because
c00(X, k) is dense in ℓr(X, k), this is the same as the topology induced on E by
the analogue of the strong operator topology in which we restrict our attention
to elements of c00(X, k) instead of ℓr(X, k), as in Section 25. We can restrict our
attention further to elements of c00(X, k) of the form δy as in (35.1) with y ∈ X,
because their linear span is equal to c00(X, k). Using (40.3), this topology on E
corresponds exactly to the topology on E induced by the one defined on c(X, k)
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in Section 34. This basically amounts to restricting our attention to f = δy
with y ∈ X in (40.1).

Let E be any subset of ℓ∞(X, k) again, and put

Ex = {a(x) : a ∈ E}(40.5)

for every x ∈ X. Also let E be as in (40.4), and put

Ef = {Ma(f) : a ∈ E} = {a f : a ∈ E}(40.6)

for each f ∈ ℓr(X, k), as in (28.1). In particular,

Eδy = {a(y) δy : a ∈ E}(40.7)

for every y ∈ X, by (35.3). This implies that the elements of Eδy have bounded
norm in ℓr(X, k) if and only if the elements of Ey have bounded absolute value.
If the elements of E have bounded supremum norm, then the elements of Ef
have bounded norm in ℓr(X, k) for every f ∈ ℓr(X, k), by (39.6). Conversely,
if the elements of Ef have bounded norm in ℓr(X, k) for every f ∈ ℓr(X, k),
then the elements of E have bounded supremum norm. As in Section 38, this
is trivial when | · | is the trivial absolute value function on k, and so we may
as well suppose that | · | is nontrivial on k. If k is complete with respect to the
qk-metric associated to | · |, then one can check that ℓr(X, k) is complete too, by
standard arguments. This permits one to use the Banach–Steinhaus theorem,
and otherwise one can pass to a completion of k. One can also argue more
directly without asking k to be complete, as in Section 38.

41 Some comparisons

Let us continue with the same notation and hypotheses as in the previous two
sections. If | · | is the trivial absolute value function on k, then c0(X, k) and
ℓr(X, k) are the same as c00(X, k), and ℓ∞(X, k) is the same as c(X, k). In this
case, the topologies determined on ℓ∞(X, k) by (37.7) and (40.2) are the same
as the topology defined on c(X, k) in Section 34. Although we shall be primarily
concerned with nontrivial absolute value functions on k, much of the discussion
in this section also works when | · | is trivial on k. Note that every positive real
number is within a fixed factor of the absolute value of a nonzero element of k
when | · | is nontrivial on k.

Let h be a nonnegative real-valued summable function on X, and put

Ñh,r(a) =
( ∑

x∈X

|a(x)|r h(x)
)1/r

(41.1)

for every a ∈ ℓ∞(X, k). Observe that |a(x)|rh(x) is also summable on X when
a is bounded on X, so that the sum on the right side of (41.1) can be defined
as a nonnegative real number as in Section 39. More precisely,

Ñh,r(a) ≤
( ∑

x∈X

h(x)
)1/r

∥a∥∞(41.2)
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for every a ∈ ℓ∞(X, k). If r ≤ qk, then | · | is an r-absolute value function
on k, as in Section 2, and one can verify that (41.1) defines an r-seminorm on
ℓ∞(X, k), as in Section 39. Similarly, if r ≥ qk, then one can check that (41.1)
defines a qk-seminorm on ℓ∞(X, k) when r ≥ qk, using Minkowski’s inequality,
as before.

Thus

{Ñh,r : h is a nonnegative real-valued summable function on X}(41.3)

is a nonempty collection of qk or r-seminorms on ℓ∞(X, k), as appropriate,
which determines a topology on ℓ∞(X, k) as in Section 4. If f ∈ ℓr(X, k), then

h(x) = |f(x)|r(41.4)

is a nonnegative real-valued summable function on X. It is easy to see that

Ñh,r(a) = Nf,r(a)(41.5)

for every a ∈ ℓ∞(X, k) in this case, where Nf,r(a) is as in (40.1). This implies
that (40.2) is contained in (41.3). It follows that the topology determined on
ℓ∞(X, k) by (41.3) is at least as strong as the one determined by (40.2).

Suppose now that | · | is nontrivial on k, and let h be any nonnegative real-
valued summable function on X. We would like to choose a k-valued function
f on X such that |f(x)|r approximates h(x) in a suitable sense. Of course, we
may as well take f(x) = 0 in k when h(x) = 0. Otherwise, if h(x) > 0, then we
can choose f(x) ∈ k such that

h(x)1/r ≤ |f(x)| ≤ C h(x)1/r,(41.6)

where C ≥ 1 does not depend on x. This uses the nontriviality of | · | on k, as
mentioned at the beginning of the section. Equivalently, we have that

h(x) ≤ |f(x)|r ≤ Cr h(x)(41.7)

for every x ∈ X, since these inequalities hold automatically when h(x) = 0, by
construction. The second inequality in (41.7) implies that f ∈ ℓr(X, k), because
h is summable on X. The first inequality in (41.7) implies that

Ñh,r(a) ≤ Nf,r(a)(41.8)

for every a ∈ ℓ∞(X, k), where Nf,r(a) is as in (40.1) again. Combining this with
the remarks in the preceding paragraph, we get that the topologies determined
on ℓ∞(X, k) by (40.2) and (41.3) are the same in this case. If | · | is the trivial
absolute value function on k, then one can also check that the topologies deter-
mined on ℓ∞(X, k) by (40.2) and (41.3) are the same. This uses the fact that
(41.1) can be made arbitrarily small in this situation by requiring a to vanish
on suitable finite subsets of X, depending on h.

59



42 Some comparisons, continued

Let X be a nonempty set, and let g, h be nonnegative real-valued functions on
X, with g bounded and h summable. Thus

g(x)r h(x)(42.1)

is summable on X for every positive real number r. If r1, r2 are positive real
numbers with r1 ≤ r2, then we have that( ∑

x∈X

g(x)r1 h(x)
)1/r1

≤
( ∑

x∈X

h(x)
)(1/r1)−(1/r2) ( ∑

x∈X

g(x)r2 h(x)
)1/r2

.(42.2)

This is simplest when ∑
x∈X

h(x) = 1,(42.3)

so that the first factor on the right side of (42.2) is equal to 1 too. In this case,
(42.2) is a well-known consequence of Jensen’s inequality. Of course, (42.2) is
trivial when h ≡ 0 on X, and otherwise it is easy to reduce to the case where
(42.3) holds, by dividing h by its sum over X. One can also derive (42.2) from
Hölder’s inequality.

Let k be a field with a qk-absolute value function | · | for some qk > 0, as
before. Also let h be a nonnegative real-valued summable function on X again,
and let a be a bounded k-valued function on X. Thus

g(x) = |a(x)|(42.4)

is a bounded nonnegative real-valued function on X, to which the remarks in
the preceding paragraph can be applied. If r1, r2 are positive real numbers with
r1 ≤ r2, then we get that

Ñh,r1(a) ≤
( ∑

x∈X

h(x)
)(1/r1)−(1/r2)

Ñh,r2(a),(42.5)

where Ñh,r(a) is as in (41.1). This is the same as (42.2), reexpressed in this
situation.

Let
τr(42.6)

be the topology determined on ℓ∞(X, k) by (41.3) for each positive real number
r. This is the same as the topology determined on ℓ∞(X, k) by (40.2), as
discussed in the previous section. If r1, r2 are positive real numbers with r1 ≤ r2,
then

τr1 ⊆ τr2 ,(42.7)

which is to say that τr2 is at least as strong as τr1 . This follows from (42.5).

60



Suppose that h1, . . . , hn are finitely many nonnegative real-valued summable
functions on X, and put

h(x) = max
1≤j≤n

hj(x)(42.8)

for each x ∈ X. It is easy to see that h is summable on X too, because

h(x) ≤
n∑

j=1

hj(x)(42.9)

for each x ∈ X, and hence

∑
x∈X

h(x) ≤
∑
x∈X

n∑
j=1

hj(x) =

n∑
j=1

∑
x∈X

hj(x).(42.10)

The linearity property of the sum used in the second step in (42.10) is well
known, and can be derived directly from the definition of the sum in (39.1). By
construction,

max
1≤j≤n

Ñhj ,r(a) ≤ Ñh,r(a)(42.11)

for every r > 0 and a ∈ ℓ∞(X, k), where Ñh,r(a) is as in (41.1) again. This
simplifies a bit the way that (41.3) determines a topology on ℓ∞(X, k), as in
Section 4. More precisely, (42.11) implies that open balls in ℓ∞(X, k) with
respect to elements of (41.3) form a base for this topology, and not just a sub-
base. Note that if there is an r > 0 such that hj(x) is of the form |fj(x)|r for
some fj ∈ ℓr(X, k) and each j = 1, . . . , n, then h(x) can be expressed in this
way as well.

43 Some more comparisons

Let k be a field with a qk-absolute value function | · | for some qk > 0 again, and
let X be a nonempty set. Also let g be a nonnegative real-valued function on
X that vanishes at infinity, and put

Ñg(a) = sup
x∈X

(|a(x)| g(x))(43.1)

for every a ∈ ℓ∞(X, k). Note that

|a(x)| g(x)(43.2)

vanishes at infinity as a nonnegative real-valued function on X when a is
bounded on X. This implies that the supremum on the right side of (43.1)
is attained, because it can be reduced to the maximum over a finite subset of
X when (43.2) is not identically 0 on X. Of course, we also have that

Ñg(a) ≤
(
sup
x∈X

g(x)
)
∥a∥∞(43.3)
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for every a ∈ ℓ∞(X, k). Remember that g is bounded on X, since it vanishes
at infinity, and indeed its supremum over X is attained for the same reasons as
just mentioned. One can check that (43.1) defines a qk-seminorm on ℓ∞(X, k),
for essentially the same reasons as for the supremum norm.

Thus

{Ñg : g is a nonnegative real-valued function(43.4)

on X that vanishes at infinity}

is a nonempty collection of qk-seminorms on ℓ∞(X, k), which determines a topol-
ogy on ℓ∞(X, k) as in Section 4. If f ∈ c0(X, k), then

g(x) = |f(x)|(43.5)

defines a nonnegative real-valued function on X that vanishes at infinity. In
this case, we have that

Nf (a) = Ñg(a)(43.6)

for every a ∈ ℓ∞(X, k), where Nf (a) is as in (37.6). This implies that (37.7) is
contained in (43.4), so that the topology determined on ℓ∞(X, k) by (43.4) is
at least as strong as the one determined by (37.7).

Suppose for the moment that | · | is nontrivial on k, and let g be any non-
negative real-valued function on X that vanishes at infinity again. Because | · |
is nontrivial on k, there is a real-number C ≥ 1 and a k-valued function f on
X such that

g(x) ≤ |f(x)| ≤ C g(x)(43.7)

for every x ∈ X, as in (41.6). The second inequality in (43.7) implies that f
vanishes at infinity on X, so that f ∈ c0(X, k). Using the first inequality in
(43.7), we get that

Ñg(a) ≤ Nf (a)(43.8)

for every a ∈ ℓ∞(X, k), where Nf (a) is as in (37.6) again. It follows from this
and the remarks in the preceding paragraph that the topology determined on
ℓ∞(X, k) by (43.4) is the same as the one determined by (37.7) in this case. If
| · | is the trivial absolute value function on k, then one can also check that the
topologies determined on ℓ∞(X, k) by (37.7) and (43.4) are the same. This is
because (43.1) can be made arbitrarily small in this situation by requiring a to
vanish on suitable finite subsets of X, depending on g.

If g is any bounded nonnegative real-valued function on X, then (43.2) is
a bounded nonnegative real-valued function on X too for every a ∈ ℓ∞(X, k).

This permits us to define Ñg(a) for every a ∈ ℓ∞(X, k) as in (43.1), although
the supremum on the right side of (43.1) may not be attained in this situation.

As before, Ñg is a qk-seminorm on ℓ∞(X, k) that satisfies (43.3). If g(x) = 1

for every x ∈ X, then Ñg is the same as the supremum norm on ℓ∞(X, k). Of
course, if X has only finitely many elements, then every nonnegative real-valued
function on X automatically vanishes at infinity.
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44 Some more comparisons, continued

Let X be a nonempty set, and let g be a nonnegative real-valued function on X
that vanishes at infinity. Thus, for each ϵ > 0,

{x ∈ X : g(x) ≥ ϵ}(44.1)

has only finitely many elements. In particular, this holds when ϵ = 1/j for some
positive integer j. It follows that the support of g has only finitely or countably
many elements, by taking the union over all positive integers j. Now let h be a
nonnegative real-valued summable function on X. This implies that h vanishes
at infinity on X, as mentioned in Section 39. Hence the support of h has only
finitely or countable many elements, by the previous remark.

Let g0, h0 be nonnegative real-valued functions on X, and put

h(x) = g0(x)h0(x)(44.2)

for each x ∈ X. If g0 is bounded on X, and h0 is summable on X, then it is
easy to see that h is summable on X too. Of course, if g0 vanishes at infinity
on X, then g0 is bounded on X, as in Section 37. Conversely, let a nonnegative
real-valued summable function h on X be given. We would like to check that
h can be expressed as in (44.2), where g0 is a nonnegative real-valued function
on X that vanishes at infinity, and h0 is a nonnegative real-valued summable
function on X. We may as well put g0(x) = h0(x) = 0 for every x ∈ X such
that h(x) = 0. If h has finite support in X, then we can put g0(x) = 1 and
h0(x) = h(x) for every x ∈ X such that h(x) > 0. Otherwise, the support of h
is countably infinite, as in the preceding paragraph. This permits one to reduce
the question to the setting of infinite series with positive terms. In this setting,
the question corresponds to Part (b) of Problem 12 on p79-80 at the end of
Chapter 3 in [15].

Let k be a field with a qk-absolute value function | · | for some qk > 0 again.
Also let h be a nonnegative real-valued summable function on X, and let r be
a positive real number. As in the previous paragraph, there is a nonnegative
real-valued summable function h0 on X and a nonnegative real-valued function
gr on X that vanishes at infinity such that

h(x) = gr(x)
r h0(x)(44.3)

for every x ∈ X. This is the same as (44.2), with gr(x) = g0(x)
1/r. If a is any

bounded k-valued function on X, then we have that

Ñh,r(a) =
( ∑

x∈X

|a(x)|r gr(x)r h0(x)
)1/r

(44.4)

in this case, where Ñh,r(a) is as in (41.1). This implies that

Ñh,r(a) ≤
(
sup
x∈X

|a(x)| |gr(x)|
)( ∑

x∈X

h0(x)
)1/r

(44.5)
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for every a ∈ ℓ∞(X, k). Equivalently, this means that

Ñh,r(a) ≤
( ∑

x∈X

h0(x)
)1/r

Ñgr (a)(44.6)

for every a ∈ ℓ∞(X, k), where Ñgr (a) is as in (43.1).
Let τr be the topology determined on ℓ∞(X, k) by (41.3), as in Section 42.

Also let
τ∞(44.7)

be the topology determined on ℓ∞(X, k) by (43.4), which is the same as the
topology determined on ℓ∞(X, k) by (37.7), as discussed in the previous section.
Using (44.6), we get that

τr ⊆ τ∞,(44.8)

which is to say that τ∞ is at least as strong as τr. Of course, this may be
considered as a continuation of (42.7). Note that the topology determined on
ℓ∞(X, k) by the supremum norm is at least as strong as τ∞, by (43.3). This
is equivalent to a remark in Section 37 too. Similarly, it is easy to see directly
that the topology determined on ℓ∞(X, k) by the supremum norm is at least as
strong as τr, using (41.2).

45 Continuity of multiplication

Let k be a field with a qk-absolute value function | · | for some qk > 0, and let X
be a nonempty set. As in Section 36, multiplication of k-valued functions on X
defines a continuous mapping from ℓ∞(X, k)×ℓ∞(X, k) into ℓ∞(X, k), using the
topology determined on ℓ∞(X, k) by the supremum norm, and the corresponding
product topology on the domain of this mapping. Let τ∞ be the topology
determined on ℓ∞(X, k) by (43.4), as in the previous section. This is the same
as the topology determined on ℓ∞(X, k) by (37.7), as discussed in Section 43.
In this section, we would like to look at the continuity of multiplication on
ℓ∞(X, k) with respect to τ∞.

Let g1, g2 be nonnegative real-valued functions on X that vanish at infinity,
and put

g(x) = g1(x) g2(x),(45.1)

which vanishes at infinity on X as well. It is easy to see that

Ñg(a b) ≤ Ñg1(a) Ñg2(b)(45.2)

for every a, b ∈ ℓ∞(X, k), where these qk-seminorms are as defined in (43.1).
More precisely, this can be derived from (36.3). In particular, if f1, f2 ∈ c0(X, k),
and f(x) = f1(x) f2(x), then f ∈ c0(X, k) too, and

Nf (a b) ≤ Nf1(a)Nf2(b)(45.3)
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for every a, b ∈ ℓ∞(X, k), where these qk-seminorms are as defined in (37.6).
This is the same as (45.2) with g1(x) = |f1(x)|, g2(x) = |f2(x)|, and g(x) =
|f(x)|, as in (43.6).

Now let g be a nonnegative real-valued function on X that vanishes at in-
finity, and put

g1(x) = g2(x) = g(x)1/2(45.4)

for each x ∈ X. Thus g1, g2 vanish at infinity on X and satisfy (45.1), so that
(45.2) holds for every a, b ∈ ℓ∞(X, k). Using this, one can check that multiplica-
tion is continuous as a mapping from ℓ∞(X, k)× ℓ∞(X, k) into ℓ∞(X, k), using
the topology τ∞ on ℓ∞(X, k), and the corresponding product topology on the
domain of this mapping. If | · | is the trivial absolute value function on k, then
ℓ∞(X, k) is the same as c(X, k), and τ∞ is the same as the topology defined on
c(X, k) in Section 34. In this case, the continuity of multiplication on ℓ∞(X, k)
with respect to τ∞ just described reduces to the continuity of multiplication on
c(X, k) mentioned in Section 34.

Remember that elements of ℓ∞(X, k) determine bounded multiplication op-
erators on c0(X, k), as in Section 37. The characterization of τ∞ as the topology
determined on ℓ∞(X, k) by (37.7) means that τ∞ corresponds to the topology
induced on the collection of these multiplication operators by the associated
strong operator topology, as in Section 37 again. Of course, multiplication of
elements of ℓ∞(X, k) corresponds to compositions of the associated multiplica-
tion operators. Some continuity properties of compositions of continuous linear
mappings related to the strong operator topology were considered in Sections
30 and 32. The continuity of multiplication on ℓ∞(X, k) with respect to τ∞ in-
dicated in the preceding paragraph is somewhat stronger than what one would
get from the broader discussion in Sections 30 and 32.

46 Continuity of multiplication, continued

Let X be a nonempty set, and let r1, r2, and r3 be positive real numbers such
that

1

r3
=

1

r1
+

1

r2
.(46.1)

Also let g1 and g2 be bounded nonnegative real-valued functions on X, and let
h be a nonnegative real-valued summable function on X. It is well known that( ∑

x∈X

(g1(x) g2(x))
r3 h(x)

)1/r3
(46.2)

≤
( ∑

x∈X

g1(x)
r1 h(x)

)1/r1 ( ∑
x∈X

g2(x)
r2 h(x)

)1/r2
,

by Hölder’s inequality. More precisely, Hölder’s inequality is normally stated
with r3 = 1, but it is easy to reduce to that case. Note that each of the three
sums in (46.2) are finite under these conditions.
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Let k be a field with a qk-absolute value function | · | for some qk > 0, and

let Ñh,r be defined on ℓ∞(X, k) for each positive real number r as in (41.1).
Observe that

Ñh,r3(a b) ≤ Ñh,r1(a) Ñh,r2(b)(46.3)

for every a, b ∈ ℓ∞(X, k), by applying (46.2) to g1(x) = |a(x)| and g2(x) = |b(x)|.
Let τr be the topology determined on ℓ∞(X, k) by (41.3) for each positive real
number r, as in Section 42. Also let ℓ∞(X, k) × ℓ∞(X, k) be equipped with
the product topology associated to τr1 on the first factor and τr2 on the second
factor. Using (46.3), we get that multiplication is continuous as a mapping from
ℓ∞(x, k)× ℓ∞(X, k) into ℓ∞(X, k), with respect to the product topology on the
domain just mentioned, and τr3 on the range.

If g1, g2 are bounded nonnegative real-valued functions on X again, then we
have that( ∑

x∈X

(g1(x) g2(x))
r h(x)

)1/r

≤
(
sup
x∈X

g1(x)
)( ∑

x∈X

g2(x)
r h(x)

)1/r

(46.4)

for every r > 0. Of course, this is a substitute for (46.2) with r1 = ∞ and
r2 = r3 = r. It follows that

Ñh,r(a b) ≤ ∥a∥∞ Ñh,r(b)(46.5)

for every a, b ∈ ℓ∞(X, k), as before. This implies a continuity property of
multiplication on ℓ∞(X, k) as in the preceding paragraph, with r2 = r3 = r,
and with the topology determined on ℓ∞(X, k) by the supremum norm in place
of τr1 . We can do a bit better than this, as in the next paragraph.

Let a positive real number r be given. As in Section 44, there are nonneg-
ative real-valued functions g0, h0 on X such that g0 vanishes at infinity, h0 is
summable, and

h(x) = g0(x)
r h0(x)(46.6)

for every x ∈ X. This is the same as (44.3), with slightly different notation. If
g1, g2 are bounded nonnegative real-valued functions on X, then we get that( ∑

x∈X

(g1(x) g2(x))
r h(x)

)1/r

(46.7)

=
( ∑

x∈X

g1(x)
r g2(x)

r g0(x)
r h0(x)

)1/r

≤
(
sup
x∈X

g1(x) g0(x)
)( ∑

x∈X

g2(x)
r h0(x)

)1/r

,

where the second step is basically the same as (46.4). This implies that

Ñh,r(a b) ≤ Ñg0(a) Ñh0,r(b)(46.8)

for every a, b ∈ ℓ∞(X, k), where Ñg0(b) is as in (43.1). Let τ∞ be the topology
determined on ℓ∞(X, k) by (43.4), as in Section 44. Using (46.8), we get the
same type of continuity property of multiplication on ℓ∞(X, k) as before, with
r2 = r3 = r, and τ∞ in place of τr1 .
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47 From ℓr(X, k) into c0(X, k)

Let k be a field with a qk-absolute value function | · | for some qk > 0, let X be
a nonempty set, and let r be a positive real number. Consider the space

BL(ℓr(X, k), c0(X, k))(47.1)

of bounded linear mappings from ℓr(X, k) into c0(X, k), using ∥f∥r as in (39.3)
on the domain, and the supremum norm on the range. Let

∥T∥op,r∞(47.2)

be the corresponding operator norm on (47.1). More precisely, this is a qk-norm
on (47.1), because the supremum norm is a qk-norm on c0(X, k).

Remember that ℓr(X, k) is contained in c0(X, k), and that ∥f∥r is greater
than or equal to the supremum norm of f for every f ∈ ℓr(X, k), as in Section 39.
If T is a bounded linear mapping from ℓr(X, k) into itself, then it follows that
T may be considered as a bounded linear mapping from ℓr(X, k) into c0(X, k),
using the inclusion of ℓr(X, k) in c0(X, k) in the range of T . This leads to a
natural inclusion of BL(ℓr(X, k)) into (47.1). We also have that

∥T∥op,r∞ ≤ ∥T∥op,r r(47.3)

for every bounded linear mapping T from ℓr(X, k) into itself, where ∥T∥op,r r is
the operator norm on BL(ℓr(X, k)) corresponding to ∥f∥r on the domain and
range.

Similarly, if T is a bounded linear mapping from c0(X, k) into itself, then
the restriction of T to ℓr(X, k) is a bounded linear mapping from ℓr(X, k) into
c0(X, k). This leads to a natural linear mapping from BL(c0(X, k)) into (47.1).
As before, we have that

∥T∥op,r∞ ≤ ∥T∥op,∞∞(47.4)

for every bounded linear mapping T from c0(X, k) into itself, where ∥T∥op,∞∞
is the operator norm on BL(c0(X, k)) corresponding to the supremum norm
on the domain and range. More precisely, the left side of (47.4) refers to the
operator norm of the restriction of T to ℓr(X, k).

Let a be a bounded k-valued function on X, and let us consider the corre-
sponding multiplication operatorMa as a bounded linear mapping from ℓr(X, k)
into c0(X, k). Observe that

∥Ma∥op,r∞ = ∥a∥∞.(47.5)

More precisely, the fact that Ma defines a bounded linear mapping from ℓr(X, k)
into c0(X, k) with operator norm less than or equal to ∥a∥∞ can be verified
directly from the definitions, and it can also be obtained from (47.3) or (47.4)
and the analogous statement for multiplication operators on ℓr(X, k) or c0(X, k),
respectively. To get the opposite inequality, one can use (35.3), as usual. As in
previous situations, a 7→ Ma defines a linear mapping from ℓ∞(X, k) into (47.1).
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If f ∈ ℓr(X, k), then
T 7→ ∥T (f)∥∞(47.6)

defines a qk-seminorm on (47.1). The topology determined on (47.1) by the
collection of qk-seminorms of the form (47.6) corresponds exactly to the strong
operator topology. Of course,

∥T (f)∥∞ ≤ ∥T (f)∥r(47.7)

for every bounded linear mapping T from ℓr(X, k) into itself and every f in
ℓr(X, k), because of (39.4). This implies that the natural inclusion mapping
from BL(ℓr(X, k)) into (47.1) is also continuous with respect to the associated
strong operator topologies.

If f ∈ c0(X, k), then (47.6) defines a qk-seminorm on BL(c0(X, k)). The
topology determined on BL(c0(X, k)) by this collection of qk-seminorms corre-
sponds exactly to the strong operator topology. This topology on BL(c0(X, k))
is at least as strong as the one determined by the collection of qk-seminorms
of the form (47.6) with f ∈ ℓr(X, k), because ℓr(X, k) is contained in c0(X, k).
This implies that the natural mapping from BL(c0(X, k)) into (47.1) is contin-
uous with respect to their associated strong operator topologies.

As in Section 29, the topology determined on (47.1) by the operator qk-
norm (47.2) is at least as strong as the associated strong operator topology.
The mapping from a ∈ ℓ∞(X, k) to the multiplication operator Ma in (47.1) is
a homeomorphism onto its image with respect to the topology determined on
ℓ∞(X, k) by the supremum norm, and the topology induced on the image by
the one determined on (47.1) by (47.2), because of (47.5). It follows that the
topology determined on ℓ∞(X, k) by the supremum norm is at least as strong
as the one that corresponds to the strong operator topology on (47.1) via this
mapping. The topology on ℓ∞(X, k) that corresponds to the strong operator
topology on (47.1) in this way will be discussed further in the next section.

48 From ℓr(X, k) into c0(X, k), continued

Let us continue with the same notation and hypotheses as in the previous sec-
tion. As in Section 37,

Nf (a) = ∥a f∥∞(48.1)

defines a qk-seminorm on ℓ∞(X, k) as a function of a for every f ∈ c0(X, k).
Remember that ℓr(X, k) is contained in c0(X, k), as in Section 39. Let

τr,∞(48.2)

be the topology determined on ℓ∞(X, k) by

{Nf : f ∈ ℓr(X, k)},(48.3)

as in Section 4. By construction, a 7→ Ma is a homeomorphism from ℓ∞(X, k)
onto its image in (47.1), with respect to τr,∞ on ℓ∞(X, k), and the topology

68



induced on the image by the strong operator topology, as in the preceding
section.

Of course, (48.3) is contained in

{Nf : f ∈ c0(X, k)},(48.4)

because ℓr(X, k) is contained in c0(X, k). As in Section 44, we let τ∞ be the
topology determined on ℓ∞(X, k) by (48.4), which is the same as (37.7). Thus

τr,∞ ⊆ τ∞,(48.5)

which is to say that τ∞ is at least as strong as τr,∞, because (48.3) is contained
in (48.4). Remember that τ∞ corresponds to the strong operator topology on
BL(c0(X, k)) via the mapping from a ∈ ℓ∞(X, k) to the associated multipli-
cation operator on c0(X, k), as in Section 37. Using this and the analogous
statement for τr,∞ mentioned earlier, (48.5) could also be derived from the fact
that the natural mapping from BL(c0(X, k)) into (47.1) is continuous with re-
spect to the associated strong operator topologies, as in the previous section.

Put
Nf,r(a) = ∥a f∥r(48.6)

for every a ∈ ℓ∞(X, k) and f ∈ ℓr(X, k), as in (40.1). This defines a qk or
r-seminorm on ℓ∞(X, k) as a function of a for every f ∈ ℓr(X, k), as in Section
40. Note that

Nf (a) ≤ Nf,r(a)(48.7)

for every a ∈ ℓ∞(X, k) and f ∈ ℓr(X, k), because of (39.4). As in Section 42,
we let τr be the topology determined on ℓ∞(X, k) by

{Nf,r : f ∈ ℓr(X, k)},(48.8)

which is the same as (40.2). Using (48.7), we get that

τr,∞ ⊆ τr,(48.9)

so that τr is at least as strong as τr,∞. As in Section 40, τr corresponds
to the strong operator topology on BL(ℓr(X, k)) by the mapping that sends
a in ℓ∞(X, k) to the associated multiplication operator on ℓr(X, k). Thus
(48.9) could also be obtained from the continuity of the natural inclusion of
BL(ℓr(X, k)) into (47.1) with respect to the corresponding strong operator
topologies, as before.

Remember that τ∞ is at least as strong as τr, as in (44.8). Using this,
(48.5) could be derived from (48.9), but the earlier argument for (48.5) was
more direct. As usual, it is easy to see that τr,∞ is at least as strong as the
topology induced on ℓ∞(X, k) by the one defined on c(X, k) in Section 34. If | · |
is the trivial absolute value function on k, then ℓ∞(X, k) is the same as c(X, k),
and τr,∞ is the same as the topology defined on c(X, k) in Section 34. In this
case, τr and τ∞ are the same as this topology as well.
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49 Some additional properties

Let k be a field with a qk-absolute value function | · | for some qk > 0 again, and
let X be a nonempty set. Also let r1, r2 be positive real numbers with r1 ≤ r2.
Remember that

ℓr1(X, k) ⊆ ℓr2(X, k),(49.1)

with
∥f∥r2 ≤ ∥f∥r1(49.2)

for every f ∈ ℓr1(X, k), as in Section 39. If T is a bounded linear mapping from
ℓr2(X, k) into c0(X, k), then it follows that the restriction of T to ℓr1(X, k) is a
bounded linear mapping from ℓr1(X, k) into c0(X, k). We also have that

∥T∥op,r1 ∞ ≤ ∥T∥op,r2 ∞,(49.3)

using the notation in (47.2) for the corresponding operator norms, and where
the left side of (49.3) refers to the operator norm of the restriction of T to
ℓr1(X, k). The mapping from T to its restriction to ℓr1(X, k) defines a natural
bounded linear mapping from

BL(ℓr2(X, k), c0(X, k))(49.4)

into
BL(ℓr1(X, k), c0(X, k))(49.5)

with respect to the corresponding operator norms. It is easy to see that this
mapping is continuous with respect to the corresponding strong operator topolo-
gies as well.

Let τr,∞ be the topology determined on ℓ∞(X, k) by (48.3) for each positive
real number r, as in the previous section. Of course, (49.1) implies that

{Nf : f ∈ ℓr1(X, k)} ⊆ {Nf : f ∈ ℓr2(X, k)},(49.6)

where Nf is as in (48.1). It follows that

τr1,∞ ⊆ τr2,∞,(49.7)

so that τr2,∞ is at least as strong as τr1,∞. Remember that τr,∞ corresponds to
the strong operator topology on (47.1) via the mapping from a ∈ ℓ∞(X, k) to the
corresponding multiplication operator Ma. Thus (49.7) could also be obtained
from the continuity of the natural mapping from (49.4) into (49.5) with respect
to the corresponding strong operator topologies, as in the preceding paragraph.

Let r be a positive real number again, and let E be a subset of ℓ∞(X, k).
Remember that τr,∞ is at least as strong as the topology induced on ℓ∞(X, k) by
the one defined on c(X, k) in Section 34, as in the previous section. This implies
that the topology induced on E by τr,∞ is at least as strong as the topology
induced on E by the one defined on c(X, k) in Section 34. If the elements of E
have bounded supremum norm, then one can check that the topology induced
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on E by τr,∞ is the same as the topology induced on E by the one defined on
c(X, k) in Section 34. This is analogous to earlier statements for τr and τ∞, and
in fact the present version could be derived from either of the earlier statements
using (48.5) or (48.9).

Let E be any subset of ℓ∞(X, k) again, and let

E = {Ma : a ∈ E}(49.8)

be the collection of multiplication operators Ma corresponding to elements of
E, considered as bounded linear mappings from ℓr(X, k) into c0(X, k). Put

Ef = {Ma(f) : a ∈ E} = {a f : a ∈ E}(49.9)

for each f ∈ ℓr(X, k), as in (28.1). If the elements of E have bounded supre-
mum norm, then the elements of E have bounded operator norm, and in partic-
ular the elements of Ef have bounded supremum norm for every f ∈ ℓr(X, k).
Conversely, if the elements of Ef have bounded supremum norm for every
f ∈ ℓr(X, k), then the elements of E have bounded supremum norm. This
is analogous to the corresponding statements considered in Sections 38 and 40.

50 Some additional properties, continued

Let k be a field with a qk-absolute value function | · | for some qk > 0, and
let X be a nonempty set. If g is a nonnegative real-valued function on X that
vanishes at infinity, then we put

Ñg(a) = sup
x∈X

(|a(x)| g(x))(50.1)

for every a ∈ ℓ∞(X, k), as in (43.1). This defines a qk-seminorm on ℓ∞(X, k),
as in Section 43. If f is a k-valued function on X that vanishes at infinity and

g(x) = |f(x)|(50.2)

for each x ∈ X, then g(x) vanishes at infinity on X too, and we have that

Nf (a) = Ñg(a)(50.3)

for every a ∈ ℓ∞(X, k), as in (43.6), where Nf (a) is as in (48.1). As in Section
44, τ∞ may be defined equivalently as the topology on ℓ∞(X, k) determined by
the collection (43.4) of qk-seminorms of the form (50.1), where g vanishes at
infinity on X.

Let r be a positive real number, and consider the collection

{Ñg : g is a nonnegative real-valued r-summable function on X}(50.4)

of qk-seminorms on ℓ∞(X, k). If f is an r-summable k-valued function on X,
then (50.2) defines an nonnegative real-valued r-summable on X, so that (48.3)
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is contained in (50.4), by (50.3). Thus the topology determined on ℓ∞(X, k) is
at least as strong as the topology τr,∞ determined on ℓ∞(X, k) by (48.3). One
can check that these two topologies on ℓ∞(X, k) are the same, using the same
type of argument as in Section 43. More precisely, if | · | is nontrivial on k,
and if g is any nonnegative real-valued function on X, then there is a k-valued
function f on X whose absolute value approximates g in the sense of (43.7). In
particular, if g is r-summable on X, then f is r-summable on X as well. In
this case, one can check that τr,∞ is the same as the topology determined on
ℓ∞(X, k) by (50.4), using the previous statement and (43.8). Otherwise, if | · | is
the trivial absolute value function on k, then one can check more directly that
τr,∞ is the same as the topology determined on ℓ∞(X, k) by (50.4), as before.

Let r1, r2, r3 be positive real numbers such that

1

r3
=

1

r1
+

1

r2
.(50.5)

If g1, g2 are nonnegative real-valued functions on X that are r1, r2-summable,
respectively, then it is well known that their product g1 g2 is r3-summable on
X, with( ∑

x∈X

(g1(x) g2(x))
r3
)1/r3

≤
( ∑

x∈X

g1(x)
r1
)1/r1 ( ∑

x∈X

g2(x)
r2
)1/r2

.(50.6)

This is basically Hölder’s inequality for sums, which is normally stated with
r3 = 1, and one can easily reduce to that case. If f1, f2 are k-valued functions
on X that are r1, r2-summable on X, respectively, then it follows that their
product f1 f2 is r3-summable on X. Now let g be a nonnegative real-valued
r3-summable function on X, and put

g1(x) = g(x)r3/r1 , g2(x) = g(x)r3/r2(50.7)

for each x ∈ X. It is easy to see that g1 is r1-summable on X, g2 is r2-summable
on X, and

g(x) = g1(x) g2(x)(50.8)

for every x ∈ X. Consider the mapping from ℓ∞(X, k)×ℓ∞(X, k) into ℓ∞(X, k)
defined by pointwise multiplication of functions. Let us take the domain of this
mapping to be equipped with the product topology associated to τr1,∞ and
τr2,∞ on the two factors, and let us take the range to be equipped with τr3,∞.
One can check that this mapping is continuous under these conditions, using
(45.2) with g1, g2 as in (50.7).

Let r be a positive real number again, and let g be a nonnegative real-
valued r-summable function on X. As in Section 44, g can be expressed as
the product of two nonnegative real-valued functions on X, where one of the
functions vanishes at infinity, and the other is r-summable. More precisely, this
was discussed before with r = 1, and it is easy to reduce to that case. Let us
now consider multiplication of functions as a mapping from ℓ∞(X, k)×ℓ∞(X, k)
into ℓ∞(X, k) again. Let us take the domain of this mapping to be equipped
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with the product topology associated to τ∞ on one factor and τr,∞ on the other
factor, and let us take the range to be equipped with τr,∞. As before, one
can check that this mapping is continuous under these conditions, using (45.2)
with g1, g2 in the factorization of g just mentioned. This is the same type of
continuity property of multiplication on ℓ∞(X, k) as in the preceding paragraph,
with r2 = r3 = r and τ∞ in place of τr1,∞. Of course, it would be easier to use
the topology on ℓ∞(X, k) determined by the supremum metric instead of τ∞.

51 From ℓr1(X, k) into ℓr2(X, k)

Let k be a field with a qk-absolute value function | · | for some qk > 0, and let
X be a nonempty set. Also let r1 and r2 be positive real numbers, and consider
the space

BL(ℓr1(X, k), ℓr2(X, k))(51.1)

of bounded linear mappings from ℓr1(X, k) into ℓr2(X, k). If T is such a bounded
linear mapping, then we let

∥T∥op,r1 r2(51.2)

be the corresponding operator norm, with respect to the appropriate ℓr norms on
the domain and range. More precisely, this is a qk or r2-norm on (51.1), because
of the corresponding property of the ℓr2 norm, as in Section 39. Of course,
the analogue of (51.1) with c0(X, k) instead of ℓr2(X, k) has been discussed in
Sections 47 and 49.

Let r3 be another positive real number, with r2 ≤ r3. Thus

ℓr2(X, k) ⊆ ℓr3(X, k),(51.3)

and
∥f∥r3 ≤ ∥f∥r2(51.4)

for every f ∈ ℓr2(X, k), as in Section 39. This leads to a natural inclusion of
(51.1) into

BL(ℓr1(X, k), ℓr3(X, k)).(51.5)

More precisely, if T is a bounded linear mapping from ℓr1(X, k) into ℓr2(X, k),
then T may be considered as a bounded linear mapping from ℓr1(X, k) into
ℓr3(X, k) as well, with

∥T∥op,r1 r3 ≤ ∥T∥op,r1 r2 ,(51.6)

by (51.4). The natural inclusion mapping from (51.1) into (51.5) is also contin-
uous with respect to the corresponding strong operator topologies, because of
(51.4).

Similarly,
ℓr2(X, k) ⊆ c0(X, k),(51.7)

and
∥f∥∞ ≤ ∥f∥r2(51.8)
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for every f ∈ ℓr2(X, k), as in Section 39. This leads to a natural inclusion of
(51.1) into

BL(ℓr1(X, k), c0(X, k)).(51.9)

As before, if T is a bounded linear mapping from ℓr1(X, k) into ℓr2(X, k), then
T may be considered as a bounded linear mapping from ℓr1(X, k) into c0(X, k)
too, with

∥T∥op,r1 ∞ ≤ ∥T∥op,r1 r2 .(51.10)

The natural inclusion mapping from (51.1) into (51.9) is also continuous with
respect to the corresponding strong operator topologies. If r1 = r2, then this
reduces to part of the discussion in Section 47.

Now let r0 be a positive real number with r0 ≤ r1, so that

ℓr0(X, k) ⊆ ℓr1(X, k),(51.11)

and
∥f∥r1 ≤ ∥f∥r0(51.12)

for every f ∈ ℓr0(X, k). If T is a bounded linear mapping from ℓr1(X, k) into
ℓr2(X, k), then the restriction of T to ℓr0(X, k) is a bounded linear mapping
from ℓr0(X, k) into ℓr2(X, k), with

∥T∥op,r0 r2 ≤ ∥T∥op,r1 r2 ,(51.13)

by (51.12). More precisely, the left side of (51.13) refers to the operator norm
of the restriction of T to ℓr0(X, k). This defines a natural linear mapping from
(51.1) into

BL(ℓr0(X, k), ℓr2(X, k)).(51.14)

This mapping is also continuous with respect to the corresponding strong oper-
ator topologies, because of (51.12).

52 r1 ≤ r2

Let k be a field with a qk-absolute value function | · | for some qk > 0 again,
and let X be a nonempty set. Also let r1 and r2 be positive real numbers, and
suppose now that r1 ≤ r2. This implies that

ℓr1(X, k) ⊆ ℓr2(X, k),(52.1)

and that
∥f∥r2 ≤ ∥f∥r1(52.2)

for every f ∈ ℓr1(X, k), as in Section 39. If T is a bounded linear mapping from
ℓr1(X, k) into itself, then T may be considered as a bounded linear mapping
from ℓr1(X, k) into ℓr2(X, k) as well, with

∥T∥op,r1 r2 ≤ ∥T∥op,r1 r1 ,(52.3)
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as in the previous section. Similarly, if T is a bounded linear mapping from
ℓr2(X, k) into itself, then the restriction of T to ℓr1(X, k) is a bounded linear
mapping from ℓr1(X, k) into ℓr2(X, k), with

∥T∥op,r1 r2 ≤ ∥T∥op,r2 r2 .(52.4)

As usual, the left side of (52.4) refers to the operator norm of the restriction of
T to ℓr1(X, k). Thus we get natural linear mappings from BL(ℓr1(X, k)) and
BL(ℓr2(X, k)) into (51.1), as before. These mappings are also continuous with
respect to the corresponding strong operator topologies.

Let a be a bounded k-valued function on X, and let us now consider the
corresponding multiplication operator Ma as a bounded linear mapping from
ℓr1(X, k) into ℓr2(X, k). Let us check that

∥Ma∥op,r1 r2 = ∥a∥∞(52.5)

under these conditions. The fact that Ma defines a bounded linear mapping
from ℓr1(X, k) into ℓr2(X, k) with operator norm less than or equal to ∥a∥∞
can be verified directly from the definitions, using (52.2). This can also be
considered as an instance of (52.3) or (52.4), using the analogous statement for
multiplication by a as a bounded linear mapping from ℓr1(X, k) or ℓr2(X, k)
into itself. The opposite inequality can be obtained from (35.3), as usual.

As in Section 40,
Nf,r2(a) = ∥a f∥r2(52.6)

defines a qk or r2-seminorm on ℓ∞(X, k) as a function of a for every f in
ℓr2(X, k). In particular, this holds for every f ∈ ℓr1(X, k), because of (52.1).
Let

τr1,r2(52.7)

be the topology determined on ℓ∞(X, k) by

{Nf,r2 : f ∈ ℓr1(X, k)},(52.8)

as in Section 4. By construction, a 7→ Ma is a homeomorphism from ℓ∞(X, k)
onto its image in (51.1), with respect to τr1,r2 on ℓ∞(X, k), and the topology
induced on the image by the strong operator topology. Note that

τr = τr,r(52.9)

for every positive real number r, where τr is as defined in Section 42.
If r3 is a positive real number with r2 ≤ r3, then

Nf,r3(a) ≤ Nf,r2(a)(52.10)

for every a ∈ ℓ∞(X, k) and f ∈ ℓr2(X, k), by (51.4). This implies that

τr1,r3 ⊆ τr1,r2(52.11)
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when r2 ≤ r3, so that τr1,r2 is at least as strong as τr1,r2 . This could also
be derived from the continuity of the natural mapping from (51.1) into (51.5)
with respect to the corresponding strong operator topologies, as in the previous
section.

Remember that
Nf (a) = ∥a f∥∞(52.12)

defines a qk-seminorm on ℓ∞(X, k) as a function of a for every f ∈ c0(X, k), as
in Section 37. Moreover,

Nf (a) ≤ Nf,r2(a)(52.13)

for every a ∈ ℓ∞(X, k) and f ∈ ℓr2(X, k), by (51.8). This implies that

τr1,∞ ⊆ τr1,r2 ,(52.14)

where τr1,∞ is as defined in Section 48. This could also be obtained from the
continuity of the natural mapping from (51.1) into (51.9) with respect to the
corresponding strong operator topologies, as before.

Let r0 be a positive real number with r0 ≤ r1. Observe that

{Nf,r2 : f ∈ ℓr0(X, k)} ⊆ {Nf,r2 : f ∈ ℓr1(X, k)},(52.15)

by (51.11). This implies that

τr0,r2 ⊆ τr1,r2 ,(52.16)

so that τr1,r2 is at least as strong as τr0,r2 . As before, this could also be derived
from the continuity of the natural mapping from (51.1) into (51.14) with respect
to the corresponding strong operator topologies.

Note that
τr1,r2 ⊆ τr1,r1 = τr1 .(52.17)

This follows from (52.9) and (52.11), with suitable substitutions. Similarly,

τr1,r2 ⊆ τr2,r2 = τr2 ,(52.18)

by (52.9) and (52.16), with suitable substitutions again. These inclusions could
also be obtained from the continuity of the natural mappings from BL(ℓr1(X, k))
and BL(ℓr2(X, k)) into (51.1) with respect to the corresponding strong operator
topologies, as mentioned at the beginning of the section.

53 r1 ≤ r2, continued

Let us continue with the same notation and hypotheses as in the previous sec-
tion. If h is a nonnegative real-valued summable function on X, then we put

Ñh,r2(a) =
( ∑

x∈X

|a(x)|r2 h(x)
)1/r2

(53.1)

76



for every a ∈ ℓ∞(X, k), as in (41.1). This defines a qk or r2-seminorm on
ℓ∞(X, k), as in Section 41. If f ∈ ℓr2(X, k), then

h(x) = |f(x)|r2(53.2)

is summable on X, and
Ñh,r2(a) = Nf,r2(a)(53.3)

for every a ∈ ℓ∞(X, k). Here Nf,r2(a) is as in (52.6), and (53.3) is the same as
(41.5). Of course, if h is r-summable on X for some r ∈ (0, 1], then h summable
on X, as in Section 39. Similarly, if f ∈ ℓr1(X, k), then f ∈ ℓr2(X, k), because
r1 ≤ r2, as before. In this case, (53.2) is (r1/r2)-summable on X, and r1/r2 ≤ 1.

As in Section 4, the collection

{Ñh,r2 : h is a nonnegative real-valued(53.4)

(r1/r2)-summable function on X}

of qk or r2-seminorms on ℓ∞(X, k) determines a topology on ℓ∞(X, k). Observe
that (52.8) is contained in (53.4), by (53.3) and the remarks in the preceding
paragraph. This implies that the topology determined on ℓ∞(X, k) by (53.4)
is at least as strong as the topology τr1,r2 determined on ℓ∞(X, k) by (52.8).
One can check that these two topologies are actually the same, as in Section 41.
More precisely, if | · | is not the trivial absolute value function on k, then one
can approximate any nonnegative real-valued function on X by the r2th power
of the absolute value of a k-valued function on X, as in (41.7). This permits
one to estimate elements of (53.4) in terms of elements of (52.8), as in (41.8).
Otherwise, if | · | is the trivial absolute value function on k, then one can also
verify that the topologies are the same, as before.

Let r0 be a positive real number with r0 ≤ r1, so that

r0/r2 ≤ r1/r2.(53.5)

If h is a nonnegative real-valued function on X that is (r0/r1)-summable, then it
follows that h is (r1/r2)-summable on X as well, as in Section 39. This implies
that

{Ñh,r2 : h is a nonnegative real-valued(53.6)

(r0/r1)-summable function on X}

is contained in (53.4). This is analogous to (52.15), and gives another way to
look at (52.16).

If r is any positive real number, then τr,r is the same as the topology τr
defined on ℓ∞(X, k) in Section 42, as in (52.9). In this case, the characterization
of this topology using (53.4) reduces to the description of τr in terms of (41.3),
as in Section 42 again. Let us suppose from now on in this section that

r1 < r2.(53.7)
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Let h be a nonnegative real-valued (r1/r2)-summable function on X, and
put

g(x) = h(x)(r2−r1)/r
2
2(53.8)

for each x ∈ X. The exponent has been chosen so that

g(x)r2 h(x)r1/r2 = h(x)(53.9)

for every x ∈ X. Thus

Ñh,r2(a) =
( ∑

x∈X

|a(x)|r2 g(x)r2 h(x)r1/r2
)1/r2

(53.10)

for every a ∈ ℓ∞(X, k).
Note that

g(x)(r1 r2)/(r2−r1) = h(x)r1/r2(53.11)

for every x ∈ X, so that g is (r1 r2)/(r2 − r1)-summable on X. Put

Ñg(a) = sup
x∈X

(|a(x)| g(x))(53.12)

for every a ∈ ℓ∞(X, k), as in (43.1). It is easy to see that

Ñh,r2(a) ≤
( ∑

x∈X

h(x)r1/r2
)1/r2

Ñg(a)(53.13)

for every a ∈ ℓ∞(X, k), using (53.10). Remember that τr,∞ is the topology
defined on ℓ∞(X, k) in Section 48 for each r > 0, which can also be characterized
by (50.4). It is easy to see that

τr1,r2 ⊆ τr,∞ with r = (r1 r2)/(r2 − r1),(53.14)

using (53.13) and the characterization of τr1,r2 in terms of (53.4).
Let r3 be a real number with r2 ≤ r3, and observe that

Ñh,r2(a)(53.15)

≤
( ∑

x∈X

h(x)r1/r2
)1/r2−1/r3 ( ∑

x∈X

|a(x)|r3 g(x)r3 h(x)r1/r2
)1/r3

for every a ∈ ℓ∞(X, k). This is basically the same as (42.2), using (53.10), and
with suitable substitutions. If we put

h′(x) = g(x)r3 h(x)r1/r2(53.16)

for each x ∈ X, then (53.15) can be reexpressed as saying that

Ñh,r2(a) ≤
( ∑

x∈X

h(x)r1/r2
)1/r2−1/r3

Ñh′,r3(a)(53.17)
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for every a ∈ ℓ∞(X, k), where Ñh′,r3(a) is defined as in (53.1).
Using the definition (53.8) of g, we get that

h′(x) = h(x)r
′
,(53.18)

where
r′ = (r2 − r1) r3/r

2
2 + r1/r2,(53.19)

It follows that h′ is (r1/(r2 r
′))-summable on X, because h is (r1/r2)-summable

on X, by hypothesis. Put

r′1 = (r1/(r2 r
′)) r3,(53.20)

so that r′1/r3 = r1/(r2 r
′), and hence h′ is (r′1/r3)-summable on X. Thus (53.17)

implies that
τr1,r2 ⊆ τr′1,r3 ,(53.21)

using the characterization of τr1,r2 in terms of (53.4), and similarly for τr′1,r3 .
Note that

r2 r
′/r3 = (r2 − r1)/r2 + r1/r3,(53.22)

which gives another way to look at (53.20).

54 Another perspective

Let k be a field with a qk-absolute value function | · | for some qk > 0, and
let X be a nonempty set. Also let r be a positive real number, and let g, h
be nonnegative real-valued functions on X, with g bounded and h summable.
Thus

g(x)r h(x)(54.1)

is summable on X too, and we put

Ñg,h,r(a) =
( ∑

x∈X

|a(x)|r g(x)r h(x)
)1/r

(54.2)

for every a ∈ ℓ∞(X, k). This is the same as Ñgr h,r(a) in the notation of (41.1)

and (53.1). In particular, Ñg,h,r defines a qk or r-seminorm on ℓ∞(X, k), as in
Section 41.

Clearly

Ñg,h,r(a) ≤
(
sup
x∈X

(|a(x)| g(x))
)( ∑

x∈X

h(x)
)1/r

(54.3)

for every a ∈ ℓ∞(X, k). This is the same as saying that

Ñg,h,r(a) ≤
( ∑

x∈X

h(x)
)1/r

Ñg(a)(54.4)
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for every a ∈ ℓ∞(X, k), where Ñg(a) is as in (53.12). If r1, r2 are positive real
numbers with r1 ≤ r2, then we have that

Ñg,h,r1(a) ≤
( ∑

x∈X

h(x)
)1/r1−1/r2

Ñg,h,r2(a)(54.5)

for every a ∈ ℓ∞(X, k). This follows from (42.2), with suitable substitutions.
Suppose that g is ρ-summable on X for some positive real number ρ, so that

g(x)r is (ρ/r)-summable on X. If ρ0 is the positive real number that satisfies

1

ρ0
=

r

ρ
+ 1,(54.6)

then (54.1) is ρ0-summable on X, by Hölder’s inequality. Note that ρ0 < 1,
because r, ρ > 0.

Now let ρ0 be any positive real number strictly less than 1, and let ρ be the
positive real number that satisfies (54.6), with r given as before. Let h0 be a
nonnegative real-valued ρ0-summable function on X, so that

h(x) = h0(x)
ρ0(54.7)

defines a summable function on X. If we put

g(x) = h0(x)
(1−ρ0)/r(54.8)

for each x ∈ X, then h0(x) is equal to (54.1) for every x ∈ X, by construction.
One can also verify that g is ρ-summable on X under these conditions, using
(54.6) and the ρ0-summability of h0 on X.

Let ρ be a positive real number again, and let

τ ′ρ,r(54.9)

be the topology determined on ℓ∞(X, k) by

{Ñg,h,r : g, h are nonnegative real-valued functions on X,(54.10)

g is ρ-summable on X, and h is summable on X},

as in Section 4. If ρ1, ρ2 are positive real numbers with ρ1 ≤ ρ2, then it is easy
to see that

τ ′ρ1,r ⊆ τ ′ρ2,r.(54.11)

This uses the fact that if g is ρ1-summable on X, then g is ρ2-summable on X,
as in Section 39. Similarly, if r1, r2 are positive real numbers with r1 ≤ r2, then
we have that

τ ′ρ,r1 ⊆ τ ′ρ,r2(54.12)

for every ρ > 0, because of (54.5).
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Let τr,∞ be the topology defined on ℓ∞(X, k) for each positive real number
r as in Section 48. This is the same as the topology determined on ℓ∞(X, k) by
(50.4), as in Section 50. It is easy to see that

τ ′ρ,r ⊆ τρ,∞(54.13)

for every ρ, r > 0, using (54.4).
Let τr1.r2 be the topology defined on ℓ∞(X, k) as in Section 52 for positive

real numbers r1, r2 with r1 ≤ r2. This topology can be described equivalently
by (53.4), as in the previous section. Suppose that r1 < r2, and put

ρ0 = r1/r2 < 1.(54.14)

Let ρ > 0 be as in (54.6), with r = r2, and this choice of ρ0. Under these
conditions, one can check that

τr1,r2 − τ ′ρ,r2 ,(54.15)

where τ ′ρ,r2 is as defined earlier. More precisely, (53.4) is basically the same as
(54.10) in this situation. This is because (54.1) is ρ0-summable on X when g is
ρ-summable and h is summable, and every nonnegative real-valued ρ0-summable
function on X is of this form, as before.

Of course, we can also start with positive real numbers ρ, r, and let ρ0 be
as in (54.6), so that 0 < ρ0 < 1. If we put

r1 = ρ0 r and r2 = r,(54.16)

then we have that 0 < r1 = ρ0 r2 < r2 and ρ0 = r1/r2, and (54.15) holds, as
before.
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