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Abstract

In these notes, some basic classes of examples of vector spaces over
fields with absolute value functions are considered.
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Part I

Basic notions and examples

1 k-Valued functions

Let k be a field, and let X be a nonempty set. Consider the space c(X, k) of
k-valued functions on k. This is a vector space over k with respect to pointwise
addition and scalar multiplication. More precisely, c(X, k) is also a commutative
algebra with respect to pointwise multiplication of functions. Later we shall
consider absolute value functions on k, and related topologies on c(X, k). Let

1X(1.1)

be the function on X equal to the multiplicative identity element 1 in k at every
point. This is the multiplicative identity element in c(X, k).
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The support of a k-valued function f on X is defined as usual by

supp f = {x ∈ X : f(x) ̸= 0}.(1.2)

Let c00(X, k) be the space of k-valued functions f on X such that supp f has
only finitely many elements. This is a linear subspace of c(X, k), and in fact an
ideal in c(X, k) as a commutative algebra. We shall consider some topologies
on c00(X, k) later as well. Of course, if X has only finitely many elements,
then c00(X, k) is the same as c(X, k). If y ∈ X, then we let δy be the k-valued
function on X defined by

δy(x) = 1 when x = y(1.3)

= 0 when x ̸= y.

Thus δy ∈ c00(X, k) for each y ∈ X, and

{δy : y ∈ X}(1.4)

is a basis for c00(X, k) as a vector space over k.
If f ∈ c00(X, k), then ∑

x∈k

f(x)(1.5)

may be defined as an element of k, by reducing to the sum over any finite subset
of X that contains the support of f . Of course,

f 7→
∑
x∈X

f(x)(1.6)

defines a linear mapping from c00(X, k) into k, which is to say a linear functional
on c00(X, k). Similarly, if a is any k-valued function on X, then

f 7→
∑
x∈X

a(x) f(x)(1.7)

defines a linear functional on c00(X, k). It is easy to see that every linear
functional on c00(X, k) is of this form, using the basis (1.4). If a has finite
support in X, then (1.7) also defines a linear functional on c(X, k).

If a is any k-valued function on X again, then

Ma(f) = a f(1.8)

defines a linear mapping from c(X, k) into itself, which is the multiplication
operator associated to a. Note that this operator also maps c00(X, k) into itself.
In particular,

Ma(δy) = a(y) δy(1.9)

for every y ∈ X. Similarly, if a has finite support in X, then Ma maps c(X, k)
into c00(X, k). We shall consider continuity properties of these and other linear
mappings later too.
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2 Some inequalities

Let X be a nonempty set again, and let f be a nonnegative real-valued function
on X with finite support. Put

∥f∥r =
( ∑

x∈X

f(x)r
)1/r

(2.1)

for every positive real number r, and

∥f∥∞ = max
x∈X

f(x).(2.2)

Observe that
∥f∥∞ ≤ ∥f∥r(2.3)

for every r > 0. If 0 < r1 ≤ r2 < ∞, then we have that

∥f∥r2r2 =
∑
x∈X

f(x)r2 ≤ ∥f∥r2−r1
∞

∑
x∈X

f(x)r1 ≤ ∥f∥r2−r1
r1 ∥f∥r1r1 = ∥f∥r2r1 ,(2.4)

using (2.3) with r replaced by r1 in the second inequality. This implies that

∥f∥r2 ≤ ∥f∥r1(2.5)

under these conditions. Note that

∥f∥r ≤ (# supp f)1/r ∥f∥∞(2.6)

for every r > 0, where # supp f is the number of elements in the support of f .
Combining this with (2.3), we get that

lim
r→∞

∥f∥r = ∥f∥∞,(2.7)

because a1/r → 1 as r → ∞ for every positive real number a.
If a, b are any two nonnegative real numbers, then

max(a, b) ≤ (ar + br)1/r(2.8)

for every r > 0, which is the same as (2.3) when supp f has at most two elements.
If 0 < r1 ≤ r2 < ∞, then

(ar2 + br2)1/r2 ≤ (ar1 + br1)1/r1(2.9)

for every a, b ≥ 0, which is the same as (2.5) when # supp f ≤ 2. In particular,

(a+ b)r ≤ ar + br(2.10)

for every a, b ≥ 0 when 0 < r ≤ 1, by taking r1 = r and r2 = 1 in (2.9). Observe
that

(ar + br)1/r ≤ 21/r max(a, b)(2.11)
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for every a, b ≥ 0 and r > 0, which corresponds to (2.6) when # supp f ≤ 2. It
follows that

lim
r→∞

(ar + br)1/r = max(a, b)(2.12)

for every a, b ≥ 0, as in (2.7).
Let g be another nonnegative real-valued function on X with finite support,

so that f + g is a nonnegative real-valued function on X with finite support as
well. It is well known that

∥f + g∥r ≤ ∥f∥r + ∥g∥r(2.13)

when 1 ≤ r ≤ ∞, by Minkowski’s inequality for sums. Of course, equality
holds trivially in (2.13) when r = 1, and it is easy to verify (2.13) directly when
r = ∞. If 0 < r ≤ 1, then we have that

∥f + g∥rr =
∑
x∈X

(f(x) + g(x))r ≤
∑
x∈X

f(x)r +
∑
x∈X

g(x)r = ∥f∥rr + ∥g∥rr,(2.14)

using (2.10) in the second step. If

(supp f) ∩ (supp g) = ∅,(2.15)

then

∥f + g∥rr =
∑
x∈X

(f(x) + g(x))r =
∑
x∈X

f(x)r +
∑
x∈X

g(x)r = ∥f∥rr + ∥g∥rr(2.16)

when 0 < r < ∞, and

∥f + g∥∞ = max(∥f∥∞, ∥g∥∞).(2.17)

Put
h(x) = max(f(x), g(x))(2.18)

for every x ∈ X, which defines another nonnegative real-valued function on X
with finite support. If r is any positive real number, then

h(x)r ≤ f(x)r + g(x)r(2.19)

for every x ∈ X, which is basically the same as (2.8). It follows that

∥h∥rr =
∑
x∈X

h(x)r ≤
∑
x∈X

f(x)r +
∑
x∈X

g(x)r = ∥f∥rr + ∥g∥rr(2.20)

when 0 < r < ∞. Similarly, it is easy to see that

∥h∥∞ = max(∥f∥∞, ∥g∥∞).(2.21)

If f , g satisfy (2.15), then equality holds in (2.19) and (2.20), which basically
corresponds to (2.16).
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3 q-Semimetrics

Let X be a set, and let q be a positive real number. A nonnegative real-valued
function d(x, y) defined for x, y ∈ X is said to be a q-semimetric on X if it
satisfies the following three conditions. First,

d(x, x) = 0 for every x ∈ X.(3.1)

Second,
d(x, y) = d(y, x) for every x, y ∈ X.(3.2)

Third,
d(x, z)q ≤ d(x, y)q + d(y, z)q for every x, y, z ∈ X.(3.3)

If we also have that

d(x, y) > 0 for every x, y ∈ X with x ̸= y,(3.4)

then d(·, ·) is said to be a q-metric on X. If d(x, y) is a q-semimetric or a q-
metric on X with q = 1, then we may simply say that d(x, y) is a semimetric
or a metric on X, as appropriate.

Let d(x, y) be a nonnegative real-valued function defined for x, y ∈ X again.
Note that d(x, y) is a q-semimetric or a q-metric on X for some q > 0 if and
only if d(x, y)q is an ordinary semimetric or metric on X, respectively. Clearly
(3.3) holds if and only if

d(x, z) ≤ (d(x, y)q + d(y, z)q)1/q(3.5)

for every x, y, z ∈ X. The right side of (3.5) decreases monotonically in q, as
in (2.9). If 0 < q1 ≤ q2 < ∞ and d(x, y) is a q2-semimetric or q2-metric on
X, then it follows that d(x, y) is a q1-semimetric or q1-metric on X as well, as
appropriate.

If d(x, y) satisfies (3.1), (3.2), and

d(x, z) ≤ max(d(x, y), d(y, z)) for every x, y, z ∈ X,(3.6)

then d(x, y) is said to be a semi-ultrametric on X. If (3.4) holds too, then
d(x, y) is said to be an ultrametric on X. Observe that (3.6) implies (3.5) for
every q > 0, by (2.8), so that a semi-ultrametric or an ultrametric on X is a
q-semimetric or q-metric on X for every q > 0, as appropriate. We shall often
consider semi-ultrametrics and ultrametrics on X to be q-semimetrics and q-
metrics on X with q = ∞, respectively, because of (2.12). Remember that the
discrete metric is defined on any set X by putting d(x, y) equal to 1 when x ̸= y
and to 0 when x = y, which is an ultrametric on X.

Let d(x, y) be a q-semimetric or q-metric on a set X for some q > 0. If a is
any positive real number, then it is easy to see that

d(x, y)a(3.7)

defines a (q/a)-semimetric or (q/a)-metric onX, as appropriate. This also works
when q = ∞, with q/a interpreted as being ∞ too. This means that if d(x, y)
is a semi-ultrametric or an ultrametric on X, then (3.7) has the same property
for every a > 0.
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4 q-Absolute value functions

Let k be a field, and let q be a positive real number. A nonnegative real-valued
function |x| defined on k is said to be a q-absolute value function on k if it
satisfies the following three conditions. First,

|x| = 0 if and only if x = 0.(4.1)

Second,
|x y| = |x| |y| for every x, y ∈ k.(4.2)

Third,
|x+ y|q ≤ |x|q + |y|q for every x, y ∈ k.(4.3)

If |x| is a q-absolute value function on k with q = 1, then |x| is also simply said
to be an absolute value function on k. Thus |x| is an absolute value function on
k for some q > 0 if and only if |x|q is an ordinary absolute value function on k.

As before, (4.3) is the same as saying that

|x+ y| ≤ (|x|q + |y|q)1/q(4.4)

for every x, y ∈ k. The right side of (4.4) decreases monotonically in q, by (2.9).
If 0 < q1 ≤ q2 < ∞ and |x| is a q2-absolute value function on k, then we get
that |x| is a q1-absolute value function on k as well. If a nonnegative real-valued
function |x| on k satisfies (4.1), (4.2), and

|x+ y| ≤ max(|x|, |y|) for every x, y ∈ k,(4.5)

then |x| is said to be an ultrametric absolute value function on k. If |x| is an
ultrametric absolute value function on k, then |x| is a q-absolute value function
on k for every q > 0, by (2.8), and we may consider |x| as a q-absolute value
function with q = ∞, because of (2.12).

The standard absolute value functions on the fields R of real numbers and C
of complex numbers are absolute value functions in this sense, and they are not
q-absolute value functions for any q > 1. The trivial absolute value function is
defined on any field k by putting |x| equal to 1 when x ̸= 0 and equal to 0 when
x = 0, and is an ultrametric absolute value function on k. If |x| is a q-absolute
value function on a field k for some q > 0, then it is easy to see that

|x|a(4.6)

defines a (q/a)-absolute value function on k for every positive real number a.
This also works when q = ∞, so that (4.6) is an ultrametric absolute value
function on k for every a > 0 when |x| is an ultrametric absolute value function
on k.

Let |x| be a nonnegative real-valued function on k that satisfies (4.1) and
(4.2). It is easy to see that |1| = 1, where the first 1 is the multiplicative identity
element in k, and the second 1 is the corresponding real number. This implies
that

|x| = 1(4.7)
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for every x ∈ k such that xn = 1 for some positive integer n, and in particular
when x = −1. If |x| is a q-absolute value function on k for some q, 0 < q ≤ ∞,
then it follows that

d(x, y) = |x− y|(4.8)

is a q-metric on k. Note that (4.8) is the standard Euclidean metric on R or C
when |x| is the standard absolute value function, and that (4.8) is the discrete
metric on a field k when |x| is the trivial absolute value function on k.

5 q-Seminorms

Let k be a field, and let V be a vector space over k. Also let | · | be a qk-absolute
value function on k for some qk > 0. A nonnegative real-valued function N on
V is said to be a q-seminorm on V for some positive real number q with respect
to | · | on k if N satisfies the following two conditions. First,

N(t v) = |t|N(v) for every t ∈ k and v ∈ V.(5.1)

Second,
N(v + w)q ≤ N(v)q +N(w)q for every v, w ∈ V.(5.2)

Note that (5.1) implies that N(0) = 0. If we also have that

N(v) > 0 for every v ∈ V with v ̸= 0,(5.3)

then N is said to be a q-norm on V . If N is a q-seminorm or a q-norm on V
with q = 1, then we may simply say that N is a seminorm or a norm on V , as
appropriate.

As usual, (5.2) is the same as saying that

N(v + w) ≤ (N(v)q +N(w)q)1/q(5.4)

for every v, w ∈ V . The right side of (5.4) is monotonically decreasing in q, by
(2.9). If 0 < q1 ≤ q2 < ∞ and N is a q2-seminorm or a q2-norm on V , then it
follows that N is also a q1-seminorm or a q1-norm on V , as appropriate. If a
nonnegative real-valued function N on V satisfies (5.1) and

N(v + w) ≤ max(N(v), N(w)) for every v, w ∈ V,(5.5)

then N is said to be a semi-ultranorm on V with respect to | · | on k. If N
satisfies (5.3) as well, then N is said to be an ultranorm on V with respect to
| · | on k. If N is a semi-ultranorm or an ultranorm on V , then it is easy to see
that N is a q-seminorm or a q-norm on V for every q > 0, as appropriate, using
(2.8). We shall consider semi-ultranorms and ultranorms as q-seminorms and
q-norms with q = ∞, respectively, because of (2.12). If N is a q-seminorm or
q-norm on V for some q > 0, then

d(v, w) = dN (v, w) = N(v − w)(5.6)
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defines a q-semimetric or q-metric on V , as appropriate.
Suppose that N is a q-seminorm on V with respect to | · | on k for some

q > 0, and that there is a v ∈ V such that N(v) > 0. If q < ∞, then one can
use (5.1) and (5.2) to get that | · | satisfies (4.3) on k. Similarly, if q = ∞, then
one can use (5.1) and (5.5) to get that | · | satisfies (4.5) on k. In both cases,
we get that | · | is a q-absolute value function on k under these conditions. This
means that we should normally have q ≤ qk, unless N is identically equal to 0
on V , or we can replace qk with a larger value.

Let a be a positive real number, so that |t|a is a qk/a-absolute value function
on k, as in the previous section. If N is a nonnegative real-valued function on
V that satisfies (5.1) with respect to | · | on k, then

N(v)a(5.7)

satisfies the analogous condition with respect to |t|a on k. If N is a q-seminorm
or a q-norm on V with respect to |t| on k for some q > 0, then one can check
that (5.7) is a (q/a)-seminorm or a (q/a)-norm on V with respect to |t|a on k,
as appropriate.

6 Some examples

Let k be a field, and let V be a vector space over k. The trivial ultranorm on V
is defined by putting N(v) equal to 1 when v ̸= 0 and equal to 0 when v = 0. It
is easy to see that this is an ultranorm on V with respect to the trivial absolute
value function on k, for which the corresponding ultrametric on V as in (5.6) is
the discrete metric.

Now let | · | be a qk-absolute value function on k for some qk > 0, and let X
be a nonempty set. Also let c(X, k) be the vector space of k-valued functions
on X, as in Section 1. If x ∈ X, then

Nx(f) = |f(x)|(6.1)

defines a qk-seminorm on c(X, k) with respect to | · | on k.
Let c00(X, k) be the linear subspace of c(X, k) consisting of functions with

finite support, as in Section 1 again. Put

∥f∥∞ = max
x∈X

|f(x)|(6.2)

for each f ∈ c00(X, k). It is not difficult to check that this defines a qk-norm on
c00(X, k) with respect to | · | on k. Note that (6.2) is the same as (2.2) applied
to |f(x)| as a nonnegative real-valued function on X with finite support. If | · |
is the trivial absolute value function on k, then (6.2) is the trivial ultranorm on
c00(X, k).

Let r be a positive real number, and put

∥f∥r =
( ∑

x∈X

|f(x)|r
)1/r

(6.3)
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for every f ∈ c00(X, k). This is the same as (2.1) applied to |f(x)| as a nonneg-
ative real-valued function on X with finite support. It is easy to see that

∥t f∥r = |t| ∥f∥r(6.4)

for every t ∈ k and f ∈ c00(X, k). If qk ≤ r, then one can check that (6.3) defines
a qk-norm on c00(X, k) with respect to | · | on k, using Minkowski’s inequality for
sums. More precisely, this uses (2.13) with r replaced by r/qk ≥ 1. Similarly,
if r ≤ qk, then (6.3) defines an r-norm on c00(X, k) with respect to | · | on k.
In this case, | · | may be considered as an r-absolute value function on k, as
in Section 4. This permits the r-norm version of the triangle inequality to be
obtained directly from the definitions.

7 q-Subadditivity

Let k be a field, and let V be a vector space over k. Also let N be a nonnegative
real-valued function on V , and let q be a positive real number. We say that N
is q-subadditive on V if

N(v + w)q ≤ N(v)q +N(w)q(7.1)

for every v, w ∈ V . We may also simply say that N is subadditive on V when
this holds with q = 1. As usual, (7.1) is equivalent to asking that

N(v + w) ≤ (N(v)q +N(w)q)1/q(7.2)

for every v, w ∈ V . Similarly, let us say that N is q-subadditive on V with
q = ∞ if

N(v + w) ≤ max(N(v), N(w))(7.3)

for every v, w ∈ V . If 0 < q1 ≤ q2 ≤ ∞ and N is q2-subadditive on V , then it
is easy to see that N is q1-subadditive on V as well, using (2.8) and (2.9). If N
is q-subadditive on V for some q > 0 and a is a positive real number, then

N(v)a(7.4)

is (q/a)-subadditive on V .
Let us say that N is symmetric on V if

N(−v) = N(v)(7.5)

for every v ∈ V . If N is symmetric and q-subadditive on V for some q > 0, and
if N(0) = 0, then

d(v, w) = dN (v, w) = N(v − w)(7.6)

defines a q-semimetric on V . This q-semimetric is automatically invariant under
translations on V , in the sense that

d(v + u,w + u) = d(v, w)(7.7)
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for every u, v, w ∈ V . Similarly,

d(−v,−w) = d(v, w)(7.8)

for every v, w ∈ V . Of course, if N(v) > 0 for every v ∈ V with v ̸= 0, then
(7.6) is a q-metric on V .

Suppose now that | · | is a qk-absolute value function on k for some qk > 0.
Let us say that N is balanced on V if

N(t v) ≤ N(v)(7.9)

for every v ∈ V and t ∈ k with |t| ≤ 1. If |t| = 1, then the previous condition
can be applied to t and to 1/t, to get that

N(t v) = N(v)(7.10)

for every v ∈ V . In particular, this implies that N is symmetric on V . If N
satisfies the homogeneity condition (5.1), then it is easy to see thatN is balanced
on V . If | · | is the trivial absolute value function on k, then the homogeneity
condition (5.1) is the same as (7.10) and the condition that N(0) = 0. Note
that the balanced property is preserved by taking positive powers of N on V ,
as well as taking positive powers of | · | on k.

8 Open and closed balls

Let X be a set, and let d(x, y) be a q-semimetric on X for some q > 0. The
open ball in X centered at a point x with radius r > 0 associated to d(·, ·) is
defined as usual by

B(x, r) = Bd(x, r) = {y ∈ X : d(x, y) < r}.(8.1)

Similarly, the closed ball in X centered at x ∈ X with radius r ≥ 0 associated
to d(·, ·) is defined by

B(x, r) = Bd(x, r) = {y ∈ X : d(x, y) ≤ r}.(8.2)

If a is a positive real number, then d(x, y)a defines a (q/a)-semimetric on X, as
in Section 3. It is easy to see that

Bda(x, ra) = Bd(x, r)(8.3)

for every x ∈ X and r > 0, and that

Bda(x, ra) = Bd(x, r)(8.4)

for every x ∈ X and r ≥ 0.
A subset U of X is said to be an open set with respect to d(·, ·) if for each

x ∈ U there is an r > 0 such that

Bd(x, r) ⊆ U.(8.5)
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It is easy to see that this defines a topology on X. Note that d(x, y)a determines
the same topology on X for each a > 0, because of (8.4). This permits one to
reduce to the case of ordinary semimetrics on X, by taking a = q when q < 1.
In particular, open balls in X with respect to d(·, ·) are open sets with respect
to this topology, as in the case of ordinary semimetrics. Similarly, closed balls in
X with respect to d(·, ·) are closed sets with respect to this topology. If d(x, y)
is a q-metric on X, then X is Hausdorff with respect to this topology.

Suppose for the moment that d(·, ·) is a semi-ultrametric on X. If x, y ∈ X
satisfy d(x, y) < r for some r > 0, then it is easy to see that

Bd(x, r) ⊆ Bd(y, r).(8.6)

This implies that
Bd(x, r) = Bd(y, r)(8.7)

under these conditions, by interchanging the roles of x and y. Similarly, if
x, y ∈ X satisfy d(x, y) ≤ r for some r ≥ 0, then one can verify that

Bd(x, r) = Bd(y, r).(8.8)

It follows that closed balls in X of positive radius are open sets with respect to
the topology determined by d(·, ·), and one can also check that open balls in X
are closed sets with respect to this topology in this situation.

Let k be a field, and let V be a vector space over k. Also let N be a
nonnegative real-valued function on V that is symmetric, q-subadditive for some
q > 0, and satisfies N(0) = 0. Thus (7.6) defines a q-semimetric on V , to which
the previous remarks can be applied. In this situation, we may also use the
notation

B(v, r) = BN (v, r) = {w ∈ V : N(v − w) < r}(8.9)

for v ∈ V and r > 0, in place of (8.1). Similarly, we may use the notation

B(v, r) = BN (v, r) = {w ∈ V : N(v − w) ≤ r}(8.10)

for v ∈ V and r ≥ 0, in place of (8.2).

9 Finitely many q-semimetrics

Let l be a positive integer, and for each j = 1, . . . , l, let dj(x, y) be a qj-
semimetric on X for some qj > 0. Put

q = min
1≤j≤l

qj > 0,(9.1)

and note that dj is a q-semimetric on X for each j, as in Section 3. One can
check that

d(x, y) = max
1≤j≤l

dj(x, y)(9.2)
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also defines a q-semimetric on X under these conditions. Observe that

Bd(x, r) =

l∩
j=1

Bdj
(x, r)(9.3)

for each x ∈ X and r > 0, where these open balls are as defined in (8.1).
Let V be a vector space over a field k, and let l be a positive integer again.

Suppose that for each j = 1, . . . , l, Nj is a nonnnegative real-valued function on
V which is qj-subadditive for some qj > 0. If q is defined as in (9.1), then Nj is
q-subadditive on V for each j, as in Section 7. As before, one can check that

N(v) = max
1≤j≤l

Nj(v)(9.4)

is also q-subadditive on V under these conditions. Of course, if Nj is symmetric
on V for each j, then N is symmetric too. If Nj(0) = 0 for each j, then
N(0) = 0. If Nj is symmetric and qj-subadditive on V , and if Nj(0) = 0, then

dj(v, w) = Nj(v − w)(9.5)

is a qj-semimetric on V , as in Section 7. If these conditions hold for each
j = 1, . . . , l, and d is defined on V as in (9.2), then we have that

d(v, w) = max
1≤j≤l

Nj(v − w) = N(v − w)(9.6)

for every v, w ∈ V . In this case, (9.3) is the same as saying that

BN (v, r) =

l∩
j=1

BNj
(v, r)(9.7)

for every v ∈ V and r > 0, using the notation in (8.9).
Let | · | be a qk-absolute value function on k for some qk > 0. If Nj is

balanced on V with respect to | · | on k for each j = 1, . . . , l, as in Section 7,
then N is balanced on V with respect to | · | on k too. Similarly, if Nj satisfies
the homogeneity condition (5.1) for each j, then N satisfies (5.1) as well. If Nj

is a qj-seminorm on V with respect to | · | on k for each j, then it follows that
N is a q-seminorm on V with respect to | · | on k, where q is as in (9.1).

Of course, one can take positive powers of qj-semimetrics or qj-subadditive
functions, to adjust finite values of qj . In the context of qj-seminorms, one
should take the same power of | · | on k. If | · | is nontrivial on k, then different
powers of | · | lead to different functions on k. Thus different powers of qj-
seminorms can satisfy different homogeneity conditions, so that their maximum
is no longer homogeneous. An advantage of the balanced property is that it is
preserved by taking positive powers, without changing | · | on k.
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10 Bounded q-semimetrics

Let X be a set, and let d(x, y) be a q-semimetric on X for some q > 0. Also let
t be a positive real number, and put

dt(x, y) = min(d(x, y), t)(10.1)

for each x, y ∈ X. It is easy to see that this is a q-semimetric on X as well. If
x ∈ X and r > 0, then

Bdt(x, r) = Bd(x, r)(10.2)

when r ≤ t, and
Bdt

(x, r) = X(10.3)

when r > t, where these open balls in X are defined as in (8.1). This implies
that the topology determined on X by dt(x, y) is the same as the one determined
by d(x, y).

Let V be a vector space over a field k, and let N be a nonnegative real-valued
function on V . Let t be a positive real number again too, and put

Nt(v) = min(N(v), t)(10.4)

for each v ∈ V . If N is q-subadditive on V for some q > 0, then Nt is also
q-subadditive on V . Of course, Nt is symmetric on V when N is symmetric
on V , and Nt(0) = 0 when N(0) = 0. Suppose that N has all three of these
properties, and let d(v, w) be the corresponding q-semimetric on V , as in (7.6).
If dt(v, w) is defined on V as in (10.1), then

dt(v, w) = min(N(v − w), t) = Nt(v − w)(10.5)

corresponds to Nt in the same way. Using the notation in (8.9), we have that

BNt
(v, r) = BN (v, r)(10.6)

for every v ∈ V when 0 < r ≤ t, and

BNt
(v, r) = V(10.7)

for every v ∈ V when r > t, as in (10.2) and (10.3).
Let | · | be a qk-absolute value function on k for some qk > 0. If N is balanced

on V with respect to | · | on k, then Nt is clearly balanced on V with respect to
| · | on k too. However, if | · | is not the trivial absolute value function on k, then
the only way that Nt can satisfy the homogeneity condition (5.1) is if N(v) = 0
for every v ∈ V .

11 Collections of q-semimetrics

Let X be a set, and let M be a nonempty collection of q-semimetrics on X.
More precisely, each d ∈ M should be a qd-semimetric on X for some qd > 0
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that may depend on d. Let us say that U ⊆ X is an open set with respect to M
if for each x ∈ U there are finitely many elements d1, . . . , dl of M and positive
real numbers r1, . . . , rl such that

l∩
j=1

Bdj
(x, rj) ⊆ U,(11.1)

where these open balls are defined as in (8.1). This defines a topology on X,
which contains the topologies associated to the elements of M. In particular,
open balls in X with respect to elements of M are open sets with respect to
M, and form a sub-base for this topology. Let us say that M is nondegenerate
on X if for each x, y ∈ X with x ̸= y there is a d ∈ M such that

d(x, y) > 0.(11.2)

This implies that X is Hausdorff with respect to the topology determined by
M.

Let k be a field, and let V be a vector space over k. Also letN be a nonempty
collection of nonnegative real-valued functions N on V that are symmetric on
V and satisfy N(0) = 0. Suppose that each N ∈ N is qN -subadditive for some
qN > 0. Thus each N ∈ N leads to a qN -semimetric dN on V as in (7.6). Put

M(N ) = {dN : N ∈ N}.(11.3)

This defines a nonempty collection of q-semimetrics on V , which leads to a
topology on V , as in the previous paragraph. Let us say thatN is nondegenerate
on V if for each v ∈ V with v ̸= 0 there is an N ∈ N such that

N(v) > 0,(11.4)

which implies that (11.3) is nondegenerate as a collection of q-semimetrics on
V . If k is equipped with a qk-absolute value function | · | for some qk > 0, then
we may ask that each N ∈ N be a qN -seminorm on V with respect to | · | on k
for some qN > 0.

As before, open balls in V with respect to elements of N form a sub-base
for the topology determined on V by (11.3). Similarly, consider the collection
of subsets of V of the form

l∩
j=1

BNj
(0, rj),(11.5)

where N1, . . . , Nl are finitely many elments of N , r1, . . . , rl are positive real
numbers, and BNj

(0, rj) is as in (8.9). This collection is a local base for the
topology on V determined by (11.3) at 0. Of course, one can get local bases for
the topology on V at other points in the same way, and there is an analogous
statement for topologies determined by arbitrary collections of q-semimetrics,
as discussed at the beginning of the section. Because the elements of (11.3) are
invariant under translations on V , one might as well focus on local bases for the
topology of V at 0 in this situation.
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As a basic class of examples, let X be a nonempty set, and let c(X, k) be
the space of k-valued functions on X, as in Section 1. Remember that

Nx(f) = |f(x)|(11.6)

defines a qk-seminorm on c(X, k) for each x ∈ X, so that

N = {Nx : x ∈ X}(11.7)

is a nonempty collection of qk-seminorms on c(X, k), which is also nondegenerate
on c(X, k). Note that c(X, k) can be identified with the Cartesian product of
a family of copies of k indexed by X. Of course, the qk-metric on k associated
to | · | as in (4.8) determines a topology on k as in the previous section. It is
easy to see that the topology determined on c(X, k) by (11.7) is the same as the
product topology corresponding to the topology on k just mentioned.

12 Sequences of q-semimetrics

Let X be a set, and suppose that for each positive integer j, dj(x, y) is a qj-
semimetric on X for some qj > 0. Put

d̃j(x, y) = min(dj(x, y), 1/j)(12.1)

for every x, y ∈ X and j ≥ 1, which corresponds to (10.1) with t = 1/j. As in
Section 10, (12.1) is a qj-semimetric on X that determines the same topology
on X as dj(x, y) for each j ≥ 1. Put

d(x, y) = max
j≥1

d̃j(x, y)(12.2)

for each x, y ∈ X. More precisely, this is equal to 0 when d̃j(x, y) = 0 for every
j, and otherwise (12.2) reduces to the maximum over finitely many j, since
(12.1) is automatically less than or equal to 1/j. Suppose that q > 0 satisfies

qj ≥ q(12.3)

for each j ≥ 1. In this case, one can check that (12.2) defines a q-semimetric on
X. Note that one can always ensure that (12.3) holds with q = 1, for instance,
by replacing dj(x, y) with dj(x, y)

qj when qj < 1.
By construction,

Bd(x, r) =

∞∩
j=1

B
d̃j
(x, r)(12.4)

for every x ∈ X and r > 0, where these open balls are defined as in (8.1).
Remember that

B
d̃j
(x, r) = Bdj

(x, r)(12.5)
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when r ≤ 1/j, as in (10.2), and that

B
d̃j
(x, r) = X(12.6)

when r > 1/j, as in (10.3). Combining this with (12.4), we get that

Bd(x, r) =

[1/r]∩
j=1

Bdj
(x, r)(12.7)

when r ≤ 1, where [1/r] is the integer part of 1/r. Similarly, (12.4) is equal to
X when r > 1. Using (12.7), one can verify that the topology determined on X
by (12.2) is the same as the topology determined on X by the collection of dj ’s
with j ≥ 1 as in the previous section.

Now let V be a vector space over a field k, and let Nj be a nonnegative
real-valued function on V for each positive integer j. Put

Ñj(v) = min(Nj(v), 1/j)(12.8)

for each v ∈ V and j ≥ 1, which corresponds to (10.4) with t = 1/j. Suppose
that for each j ≥ 1, Nj is qj-subadditive on V for some qj > 0. This implies

that Ñj is qj-subadditive on V for each j ≥ 1 too, as in Section 10. Put

N(v) = max
j≥1

Ñj(v)(12.9)

for each v ∈ V . As before, this is equal to 0 when Ñj(v) = 0 for every j, and
otherwise (12.9) reduces to the maximum over finitely many j. If there is a q > 0
such that qj ≥ q for every j ≥ 1, then one can verify that N is q-subadditive on
V . One can always reduce to the case where this holds with q = 1, for instance,
by replacing Nj with Nj(v)

qj when qj < 1.

If Nj is symmetric on V for each j, then Ñj is symmetric on V for each j
too, and hence N is symmetric on V as well. Similarly, if Nj(0) = 0 for every

j, then Ñj(0) = 0 for every j, and so N(0) = 0. Under these conditions,

dj(v, w) = Nj(v − w)(12.10)

defines a qj-semimetric on V for each j ≥ 1. In this situation, (12.1) corresponds
to (12.8) in the same way for each j, and (12.2) corresponds to (12.9). Suppose
now that | · | is a qk-absolute value function on k for some qk > 0. If Nj is

balanced on V with respect to | · | on k for each j, then Ñj is balanced on V for
each j, as in Section 10. This implies that N is balanced on V as well.

13 Symmetric and balanced sets

Let V be a vector space over a field k. If a ∈ V and B ⊆ V , then we put

a+B = B + a = {a+ v : v ∈ B}(13.1)
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and
−B = {−v : v ∈ B},(13.2)

where −v is the additive inverse of v in B. Similarly, put

A+B =
∪
a∈A

(a+B) =
∪
b∈B

(A+ b) = {a+ b : a ∈ A, b ∈ B}(13.3)

for every A,B ⊆ V . We can define a−B and A−B analogously, which are the
same as a+(−B) and A+(−B), respectively. If t ∈ k and B ⊆ V , then we put

tB = {t v : v ∈ B},(13.4)

which is the same as −B when t = −1.
Let us say that B ⊆ V is symmetric in V (around 0) if

−B = B.(13.5)

Note that A ∩ (−A) and A ∪ (−A) are symmetric in V for any A ⊆ V . Let N
be a nonnegative real-valued function on V , and let the corresponding open and
closed balls BN (v, r) and BN (v, r) in V be defined as in (8.9) and (8.10) for
v ∈ V and r > 0 and r ≥ 0, respectively. If N is symmetric on V , as in (7.5),
then BN (0, r) is symmetric in V for every r > 0, and BN (0, r) is symmetric in
V for every r ≥ 0.

Suppose now that | · | is a qk-absolute value function on k for some qk > 0.
A set E ⊆ V is said to be balanced in V if

t E ⊆ E(13.6)

for every t ∈ k with |t| ≤ 1. In particular, this implies that

t E = E(13.7)

for every t ∈ k with |t| = 1, since we can apply (13.6) to t and to 1/t. It follows
that balanced sets are symmetric, since we can take t = −1 in (13.7). If A ⊆ V ,
then ∪

{tA : t ∈ k, |t| ≤ 1}(13.8)

is the smallest balanced subset of V that contains A, which may be described
as the balanced hull of A in V .

Let N be a nonnegative real-valued function on V that is balanced, as in
Section 7. It is easy to see that BN (0, r) is balanced as a subset of V for every
r > 0, and similarly that BN (0, r) is balanced in V for every r ≥ 0. Suppose
now that N satisfies the homogeneity condition (5.1). In this case, we have that

tBN (0, r) = BN (0, |t| r)(13.9)

for every r > 0 and t ∈ k with t ̸= 0. Similarly,

tBN (0, r) = BN (0, |t| r)(13.10)

for every r ≥ 0 and t ∈ k with t ̸= 0. If t = 0, then the left side of (13.10) is
equal to {0}, and the right side of (13.10) is equal to BN (0, 0). Thus (13.10)
still holds when t = 0 and N(v) > 0 for every v ∈ V with v ̸= 0.
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14 Topological vector spaces

Let k be a field with a qk-absolute value function | · | for some qk > 0, and let V
be a vector space over k. We say that V is a topological vector space over k with
respect to | · | on k if the vector space operations are continuous on V . More
precisely, this means that addition should be continuous as a mapping from
V × V into V , using the corresponding product topology on V × V . Similarly,
scalar multiplication should be continuous as a mapping from k × V into V .
This uses the topology determined on k by the qk-metric associated to | · | as in
(4.8), and the corresponding product topology on k×V . In [11], the requirement
that | · | be nontrivial on k is included in the definition of a topological vector
space. We shall not include this condition in the definition here, but it is needed
for some basic properties, as we shall see. Sometimes the requirement that {0}
be a closed set in V is included in the definition of a topological vector space,
which implies that V is Hausdorff. We shall also not include this condition in
the definition here, although one might be primarily concerned with situations
where it holds.

Continuity of addition on V implies in particular that for each a ∈ V , the
translation mapping

v 7→ v + a(14.1)

is continuous as a mapping from V into itself. More precisely, such a translation
mapping is a homeomorphism from V onto itself, since the inverse mapping is
given by translation by −a. Continuity of addition on V as a mapping from
V × V into V at (0, 0) means that for each open set W ⊆ V with 0 ∈ W there
are open sets U1, U2 ⊆ V such that 0 ∈ U1, 0 ∈ U2, and

U1 + U2 ⊆ W.(14.2)

One can also take U1 = U2, by replacing U1 and U2 by their intersection. If
A,B ⊆ V , and either A or B is an open set in V , then it is easy to see that
A+B is an open set in V too, using (13.3) and continuity of translations.

Continuity of scalar multiplication on V implies in particular that for each
t ∈ k,

v 7→ t v(14.3)

is continuous as a mapping from V into itself. Of course, the continuity of (14.3)
is trivial when t = 0. Otherwise, (14.3) should be a homeomorphism from V
onto itself when t ̸= 0, because the inverse mapping is given by multiplication
by 1/t. If | · | is the trivial absolute value function on k, then the corresponding
topology on k is discrete. In this case, the continuity of scalar multiplication on
V as a mapping from k × V into V with respect to the corresponding product
topology on k × V reduces to the continuity of (14.3) on V for every t ∈ k.

IfN is a q-seminorm on V for some q > 0, then V is a topological vector space
over k with respect to the topology determined by the associated q-semimetric,
as in (5.6). Similarly, if N is a nonempty collection of q-seminorms on V , then
V is a topological vector space over k with respect to the topology determined
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by N as in Section 11. In particular, if X is a nonempty set, and c(X, k)
is the space of k-valued functions on X, then c(X, k) is a topological vector
space over k with respect to the topology determined by the collection (11.7) of
qk-seminorms.

15 Regular topological spaces

A topological space X is said to be regular in the strict sense if for each x ∈ X
and closed set E ⊆ X with x ̸∈ E there are disjoint open sets U, V ⊆ X such
that x ∈ U and E ⊆ V . Equivalently, this means that for each x ∈ X and open
set W ⊆ X with x ∈ W there is an open set U ⊆ X such that x ∈ U and the
closure U of U in X is contained in W . Sometimes the first or 0th separation
condition is included in the definition of regularity. Otherwise, one may say
that X satisfies the third separation condition when X is regular in the strict
sense and satisfies the first or 0th separation condition. It is easy to see that
X is Hausdorff in this case. If Y is a subset of X equipped with the induced
topology and X satisfies the 0th, first, or second separation condition, then it is
easy to see that Y has the same property. Similarly, if X is regular in the strict
sense, then Y is regular in te strict sense too.

If the topology on X is determined by a q-semimetric d(x, y) for some q > 0,
then X is regular in the strict sense. This follows from the fact that open and
closed balls in X with respect to d(·, ·) are open and closed as subsets of X with
respect to the topology determined on X by d(·, ·), respectively. One can also
use the fact that

V (x, r) = {y ∈ X : d(x, y) > r} = X \B(x, r)(15.1)

is an open set in X for every x ∈ X and r ≥ 0, which is equivalent to saying
that B(x, r) is a closed set in X. Similarly, if M is a nonempty collection of
q-semimetrics on X, then X is regular with respect to the topology determined
by M as in Section 11.

Let k be a field with a qk-absolute value function | · | for some qk > 0, and let
V be a topological vector space over k. If E is any subset of V , and if U ⊆ V
is an open set that contains 0, then one can check that

E ⊆ E + U,(15.2)

where E is the closure of E in V . More precisely, E is equal to the intersection
of all sets of the form E + U , where U ⊆ V is an open set that contains 0. If
W ⊆ V is an open set that contains 0, then we have seen that there are open
sets U1, U2 ⊆ V that contain 0 and satisfy (14.2), by continuity of addition on
V at 0. It follows that

U1 ⊆ U1 + U2 ⊆ W,(15.3)

using (15.2) in the first step. If v is any element of V , then any open set in V
that contains v can be expressed as v +W , where W ⊆ V is an open set that
contains 0, by continuity of translations. If U1 is as in the previous remark,
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then v + U1 is an open set in V that contains v and whose closure is contained
in v + W , using continuity of translations on V again. This implies that V is
regular as a topological space in the strict sense.

If {0} is a closed set in V , then {v} is a closed set in V for every v ∈ V ,
because of continuity of translations. This means that V satisfies the first
separation condition as a topological space. It follows that V is Hausdorff,
because V is regular in the strict sense, as in the preceding paragraph.

16 Balanced open sets

Let k be a field with a qk-absolute value function for some qk > 0 again, and let
V be a topological vector space over k. If W is an open set in V that contains
0, then there should be an open set U ⊆ V with 0 ∈ U and a δ > 0 such that

t U ⊆ W(16.1)

for every t ∈ k with |t| < δ. This follows from continuity of scalar multiplication
on V as a mapping from k × V into V at (0, 0). If | · | is the trivial absolute
value function on k, then this condition is vacuous. In this case, |t| < δ implies
that t = 0 when δ ≤ 1, and (16.1) holds automatically when t = 0.

Suppose that | · | is not trivial on k, and let W , U , and δ be as in the previous
paragraph. Put

U1 =
∪

{t U : t ∈ k, 0 < |t| < δ}.(16.2)

The nontriviality of | · | on k ensures that there are t ∈ k with 0 < |t| < δ, so
that the right side of (16.2) is the union of a nonempty collection of subsets of
V . Of course, 0 ∈ U1, because 0 ∈ U . It is easy to see that U1 is an open set
in V , because t U is an open set in V for every t ∈ k with t ̸= 0. We also have
that

U1 ⊆ W,(16.3)

by (16.1). Observe that U1 is balanced in V , by construction. It follows that
the collection of nonempty balanced open subsets of V is a local base for the
topology of V at 0 when | · | is nontrivial on k.

Suppose that the topology on V is determined by a nonempty collection N
of q-seminorms on V . If N ∈ N , r > 0, and BN (0, r) is as in (8.9), then BN (0, r)
is a balanced open set in V . Similarly, if N1, . . . , Nl are finitely many elements
of N , and r1, . . . , rl are finitely many positive real numbers, then

l∩
j=1

BNj (0, rj)(16.4)

is a balanced open set in V . Remember that the collection of subsets of V of
the form (11.5) is a local base for the topology of V at 0 in this situation, as in
Section 11. This works whether or not | · | is trivial on k.

Continuity of scalar multiplication on V also implies that for each v ∈ V ,
t 7→ t v is a continuous mapping from k into V . As usual, we use the topology
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determined on k by the q-metric (4.8) associated to | · | here. If | · | is trivial on
k, then k is equipped with the discrete topology, and this condition is vacuous.
Of course, this continuity condition is trivial when v = 0.

17 Product topologies

Let I be a nonempty set, let Xj be a topological space for each j ∈ I, and
consider the corresponding Cartesian product

X =
∏
j∈I

Xj .(17.1)

If x ∈ X and j ∈ I, then we let xj denote the jth coordinate of x in Xj , as
usual. A subset W of X is said to be an open set in X with respect to the strong
product topology if for each x ∈ W there is an open set Uj in Xj for every j ∈ I
such that xj ∈ Uj for every j ∈ I and∏

j∈I

Uj ⊆ W.(17.2)

It is easy to see that this defines a topology on X. If Uj is an open set in Xj

for each j ∈ I, then

U =
∏
j∈I

Uj(17.3)

is an open set in X with respect to the strong product topology, and the collec-
tion of these open sets forms a base for the strong product topology on X.

Of course, the ordinary product topology on X is defined in the same way,
but with the additional condition that Uj = Xj for all but finitely many j ∈ I
in the definition of an open set in X. If Uj is an open set in X for each j ∈ I,
and Uj = Xj for all but finitely many j ∈ I, then (17.3) is an open set in
X with respect to the product topology, and the collection of these open sets
forms a base for the product topology on X. Every open set in X with respect
to the product topology is also an open set with respect to the strong product
topology, and the two topologies on X are the same when I has only finitely
many elements. If Xj is equipped with the discrete topology for every j ∈ I,
then the strong product topology on X is the same as the discrete topology on
X.

If Ej is a closed set in Xj for each j ∈ I, then one can check that

E =
∏
j∈I

Ej(17.4)

is a closed set in X with respect to the product topology. This implies that E
is also a closed set in X with respect to the strong product topology. Similarly,
let Aj be a subset of Xj for each j ∈ I, and put

A =
∏
j∈I

Aj .(17.5)
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If Aj is the closure of Aj in Xj for each j ∈ I, then one can check that∏
j∈I

Aj(17.6)

is the same as the closure of A in X with respect to both the product and strong
product topologies. Note that the closure of any subset of X with respect to
the strong product topology is contained in the closure of that set with respect
to the product topology.

If Xj satisfies the 0th, first, or second separation condition for every j ∈ I,
then it is easy to see that X has the same property with respect to the product
topology. This implies that X has the same property with respect to the strong
product topology as well, since open sets in X with respect to the product
topology are open with respect to the strong product topology too. If Xj is
regular in the strict sense for each j ∈ I, then one can check that X is regular
in the strict sense with respect to both the product topology and the strong
product topology. More precisely, let x ∈ X be given, and let W ⊆ X be an
open set with respect to the product topology or the strong product topology
that contains x. This means that there is an open set Uj in Xj for each j ∈ I
that satisfies xj ∈ Uj for every j ∈ I and (17.2), and with Uj = Xj for all but
finitely many j ∈ I in the case of the ordinary product topology. In both cases,
for each j ∈ I, the regularity of Xj in the strict sense implies that there is an
open set Vj in Xj such that xj ∈ Vj and the closure Vj of Vj in Xj is contained
in Uj . We can also take Vj = Xj when Uj = Xj , so that Vj = Xj for all but
finitely many j ∈ I in the case of the ordinary product topology. Thus

V =
∏
j∈I

Vj(17.7)

is an open set in X with respect to the product topology or strong product
topology, as appropriate, and x ∈ V . The closure of V in X with respect to
either the product topology or strong product topology is equal to∏

j∈I

Vj ,(17.8)

as in the previous paragraph. By construction, (17.8) is contained in (17.3),
and hence (17.8) is contained in W , as desired.

18 Product topologies, continued

Let k be a field with a qk-absolute value function | · | for some qk > 0, and let
X be a nonempty set. As in Section 1, we let c(X, k) be the space of k-valued
functions on X. This can be identified with the Cartesian product of a family
of copies of k indexed by X, and the topology determined on c(X, k) by (11.7)
corresponds exactly to the product topology. This uses the topology determined
on k by the qk-metric (4.8) associated to | · | on each factor. Let us now consider
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the topology on c(X, k) that corresponds to the strong product topology, as in
the previous section.

If f ∈ c(X, k) and ρ is a positive real-valued function defined on X, then put

Uρ(f) = {g ∈ c(X, k) : |f(x)− g(x)| < ρ(x)}.(18.1)

This corresponds to the Cartesian product of a family of open disks in k indexed
by X. The topology on c(X, k) that corresponds to the strong product topology
can be described equivalently by saying that W ⊆ c(X, k) is an open set if for
each f ∈ W there is a positive real-valued function ρ on X such that

Uρ(f) ⊆ W.(18.2)

It is easy to check directly that this defines a topology on c(X, k). If X has
only finitely many elements, then this is the same as the topology on c(X, k)
determined by (11.7).

Suppose for the moment that | · | is the trivial absolute value function on k.
This implies that

Uρ(f) = {f}(18.3)

for every f ∈ c(X, k) when ρ(x) ≤ 1 for every x ∈ X. It follows that the
topology on c(X, k) described in the preceding paragraph is the same as the
discrete topology in this case. Of course, the trivial absolute value function on
k corresponds to the discrete metric on k, which determines the discrete topology
on k. As in the previous section, the strong product topology reduces to the
discrete topology when the individual factors are equipped with the discrete
topology.

One can check that (18.1) is an open set in c(X, k) with respect to the
topology just defined for every f ∈ c(X, k) and positive real-valued function ρ
on X. If one thinks of this topology as being the strong product topology, as
in the previous section, then it suffices to observe that (18.1) is the Cartesian
product of a family of open subsets of k. One can also verify that (18.1) is an
open set more directly in terms of the definition given in this section, using the
fact that open balls in k are open sets. Note that the collection of subsets of
c(X, k) of the form (18.1) is a base for this topology. Similarly, if f ∈ c(X, k) is
fixed, then the collection of subsets of c(X, k) of the form (18.1) is a local base
for this topology on c(X, k) at f .

If f ∈ c(X, k) and ρ is a nonnegative real-valued function on X, then put

Eρ(f) = {g ∈ c(X, k) : |f(x)− g(x)| ≤ ρ(x)}.(18.4)

This corresponds to the Cartesian product of a family of closed disks in k indexed
by X. This is a closed set in c(X, k) with respect to the topology determined
by (11.7), which corresponds to the ordinary product topology, as before. It
follows that (18.4) is also a closed set in c(X, k) with respect to the topology
considered in this section, corresponding to the strong product topology. If
qk = ∞, then open disks in k of positive radius are closed sets, so that (18.1)
may be identified with the Cartesian product of a family of closed sets in k
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too. This implies that (18.1) is a closed set in c(X, k) with respect to these
topologies as well. Similarly, closed disks in k of positive radius are open sets
when qk = ∞, so that (18.4) corresponds to the Cartesian product of a family
of open sets of k when ρ(x) > 0 for every x ∈ X. Under these conditions, (18.4)
is also an open set in c(X, k) with respect to the topology considered in this
section.

It is easy to see that addition of functions onX defines a continuous mapping
from c(X, k)× c(X, k) into c(X, k) with respect to this topology on c(X, k), and
the associated product topology on c(X, k)×c(X, k). This basically follows from
continuity of addition on k. More precisely,

Uρ(f + f0) = Uρ(f) + f0(18.5)

for every f0, f ∈ c(X, k) and positive real-valued function ρ on X. This implies
that translations are continuous on c(X, k) with respect to this topology. If
qk = ∞, then

Uρ(0) + Uρ(0) ⊆ Uρ(0)(18.6)

for every positive real-valued function ρ on X. Suppose for the moment that
qk < ∞, and that ρ1, ρ2, and ρ3 are positive real-valued functions on X such
that

ρ1(x)
qk + ρ2(x)

qk ≤ ρ3(x)
qk(18.7)

for every x ∈ X. Under these conditions, it is easy to see that

Uρ1
(0) + Uρ2

(0) ⊆ Uρ3
(0).(18.8)

Using (18.6) and (18.8), one can check that addition of functions is continuous
as a map from c(X, k)× c(X, k) into c(X, k) for any qk > 0.

If f ∈ c(X, k) and ρ1, ρ2 are positive real-valued functions on X such that

ρ1(x) ≤ ρ2(x)(18.9)

for every x ∈ X, then
Uρ1

(f) ⊆ Uρ2
(f).(18.10)

Let t ∈ k with t ̸= 0 be given, as well as a positive real-valued function ρ on X.
Thus |t| ρ is a positive real-valued function on X too, and it is easy to see that

t Uρ(0) = U|t| ρ(0).(18.11)

In particular, Uρ(0) is balanced in c(X, k). We also get that

f 7→ t f(18.12)

defines a continuous mapping from c(X, k) into itself with respect to the strong
product topology for every t ∈ k, and a homeomorphism from c(X, k) onto itself
when t ̸= 0.
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19 Functions with finite support

Let us continue with the same notation and hypotheses as in the previous sec-
tion. In particular, let us consider c(X, k) equipped with the topology described
in the previous section, which corresponds to the strong product topology. If
X has only finitely many elements, then this topology on c(X, k) is the same
as the topology determined by (11.7), and c(X, k) is a topological vector space
over k with respect to this topology. If X is any nonempty set and | · | is the
trivial absolute value function on k, then we have seen that this topology on
c(X, k) is the same as the discrete topology, which implies that c(X, k) is a
topological vector space over k in this situation too. Otherwise, suppose that
X has infinitely many elements, and that | · | is not the trivial absolute value
function on k. If f is a k-valued function on X such that f(x) ̸= 0 for infinitely
many x ∈ X, then one can check that

t 7→ t f(19.1)

is not continuous as a mapping from k into c(X, k) with respect to this topology.
This implies that c(X, k) is not a topological vector space over k with respect
to this topology.

Remember that c00(X, k) is the linear subspace of c(X, k) consisting of func-
tions with finite support in X, as in Section 1. If f ∈ c00(X, k), then it is easy to
see that (19.1) defines a continuous mapping from k into c(X, k), with respect
to this topology on c(X, k). Let us now consider c00(X, k) to be equipped with
the topology induced by this topology on c(X, k). Of course, if X has only
finitely many elements, then c00(X, k) is the same as c(X, k), and this topology
is the same as the one determined by (11.7). If X is any nonempty set and | · |
is the trivial absolute value function on k, then we have seen that this topology
on c(X, k) is the discrete topology, so that the induced topology on c00(X, k) is
discrete too.

One can check that c00(X, k) is a topological vector space over k with respect
to this topology. More precisely, we have already seen that addition of functions
defines a continuous mapping from c(X, k) × c(X, k) into c(X, k) with respect
to this topology on c(X, k), and using the associated product topology on the
domain of this mapping. This implies the analogous continuity property of
addition on c00(X, k) with respect to the induced topology. To get continuity
of scalar multiplication on c00(X, k), one can use (18.11) and the continuity
of (19.1) when f ∈ c00(X, k). In fact, scalar multiplication is continuous as a
mapping from k × c(X, k) into c(X, k) along k × c00(X, k).

Let f ∈ c(X, k) be given, and put

W (f) = {g ∈ c(X, k) : g(x) ̸= 0 for every x ∈ X such that f(x) ̸= 0}.(19.2)

This corresponds to the Cartesian product of the family of subsets of k indexed
by x ∈ X defined by taking k when f(x) = 0 and k \ {0} when f(x) ̸= 0. Thus
W (f) is an open set in c(X, k) with respect to the topology corresponding to the
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strong product topology, since k and k\{0} are open sets in k. By construction,
f ∈ W (f), and

supp f ⊆ supp g(19.3)

for every g ∈ W (f), using the notation for the support of a k-valued function
on X in (1.2). In particular, if the support of f has infinitely many elements,
then the support of each g ∈ W (f) has infinitely many elements as well. This
implies that c00(X, k) is a closed set in c(X, k) with respect to this topology.
Note that c00(X, k) is dense in c(X, k) with respect to the topology determined
by (11.7).

20 Weighted maximum seminorms

Let k be a field with a qk-absolute value function | · | for some qk > 0, and let
X be a nonempty set. Also let c00(X, k) be the space of k-valued functions on
X with finite support, as in Section 1. If f ∈ c00(X, k) and w is a nonnegative
real-valued function on X, then put

∥f∥∞,w = max
x∈X

(w(x) |f(x)|).(20.1)

This is the same as ∥f∥∞ defined in (6.2) when w(x) = 1 for every x ∈ X. As
before, one can check that (20.1) is a qk-seminorm on c00(X, k) with respect to
| · | on k. If w(x) > 0 for every x ∈ X, then (20.1) is positive when f is not
identically equal to 0 on X, so that (20.1) defines a qk-norm on c00(X, k). If
w1, w2 are nonnegative real-valued functions on X such that

w1(x) ≤ w2(x)(20.2)

for every x ∈ X, then we have that

∥f∥∞,w1 ≤ ∥f∥∞,w2(20.3)

for every f ∈ c00(X, k).
Let f ∈ c00(X, k) and a nonnegative real-valued function w on X be given.

Observe that

{g ∈ c00(X, k) : ∥f − g∥∞,w < r}(20.4)

= {g ∈ c00(X, k) : w(x) |f(x)− g(x)| < r for every x ∈ X}

for each r > 0. This is the same as the open ball in c00(X, k) centered at f with
radius r with respect to (20.1), as in (8.9). Similarly,

{g ∈ c00(X, k) : ∥f − g∥∞,w ≤ r}(20.5)

= {g ∈ c00(X, k) : w(x) |f(x)− g(x)| ≤ r for every x ∈ X}

for each r ≥ 0. This is the closed ball in c00(X, k) centered at f with radius r
with respect to (20.1), as in (8.10).
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Suppose for the moment that w(x) > 0 for every x ∈ X. Let r > 0 be given,
and put

ρ(x) = r/w(x)(20.6)

for every x ∈ X, so that ρ is a positive real-valued function on X. If Uρ(f) is
as in (18.1), then (20.4) is the same as

Uρ(f) ∩ c00(X, k).(20.7)

Similarly, if r is a nonnegative real number, then (20.6) defines a nonnegative
real-valued function on X. If Eρ(f) is as in (18.4), then (20.5) is the same as

Eρ(f) ∩ c00(X, k).(20.8)

Of course,

{∥ · ∥∞,w : w is a positive real-valued function on X}(20.9)

is a nonempty collection of qk-norms on c00(X, k). Thus (20.9) determines a
topology on c00(X, k), as in Section 11. It is easy to see that this topology is the
same as the one induced on c00(X, k) by the topology on c(X, k) corresponding
to the strong product topology. This uses the description of this topology on
c(X, k) in Section 18, and the fact that (20.4) is the same as (20.7) when ρ is
as in (20.6).

Equivalently, one could use the collection

{∥ · ∥∞,w : w is a nonnegative real-valued function on X}(20.10)

of qk-seminorms on c00(X, k), which contains (20.9). The additional elements
in (20.10) do not affect the topology on c00(X, k), because every nonnegative
real-valued function on X is less than or equal to a positive real-valued function
on X. If w is a nonnegative real-valued function on X and r is a positive
real number, then one can interpret (20.6) as a function on X with values in
the positive extended real numbers, which is equal to +∞ when w(x) = 0. If
one extends the definition of Uρ(f) in (18.1) to this case, then (20.4) is equal
to (20.7) when w is a nonnegative real-valued function on X and ρ is as in
(20.6). Note that Uρ(f) is an open set in c(X, k) with respect to the topology
corresponding to the strong product topology when 0 < ρ ≤ ∞ on X, so that
(20.7) is an open set in c00(X, k) with respect to the induced topology.

Similarly, one can extend the definition of Eρ(f) in (18.4) to the case where
0 ≤ ρ ≤ ∞ on X. It is easy to see that Eρ(f) is a closed set in c(X, k) with
respect to the topology that corresponds to the strong product topology in this
case, for essentially the same reasons as before. Thus (20.8) is a closed set in
c00(X, k) with respect to the induced topology in this situation as well. If w is
a nonnegative real-valued function on X and r is a nonnegative real number,
then one can define ρ on X as in (20.6), with ρ(x) = +∞ when w(x) = 0, even
if r = 0 too. Using this convention, we get that (20.5) is equal to (20.8), as
before.
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If | · | is the trivial absolute value function on k, then ∥ · ∥∞ is the trivial
ultranorm on c00(X, k). This is the same as ∥·∥∞,w with w ≡ 1 on X, and hence
is an element of (20.9). In particular, it follows that the topology determined
on c00(X, k) by (20.9) is the discrete topology in this case. Of course, we have
already seen that the topology on c(X, k) corresponding to the strong product
topology is discrete in this case, so that the induced topology on c00(X, k) is
discrete as well.

If X has only finitely many elements, then c00(X, k) is the same as c(X, k),
and the corresponding product and strong product topologies are the same too.
Equivalently, this means that the topologies determined on c00(X, k) by (11.7)
and (20.9) are the same in this case. More precisely, each element of (20.9)
determines the same topology on c00(X, k) in this situation.

21 q-Absolute value functions, continued

Let k be a field, and let | · | be a q-absolute value function on k for some q > 0.
Observe that

{|x| : x ∈ k \ {0}}(21.1)

is a subgroup of the multiplicative group R+ of positive real numbers. In
particular, (21.1) is the trivial subgroup {1} of R+ if and only if | · | is the
trivial absolute value function on k. If 1 is not a limit point of (21.1) in R+

with respect to the standard topology on R, then | · | is said to be discrete
on k. If | · | is nontrivial and discrete on k, then one can show that (21.1)
consists of the integer powers of single positive real number different from 1.
Otherwise, if | · | is not discrete on k, then (21.1) is dense in R+ with respect to
the standard topology on R. Of course, 0 is a limit point of (21.1) with respect
to the standard topology on R when | · | is nontrivial on k.

If x ∈ k and n is a positive integer, then we let n · x denote the sum of n
x’s in k. We say that | · | is archimedian on k if there are positive integers n
such that |n · 1| is arbitrarily large. Otherwise, if there is a finite upper bound
for |n · 1| with n in the set Z+ of positive integers, then | · | is said to be non-
archimedian on k. In particular, if a field k has positive characteristic, then
there are only finitely many elements of k of the form n · 1 for some n ∈ Z+,
and so every q-absolute value function on k is non-archimedian. If | · | is an
ultrametric absolute value function on any field k, then it is easy to see that

|n · 1| ≤ 1(21.2)

for every n ∈ Z+. If | · | is any q-absolute value function on a field k, then one
can check that

|nj · 1| = |(n · 1)j | = |n · 1|j(21.3)

for every j, n ∈ Z+. If |n · 1| > 1 for some n ∈ Z+, then it follows that | · |
is archimedian on k. Equivalently, if | · | is non-archimedian on k, then (21.2)
holds for every n ∈ Z+. In fact, it is well known that every non-archimedian
q-absolute function is an ultrametric absolute value function.
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Let | · |1 and | · |2 be q1, q2-absolute value functions on k for some q1, q2 > 0.
If there is a positive real number a such that

|x|2 = |x|a1(21.4)

for every x ∈ k, then | · |1 and | · |2 are said to be equivalent on k. Of course, this
implies an analogous relationship between the q1, q2-metrics on k associated
to | · |1, | · |2, respectively, as in (4.8). It follows that the corresponding q1,
q2-metrics on k determine the same topology on k, as in Section 8. Conversely,
if the q1, q2-metrics on k associated to | · |1, | · |2 determine the same topology
on k, then it is well known that | · |1 and | · |2 are equivalent on k.

Let |·| be an archimedian q-absolute value function on a field k for some q > 0.
Thus k has characteristic 0, as before, so that there is a natural embedding of the
field Q of rational numbers into k. This leads to an induced q-absolute value
function on Q, which is also archimedian. A famous theorem of Ostrowski
implies that this induced q-absolute value function on Q is equivalent to the
standard absolute value function on Q. In particular, the induced absolute
value function on Q is not discrete. This implies that | · | is not discrete on k.
If | · | is a discrete q-absolute value function on a field k for some q > 0, then it
follows that | · | is non-archimedian on k, and hence that | · | is an ultrametric
absolute value function on k.

22 Absorbing sets

Let k be a field with a qk-absolute value function | · | for some qk > 0, and let V
be a vector space over k. A set A ⊆ V is said to be absorbing in V if for each
v ∈ V there is a t0(v) ∈ k such that

v ∈ tA(22.1)

for every t ∈ k with |t| ≥ |t0(v)|. Of course, V is automatically absorbing as
a subset of itself. If | · | is nontrivial on k, then there are elements of k with
arbitrarily large absolute value, and it is enough to ask that (22.1) hold for every
t ∈ k such that |t| is sufficiently large. Otherwise, if | · | is the trivial absolute
value function on k, and if A is absorbing in V , then (22.1) holds with t = 1 for
every v ∈ V . It follows that V is the only absorbing subset of itself when | · | is
trivial on k. Note that 0 ∈ A for any absorbing set A in V .

Equivalently, A is absorbing in V if for each v ∈ V there is a t1(v) ∈ k such
that t1(v) ̸= 0 and

t′ v ∈ A(22.2)

for every t′ ∈ k with |t′| ≤ |t1(v)|. More precisely, this condition also implies
that 0 ∈ A, so that (22.2) holds for every v ∈ V when t′ = 0. If t′ ̸= 0, then
(22.2) corresponds to (22.1) with t = 1/t′. Thus t0(v) basically corresponds to
1/t1(v), except that one is allowed to take t0(v) = 0 in the previous formulation.
However, this is only possible when v = 0, in which case one might as well take
t0(0) = 1. If | · | is nontrivial on k, then there are nonzero elements whose
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absolute value is arbitrarily small. In this situation, it is enough to ask that
(22.2) hold for all t′ ∈ k such that |t′| is sufficiently small.

If A is balanced in V , then it suffices to verify that for each v ∈ V there
be a t ∈ k such that (22.1) holds, in order to check that A is absorbing in
V . Equivalently, this means that for each v ∈ V there is a t′ ∈ k such that
t′ ̸= 0 and (22.2) holds. Let N be a nonnegative real-valued function on V
that satisfies the homogeneity condition (5.1) with respect to | · | on k. If | · |
is nontrivial on k, then it is easy to see that open and closed balls in V with
respect to N centered at 0 and with positive radius are absorbing in V , where
these balls are defined as in (8.9) and (8.10). This can be derived directly from
the definitions, or using (13.9) and (13.10).

Let V be a topological vector space over k with respect to | · | on k, and let
U be an open subset of V that contains 0. Continuity of scalar multiplication
on V implies that for each v ∈ V ,

t 7→ t v(22.3)

is continuous as a mapping from k into V , with respect to the topology deter-
mined on k by the qk-metric associated to | · | as in (4.8). Continuity of this
mapping at t = 0 implies that for each v ∈ V there be a δ(v) > 0 such that

t v ∈ U(22.4)

for every t ∈ k with |t| < δ(v). If | · | is nontrivial on k, then this implies that
U is absorbing in V , as before.

23 Bounded sets

Let k be a field with a nontrivial qk-absolute value function | · | for some qk > 0,
and let V be a topological vector space over k with respect to | · | on k. A subset
E of V is said to be bounded in V if for each open set U ⊆ V with 0 ∈ U there
is a t0 ∈ k such that

E ⊆ t0 U.(23.1)

If U is balanced in V , then (23.1) implies that

E ⊆ t U(23.2)

for every t ∈ k such that |t| ≥ |t0|. Remember that the collection of balanced
nonempty open subsets of V is a local base for the topology of V at 0, because
| · | is nontrivial on k, as in Section 16. If E is bounded in V , then it follows that
for each open set U ⊆ V with 0 ∈ U there is a t0 ∈ k such that (23.2) holds for
every t ∈ k with |t| ≥ |t0|, since we can reduce to the case where U is balanced
in V . Similarly, if B0 is a local base for the topology of V at 0, then it suffices
to verify that for each U ∈ B0 there be a t0 ∈ k such that (23.1) holds, in order
to show that E is bounded. In particular, one can take B0 to be the collection
of balanced nonempty open subsets of V .
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Remember that an open set U ⊆ V that contains 0 is absorbing in V when
| · | is nontrivial on k, as in the previous section. This implies that finite subsets
of V are bounded. One can check that the union of finitely many bounded
subsets of V is bounded too, using the formulation of boundedness in terms of
(23.2). If E ⊆ V is bounded, then it is easy to see that the closure E of E is
bounded in V as well. This uses the regularity of V as a topological space in
the strict sense, as in Section 15, to get that every open set in V that contains
0 contains the closure of another open set in V that contains 0. This also uses
the continuity of scalar multiplication on V , to get that the closure behaves well
with respect to scalar multiplication. Note that the balanced hull of a bounded
subset of V is bounded in V as well, where the balanced hull is as defined in
(13.8).

Suppose that E1, E2 ⊆ V are bounded sets, and let us verify that E1 + E2

is bounded in V , where E1 + E2 is as defined in (13.3). Let U ⊆ V be an open
set that contains 0, and let U1, U2 ⊆ V be open sets that contain 0 and satisfy

U1 + U2 ⊆ U,(23.3)

as in (14.2). The boundedness of E1, E2 in V imply that

E1 ⊆ t U1 and E2 ⊆ t U2(23.4)

for every t ∈ k such that |t| is sufficiently large. It follows that

E1 + E2 ⊆ t U1 + t U2 = t (U1 + U2) ⊆ t U(23.5)

when |t| is sufficiently large, as desired. In particular, this implies that translates
of bounded subsets of V are bounded, because subsets of V with only one
element are bounded, as before.

Suppose that E ⊆ V is compact, and let us check that E is bounded in V .
Let U ⊆ V be an open set that contains 0, which we may as well take to be
balanced in V , as in Section 16. Let t be an element of k such that |t| > 1,
which exists because | · | is nontrivial on k. Note that tj U is an open set in V
for each j, by continuity of scalar multiplication on V , and that

tj U ⊆ tj+1 U(23.6)

for each j, because U is balanced. We also have that

∞∪
j=1

tj U = V,(23.7)

because U is absorbing in V , as in the previous section. If E is compact, then
E is contained in the union of finitely many sets of the form tj U with j ∈ Z+.
This implies that E is contained in tj U for a single j ∈ Z+, as desired, because
of (23.6).

Suppose now that the topology on V is determined by a nonempty collection
N of q-seminorms on V , as in Section 11. More precisely, each N ∈ N should
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be a qN -seminorm on V for some qN > 0, and with respect to | · | on k. In this
situation, a subset E of V is bounded if and only if each N ∈ N is bounded on
E. The “only if” part of this statement uses the fact that open balls in V with
respect to elements of N centered at 0 with positive radius are open sets in V .
The “if” part uses the fact that intersections of finitely many such open balls
form a local base for the topology of V at 0, as in (11.5).

Let X be a nonempty set, and let c(X, k) be the vector space of k-valued
functions on X, as in Section 1. Also let E be a subset of c(X, k), and put

Ex = {f(x) : f ∈ E}(23.8)

for each x ∈ X, which is a subset of k. Let us say that E is bounded pointwise
on X if Ex is bounded in k with respect to | · | for each x ∈ X. Remember
that c(X, k) is a topological vector space over k with respect to the topology
determined by the collection (11.7) of qk-seminorms on c(X, k). It is easy to see
that E is bounded in c(X, k) with respect to this topology if and only if E is
bounded pointwise on X, by the remarks in the preceding paragraph.

Let c00(X, k) be the linear subspace of c(X, k) consisting of functions with
finite support in X, as in Section 1 again. Remember that c00(X, k) is a topo-
logical vector space over k with respect to the topology induced by the topology
on c(X, k) that corresponds to the strong product topology, as in Section 19.
Equivalently, this is the topology determined on c00(X, k) by the collection
(20.9) of weighted maximum norms. Let E be a subset of c00(X, k), and put

XE = {x ∈ X : Ex ̸= {0}},(23.9)

which is the set of x ∈ X for which there is an f ∈ E such that f(x) ̸= 0. If
E is bounded in c00(X, k) with respect to the topology just mentioned, then we
would like to check that XE has only finitely many elements. Suppose for the
sake of a contradiction that XE has infinitely many elements, and let {xj}∞j=1

be a sequence of distinct elements of XE . By construction, for each j ≥ 1, there
is an fj ∈ E such that fj(xj) ̸= 0. Using this, it is easy to see that there is
a positive real-valued function w on X such that the corresponding maximum
norm (20.1) is not bounded on E. This implies that E is not bounded with
respect to this topology on c00(X, k). Alternatively, if ρ is a positive real-valued
function on X, then

Uρ(0) ∩ c00(X, k)(23.10)

is an open set in c00(X, k) that contains 0, where Uρ(0) is as defined in (18.1).
In order to verify that E is not bounded in c00(X, k), it suffices to choose ρ > 0
such that E is not contained in any dilate of (23.10) by an element of k.

Equivalently,

XE =
∪
f∈E

supp f,(23.11)

where supp f is the support of f ∈ c(X, k), as in (1.2). If E is bounded in
c00(X, k), then it is easy to see that E also has to be bounded pointwise on X.
Conversely, if E is bounded pointwise on X, and if XE has only finitely many
elements, then one can check that E is bounded in c00(X, k).
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24 Bounded sequences

Let k be a field with a nontrivial qk-abolute value function | · | for some qk > 0,
and let V be a topological vector space over k with respect to | · | on k. A
sequence {vj}∞j=1 of elements of V is said to be bounded in V if the set of vj ’s
with j ∈ Z+ is bounded as a subset of V , as in the previous section. If E is any
bounded subset of V , then it is easy to see that every subset of E is bounded
in V too. In particular, this implies that every sequence of elements of E is
bounded in V . Conversely, suppose that E ⊆ V is not bounded in V . This
means that there is an open set U ⊆ V such that 0 ∈ U and E is not contained
in any dilate of U . Let t be an element of k such that |t| > 1, which exists
because | · | is nontrivial on k. Thus

E ̸⊆ tj U(24.1)

for any j ∈ Z+, which implies that there is a sequence {vj}∞j=1 of elements of E
such that

vj ̸∈ tj U(24.2)

for each j ≥ 1. It follows that {vj}∞j=1 is not bounded in V .
If {vj}∞j=1 is a sequence of elements of V that converges to some v ∈ V , then

{vj}∞j=1 is bounded in V . One way to see this is to observe that the subset of V
consisting of the vj ’s with j ∈ Z+ together with v is compact in V , which implies
boundedness, as in the previous section. Alternatively, if {vj}∞j=1 converges to
0 in V , and if U ⊆ V is an open set that contains 0, then we already have that
vj ∈ U for all but finitely many j. If U is also balanced in V , then it follows
that vj ∈ t U for every j when |t| is sufficiently large, because U is absorbing in
V , as in Section 22. If {vj}∞j=1 converges to any v ∈ V , then one can reduce to
the case where v = 0, using the fact that translates of bounded subsets of V are
bounded in V , as in the previous section.

Let X be a nonempty set, and let c(X, k) be the vector space of k-valued
functions on X, as in Section 1. A sequence {fj}∞j=1 of elements of c(X, k) is
said to be bounded pointwise on X if for each x ∈ X, {fj(x)}∞j=1 is bounded as
a sequence of elements of k with respect to | · | on k. This is equivalent to asking
that the set of fj ’s be bounded pointwise on X, as in the previous section. Let
us say that {fj}∞j=1 converges pointwise on X to some f ∈ c(X, k) if {fj(x)}∞j=1

converges to f(x) in k for every x ∈ X, with respect to the qk-metric on k
associated to | · | as in (4.8). If {fj}∞j=1 converges pointwise on X, then {fj}∞j=1

is pointwise bounded on X, because convergent sequences in k are bounded
with respect to | · |. Remember that c(X, k) is a topological vector space with
respect to the topology determined by the collection (11.7) of qk-seminorms on
X, and that boundedness in c(X, k) with respect to this topology is equivalent
to pointwise boundedness. Similarly, a sequence {fj}∞j=1 of elements of c(X, k)
converges to f ∈ c(X, k) with respect to this topology if and only if {fj}∞j=1

converges to f pointwise on X.
Let c00(X, k) be the linear subspace of c(X, k) consisting of functions on

X with finite support, as usual, equipped with the topology induced by the
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topology on c(X, k) that corresponds to the strong product topology, as in
Section 19. A sequence {fj}∞j=1 of elements of c00(X, k) is bounded with respect
to this topology if and only if {fj}∞j=1 is bounded pointwise on X and

∞∪
j=1

supp fj(24.3)

has only finitely many elements, by the discussion in the previous section. Sim-
ilarly, {fj}∞j=1 converges to f ∈ c00(X, k) with respect to this topology if and
only if {fj}∞j=1 converges to f pointwise on X and (24.3) has only finitely many
elements. More precisely, the “only if” part of this statement uses the fact that
convergent sequences are bounded, as before, to get that (24.3) has only finitely
many elements. The rest of this characterization of convergence of sequences in
c00(X, k) can be verified directly from the definitions.

25 Countable local bases

Let k be a field with a qk-absolute value function | · | for some qk > 0, and let
V be a topological vector space over k with respect to | · | on k. Of course, if
there is a q-semimetric on V for some q > 0 that determines the same topology
on V , then there is a local base for the topology of V at 0 with only finitely or
countably many elements. Conversely, if there is a local base for the topology
of V at 0 with only finitely or countably many elements, then it is well known
that there is a translation-invariant semimetric on V that determines the same
topology on V . More precisely, this works for commutative topological groups
with a countable local base at 0, and topological vector spaces are commutative
topological groups with respect to addition.

Suppose that the topology on V is determined by a nonempty collection N
of q-seminorms on V with respect to | · | on k, as in Section 11. If N has only
finitely or countably many elements, then it is easy to see that there is a local
base for the topology of V at 0 with only finitely or countably many elements.
If N has only finitely many elements, then one can get a single q-seminorm on
V that determines the same topology on V as in Section 9. Similarly, if N is
countably infinite, then one can get a single translation-invariant q-semimetric
on V that determines the same topology on V as in Section 12. More precisely,
if | · | is trivial on k and N is countably infinite, then the discussion in Section
12 leads to a q-seminorm on V that determines the same topology on V .

Let X be a nonempty set, and let c(X, k) be the vector space of k-valued
functions on X, as in Section 1. As usual, c(X, k) is a topological vector space
over k with respect to the collection (11.7) of qk-seminorms on c(X, k). If X has
only finitely many elements, then the same topology on c(X, k) is determined
by the qk-norm (6.2). If X is countably infinite, then one can get a translation-
invariant qk-metric on c(X, k) that determines the same topology as in Section
12. If X is countably infinite and | · | is trivial on k, then one can get a qk-norm
on c(X, k) that determines the same topology as in Section 12. However, if X
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has infinitely many elements and | · | is not trivial on k, then this topology on
c(X, k) cannot be described by a single q-norm for any q > 0. One way to see
this is to observe that there is no bounded open subset of c(X, k) in this case.
If X is uncountable, then there is no local base for this topology on c(X, k) at
0 with only finitely or countably many elements.

Let c00(X, k) be the linear subspace of c(X, k) consisting of functions with
finite support, equipped with the topology induced by the topology on c(X, k)
that corresponds to the strong product topology, as in Section 19. If X has only
finitely many elements, then c00(X, k) is the same as c(X, k) with the topology
considered in the preceding paragraph. If X is any nonempty set again and |·| is
trivial on k, then this topology on c00(X, k) is the same as the discrete topology,
which can be described by the trivial ultranorm. Otherwise, if X has infinitely
many elements and | · | is not trivial on k, then one can check that c00(X, k) does
not have a local base for its topology at 0 with only finitely or countably many
elements. In particular, this happens already when X is countably infinite.

26 Weighted ℓr seminorms

Let k be a field with a qk-absolute value function | · | for some qk > 0, and let X
be a nonempty set. Also let c00(X, k) be the vector space of k-valued functions
on X with finite support, as in Section 1. If f ∈ c00(X, k), r is a positive real
number, and w is a nonnegative real-valued function on X, then put

∥f∥r,w =
( ∑

x∈X

w(x)r |f(x)|r
)1/r

.(26.1)

This is the same as (2.1) applied to w(x) |f(x)| as a nonngetaive real-valued
function on X with finite support. If w(x) = 1 for every x ∈ X, then (26.1)
is also the same as ∥f∥r defined in (6.3). One can check that (26.1) defines a
qk-seminorm on c00(X, k) when r ≥ qk, and that (26.1) defines an r-seminorm
on c00(X, k) when r ≤ qk, for essentially the same reasons as before. If w(x) > 0
for every x ∈ X, then (26.1) defines a qk or r-norm on c00(X, k), as appropriate.

Remember that ∥f∥∞,w was defined for f ∈ c00(X, k) and w ≥ 0 on X in
(20.1). If 0 < r1 ≤ r2 ≤ ∞, then

∥f∥r2,w ≤ ∥f∥r1,w(26.2)

for every f ∈ c00(X, k) and nonnegative real-valued function w on X. This
follows from (2.5), applied to w(x) |f(x)|. If w1, w2 are nonnegative real-valued
functions on X such that

w1(x) ≤ w2(x)(26.3)

for every x ∈ X, then we have that

∥f∥r,w1 ≤ ∥f∥r,w2(26.4)

for every f ∈ c00(X, k) and r > 0. This includes the case where r = ∞, which
was already mentioned in (20.3).
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Let N be a q-seminorm on c00(X, k) with respect to | · | on k for some q > 0.
Put

wN (y) = N(δy)(26.5)

for each y ∈ X, where δy is as defined in (1.3). Thus wN is a nonnegative
real-valued function on X, and one can check that

N(f) ≤ ∥f∥q,wN
(26.6)

for every f ∈ c00(X, k). More precisely, one can express f as a linear combi-
nation of δy’s, and use the q-seminorm version of the triangle inequality to get
(26.6). Note that q = ∞ is permitted here.

If X has only finitely many elements, then

∥f∥r,w ≤ (#X)1/r ∥f∥∞,w ≤ (#X)1/r
(
max
x∈X

w(x)
)
∥f∥∞(26.7)

for every f ∈ c00(X, k), r > 0, and nonnegative real-valued function w on X.
Here #X denotes the number of elements inX, and (#X)1/r may be interpreted
as being equal to 1 when r = ∞. Suppose now that X is countably infinite, and
let r be a positive real number. Also let wr be a positive real-valued function
on X such that ∑

x∈X

wr(x)
−r < ∞,(26.8)

where the sum on the left side is defined to be the supremum of the sums of
wr(x)

−r over all nonempty finite subsets of X. Equivalently, if {xj}∞j=1 is a
sequence of elements of X in which every element of X occurs exactly once,
then the sum on the left side of (26.8) can be given by the infinite series

∞∑
j=1

wr(xj)
−r,(26.9)

and (26.8) means that this series converges. If f ∈ c00(X, k) and w is a nonneg-
ative real-valued function on X, then we get that∑

x∈X

w(x)r |f(x)|r =
∑
x∈X

(w(x)r wr(x)
r |f(x)|r)wr(x)

−r(26.10)

≤
( ∑

x∈X

wr(x)
−r

)
max
x∈X

(w(x)r wr(x)
r |f(x)|r),

and hence

∥f∥r,w ≤
( ∑

x∈X

wr(x)
−r

)1/r

∥f∥∞,w wr
.(26.11)

Note that the first step in (26.7) is basically the same as (26.11) with wr(x) = 1
for every x ∈ X, when X has only finitely many elements.
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27 Balanced q-convexity

Let k be a field with a qk-absolute value function | · | for some qk > 0, and let V
be a vector space over k. Also let E be a balanced subset of V , and let q be a
positive real number. Suppose that v1, . . . , vn are finitely many elements of E,
and that t1, . . . , tn are finitely many elements of k such that

n∑
j=1

|tj |q ≤ 1.(27.1)

As a basic form of q-convexity, one might ask that

n∑
j=1

tj vj ∈ E(27.2)

under these conditions.
Note that (27.1) is equivalent to( n∑

j=1

|tj |q
)1/q

≤ 1.(27.3)

The left side of (27.3) decreases monotonically in q, as in (2.5). Thus (27.3)
becomes less restrictive as q increases, which means that this type of q-convexity
condition becomes more restrictive as q increases.

Of course, the q-convexity condition described earlier is trivial when n = 1,
because E is supposed to be balanced in V . Sometimes one might ask that this
condition hold only when n = 2, and then try to get the analogous condition
when n > 2 using the n = 2 case repeatedly. In particular, this works when
every positive real number can be expressed as |t| for some t ∈ k.

Similarly, consider the weaker q-convexity condition in which (27.1) is re-
placed by a strict inequality. Suppose that | · | is not discrete on k, so that the
positive values of | · | on k are dense in the set of positive real numbers with
respect to the standard topology, as in Section 21. In this case, one can also
obtain this weaker version of q-convexity from its analogue with only n = 2.

As usual, the analogue of (27.3) with q = ∞ is

max(|t1|, . . . , |tn|) ≤ 1,(27.4)

as in (2.7). Thus one can include q = ∞ in the q-convexity condition mentioned
at the beginning of the section by replacing (27.1) with (27.4). Of course, (27.1)
implies (27.4) for any positive real number q, so that q-convexity with q = ∞
implies q-convexity for every finite q. Because E is supposed to be balanced in
V , q-convexity with q = ∞ is the same as saying that E is closed under addition.
A nice feature of q-convexity with q = ∞ is that the analogous condition with
only n = 2 can be repeated easily to get all n ∈ Z+.

If N is a q-seminorm on V with respect to | · | on k, then open and closed
balls in V with respect to N centered at 0 and with positive radius are balanced
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in V , and it is easy to see that they satisfy the q-convexity condition described
earlier. The closed ball centered at 0 with radius 0 with respect to N is a linear
subspace of V , and linear subspaces of V satisfy this q-convexity condition with
q = ∞.

If | · | is the trivial absolute value function on k, then (27.1) implies that
tj = 0 for all but at most one j. In this case, any balanced set E ⊆ V satisfies
the earlier q-convexity condition when 0 < q < ∞. However, (27.4) is vacuous in
this situation, so that only linear subspaces of V satisfy the analogous condition
with q = ∞.

28 Some sums of sets

Let k be a field with a qk-absolute value function | · | for some qk > 0, and let
V be a topological vector space over k. Also let U0 ⊆ V be an open set that
contains 0, and let U1 ⊆ V be an open set that contains 0 and satisfies

U1 + U1 ⊆ U0,(28.1)

as in (14.2). Repeating the process, we obtain a sequence of open subsets
U1, U2, U3, . . . of V such that 0 ∈ Uj and

Uj + Uj ⊆ Uj−1(28.2)

for each j ∈ Z+. Using induction, one can check that

U1 + U2 + · · ·+ Un−1 + Un + Un ⊆ U0(28.3)

for each positive integer n, where only the last term Un is repeated on the left
side of (28.3). It follows in particular that

U1 + U2 + · · ·+ Un−1 + Un ⊆ U0(28.4)

for each n ∈ Z+, where the last term Un on the left side of (28.4) is no longer
repeated, since 0 ∈ Un. Of course, we can also choose the Uj ’s to belong to any
given local base for the topology of V at 0. In particular, if | · | is nontrivial on
k, then we can choose the Uj ’s to be balanced in V for each j.

If U0 happens to be closed under addition, then we can simply take Uj = U0

for each j ∈ Z+. In particular, this holds when U0 satisfies the q-convexity
condition discussed in the previous section with q = ∞.

Suppose now that U0 is balanced and satisfies the q-convexity condition
discussed in the previous section for some positive real number q. This says
exactly that if t1, . . . , tn are finitely many elements of k that satisfy (27.1), then

t1 U0 + t2 U0 + · · ·+ tn U0 ⊆ U0.(28.5)

Suppose that t1, t2, t3, . . . is an infinite sequence of elements of k such that

∞∑
j=1

|tj |q ≤ 1.(28.6)
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Thus (27.1) holds for each positive integer n, so that (28.5) holds for each n ∈ Z+

too. If tj ̸= 0 for each j ∈ Z+, then tj U0 is an open set in V for each j as well.
If | · | is nontrivial on k, then it is easy to see that there are sequences of nonzero
elements of k that satisfy (28.6). In this case, we have strict inequality in (27.1)
for each n, so that the corresponding weaker version of q-convexity would be
sufficient to get (28.5).

Part II

Continuous linear mappings

29 Continuity conditions

Let k be a field with a qk-absolute value function | · | for some qk > 0, and let
V , W be topological vector spaces over k with respect to | · | on k. A linear
mapping T from V into W is continuous at 0 if for each open set UW in W that
contains 0 there is an open set UV in V that contains 0 and satisfies

T (UV ) ⊆ UW .(29.1)

In this case, we have that

T (v + UV ) = T (v) + T (UV ) ⊆ T (v) + UW(29.2)

for every v ∈ V , so that T is continuous everywhere on V . In order to check that
T is continuous, it suffices to consider UW in a local sub-base for the topology
of W at 0. Similarly, if T is continuous, then one can take UV to be in a local
base for the topology of V at 0.

Suppose that the topology on W is determined by a nonempty collection
NW of q-seminorms on W with respect to | · | on k, as in Section 11, and where
q > 0 is allowed to depend on the element of NW , as usual. In this case, it
suffices to take UW to be an open ball in W with respect to an element of NW

centered at 0, since these open balls form a local sub-base for the topology of
W at 0, by hypothesis. Thus a linear mapping T from V into W is continuous
if and only if for each NW ∈ NW and r > 0 there is an open set UV ⊆ V such
that 0 ∈ UV and

NW (T (u)) < r(29.3)

for every u ∈ UV . Of course, this implies that

NW (T (t u)) = |t|NW (T (u)) < |t| r(29.4)

for every u ∈ UV and t ∈ k with t ̸= 0. Equivalently, this means that

NW (T (v)) < |t| r(29.5)

for every v ∈ t UV and t ∈ k with t ̸= 0.
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Suppose now that the topology on V is also determined by a nonempty
collection NV of q-seminorms on V with respect to | · | on k, where q > 0 may
depend on the element of NV . As in Section 11, intersections of finitely many
open balls in V with respect to elements of NV form a local base for the topology
of V at 0. Thus a linear mapping T from V into W is continuous if and only if
for each NW ∈ NW and r > 0 there are finitely many elements NV,1, . . . , NV,l of
NV and positive real numbers r1, . . . , rl such that (29.3) holds for every u ∈ V
that satisfies

NV,j(u) < rj(29.6)

for each j = 1, . . . , l. As before, this implies that (29.4) holds for every u ∈ V
that satisfies (29.6) for each j = 1, . . . , l and every t ∈ k with t ̸= 0. It follows
that (29.5) holds for every v ∈ V that satisfies

NV,j(v) < |t| rj(29.7)

for each j = 1, . . . , l, where t ∈ k and t ̸= 0.
Let NW ∈ NW be given, and suppose that there are finitely many elements

NV,1, . . . , NV,l of NV and a positive real number C such that

NW (T (u)) ≤ C max
1≤j≤l

NV,j(u)(29.8)

for every u ∈ V . Under these conditions, (29.3) holds for every u ∈ V that
satisfies (29.6) with rj = r/C for each j. In the other direction, let NW in
NW and r > 0 be given, and suppose that there are finitely many elements
NV,1, . . . , NV,l of NV and positive real numbers r1, . . . , rl such that (29.4) holds
for every u ∈ V that satisfies (29.6) for each j = 1, . . . , l. Thus (29.5) holds for
every v ∈ V that satisfies (29.7) for each j = 1, . . . , l, where t ∈ k and t ̸= 0, as
before. If | · | is nontrivial on k, then one can check that this implies that (29.8)
holds for some C > 0 and every u ∈ V .

30 Continuous linear functionals

Let k be a field, and let V be a vector space over k. Of course, k may be
considered as a 1-dimensional vector space over itself, and a linear mapping
from V into k is known as a linear functional on V . Let | · | be a qk-absolute
value function on k for some qk > 0, and suppose that V is a topological vector
space over k with respect to | · | on k. We may also consider | · | as a q-norm on
k, and k as a topological vector space over itself with respect to the topology
determined by this q-norm, which is the same as the topology determined by
the q-metric (4.8) associated to | · | on k. Thus a continuous linear functional
on V is a continuous linear mapping from V into k, where k is considered as a
topological vector space over itself in this way.

If λ is a continuous linear functional on V , then there is an open set U ⊆ V
such that 0 ∈ U and

|λ(u)| < 1(30.1)
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for every u ∈ U . Conversely, let λ be a linear functional on V , and suppose that
there is an open set U ⊆ V that contains 0 and satisfies (30.1). This implies
that

|λ(t u)| = |t| |λ(u)| < |t|(30.2)

for every u ∈ U and t ∈ k with t ̸= 0, which is the same as saying that

|λ(v)| < |t|(30.3)

for every v ∈ t U and t ∈ k with t ̸= 0. If | · | is nontrivial on k, then it follows
that λ is continuous on V under these conditions. Otherwise, if | · | is the trivial
absolute value function on k, then (30.1) implies that

λ(u) = 0(30.4)

for every u ∈ U , so that λ is continuous in this case as well.
Let X be a nonempty set, and let c(X, k) be the vector space of k-valued

functions on X, as in Section 1. Also let g be a k-valued function on X with
finite support. If f is any k-valued function on X, then f g has finite support
in X, which is contained in the support of g. Put

λg(f) =
∑
x∈X

f(x) g(x),(30.5)

where the sum on the right side of (30.5) can be defined as an element of k by
reducing to the sum over any finite subset of X that contains the support of
f g. In this situation, one can reduce to the sum over any finite subset of X
that contains the support of g, and which need not depend on f . In particular,
(30.5) defines a linear functional on c(X, k). If c(X, k) is equipped with the
topology determined by the collection (11.7) of qk-seminorms, then it is easy to
see that λg is a continuous linear functional on c(X, k).

Of course, if X has only finitely many elements, then every linear functional
on c(X, k) is of the form (30.5) for some k-valued function g on X. Similarly,
let X0 be a finite subset of X, and let λ be a linear functional on c(X, k) such
that

λ(f) = 0(30.6)

for every f ∈ c(X, k) such that f(x) = 0 for each x ∈ X0. Under these con-
ditions, λ can be expressed as (30.5) for some k-valued function g on X with
support contained in X0. Now let λ be any continuous linear functional on
c(X, k) with respect to the topology determined by (11.7). As before, there is
an open set U in c(X, k) such that 0 ∈ U and λ(U) is contained in the open
unit ball in k. Because of the way that the topology is defined on c(X, k), there
is a finite subset X0 of X such that

{f ∈ c(X, k) : f(x) = 0 for every x ∈ X0} ⊆ U.(30.7)

This implies that (30.6) holds for every f ∈ c(X, k) such that f(x) = 0 for
each x ∈ X0. More precisely, this works whether or not | · | is trivial on k. It
follows that λ can be expressed as (30.5) for some k-valued function g on X
with support contained in X0, as mentioned earlier. In particular, g has finite
support in X.

43



31 Mappings on c00(X, k)

Let k be a field, let X be a nonempty set, and let c00(X, k) be the vector space
of k-valued functions on X with finite support, as in Section 1. Also let V be a
vector space over k, and let T be a linear mapping from c00(X, k) into V . Thus

T (f) =
∑
y∈X

f(y)T (δy)(31.1)

for every f ∈ c00(X, k), where δy is as in (1.3). More precisely, f(y) = 0 for
all but finitely many y ∈ X, so that the sum on the right side of (31.1) can
be reduced to a finite sum in V . By hypothesis, T (δy) ∈ V for every y ∈ X,
and any choice of elements of V for each y ∈ X leads to a linear mapping from
c00(X, k) into V in this way.

Let | · | be a qk-absolute value function on k for some qk > 0, and suppose
that V is a topological vector space over k with respect to | · | on k. Let us also
take c00(X, k) to be equipped with the topology induced by the topology on
c(X, k) that corresponds to the strong product topology, as in Section 19. If | · |
is the trivial absolute value function on k, then this topology on c00(X, k) is the
same as the discrete topology, so that every mapping from c00(X, k) into any
topological space is continuous. Thus we suppose from now on in this section
that | · | is nontrivial on k. If X has only finitely many elements, then it is easy
to see that every linear mapping from c00(X, k) into V is continuous.

Let us check that every linear mapping T from c00(X, k) into V is continuous
when X is countably infinite. To do this, we may as well suppose that X = Z+.
Let U be any open set in V that contains 0. As in Section 28, there is a sequence
U1, U2, U3, . . . of open sets in V that contain 0 and satisfy

U1 + U2 + · · ·+ Un ⊆ U(31.2)

for each positive integer n. We may also ask that Uj be balanced in V for each
j, since | · | is nontrivial on k. As in Section 22, Uj is absorbing in V for each j
too, using the nontriviality of | · | on k again. Let T be a linear mapping from
c00(Z+, k) into V , so that T (δj) ∈ V for each j ∈ Z+, where δj ∈ c00(Z+, k) is
as in (1.3) with X = Z+. If j is any positive integer, then there is a positive
real number ρ(j) such that

t T (δj) ∈ Uj(31.3)

for every t ∈ k such that |t| < ρ(j), because Uj is absorbing in V .
Let f be an element of c00(X, k), and let n be a positive integer such that

f(j) = 0 when j > n, which exists because f has finite support. If |f(j)| < ρ(j)
for each j, then we get that

T (f) =

n∑
j=1

f(j)T (δj) ∈ U1 + U2 + · · ·+ Un ⊆ U.(31.4)

More precisely, the first step in (31.4) is basically the same as (31.1), since
f(j) = 0 when j > n. The second step in (31.4) uses (31.3), and the third
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step uses (31.2). It follows that T is continuous as a mapping from c00(Z+, k)
into V , as desired, because (31.4) says exactly that T (f) ∈ U for every f in
a suitable neighborhood of 0 in c00(Z+, k) with respect to the topology under
consideration.

32 Some related topologies

Let k be a field with a qk-absolute value function | · | for some qk > 0, let X be
a nonempty set, and let c00(X, k) be the vector space of k-valued functions on
X with finite support, as in Section 1. If f ∈ c00(X, k) and w is a nonnegative
real-valued function on X, then we put

∥f∥r,w =
( ∑

x∈X

w(x)r |f(x)|r
)1/r

(32.1)

for every positive real number r, as in (26.1). Similarly, put

∥f∥∞,w = max
x∈X

(w(x) |f(x)|),(32.2)

as in (20.1). Remember that ∥f∥r,w defines a qk-seminorm on c00(X, k) when
qk ≤ r, and an r-seminorm on c00(X, k) when r ≤ qk, as in Sections 20 and 26.
If w(x) > 0 for every x ∈ X, then ∥f∥r,w defines a qk or r-norm on c00(X, k),
as appropriate.

If 0 < r ≤ ∞, then we let
τr(32.3)

be the topology determined on c00(X, k) by

{∥ · ∥r,w : w is a positive real-valued function on X},(32.4)

as in Section 11. Equivalently, one can allow all nonnegative real-valued func-
tions on X here, and get the same topologies on c00(X, k). As in Section 20, τ∞
is the same as the topology on induced on c00(X, k) by the topology on c(X, k)
that corresponds to the strong product topology. It is easy to see that

τr2 ⊆ τr1(32.5)

when 0 < r1 ≤ r2 ≤ ∞, using (26.2). If X has only finitely many elements, then

τr = τ∞(32.6)

for every r > 0, because of (26.7). Similarly, (32.6) holds for every r > 0 when
X is countably infinite, because of (26.11). If | · | is the trivial absolute value
function on X, then τ∞ is the discrete topology on c(X, k), and hence τr is the
discrete topology on X for every r > 0.

Let us suppose from now on in this section that | · | is nontrivial on k. Let V
be a topological vector space over k, and let U ⊆ V be an open set that contains
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0. Thus U is absorbing in V , as in Section 22, because | · | is nontrivial on k. Let
T be a linear mapping from c00(X, k), and let δy be as in (1.3) for each y ∈ X.
If y ∈ X, then T (δy) ∈ V , and there is a t(y) ∈ k such that t(y) ̸= 0 and

t T (δy) ∈ U(32.7)

for every t ∈ k with |t| ≤ |t(y)|, because U is absorbing in V . Let f ∈ c00(X, k)
be given, and let A be a finite subset of X that contains the support of f . Thus

T (f) =
∑
y∈A

f(y)T (δy),(32.8)

as in (31.1). Equivalently,

T (f) =
∑
y∈A

(t(y)−1 f(y)) (t(y)T (δy)),(32.9)

and t(y)T (δy) ∈ U for each y, by (32.7). Put

w(y) = 1/|t(y)|(32.10)

for each y ∈ X, so that w is a positive real-valued function on X.
By construction,

∥f∥rr,w =
∑
y∈A

w(y)r |f(y)|r =
∑
y∈A

|t(y)−1 f(y)|r(32.11)

when 0 < r < ∞, and

∥f∥∞,w = max
y∈A

(w(y) |f(y)|) = max
y∈A

|t(y)−1 f(y)|.(32.12)

Suppose that U is balanced in V , and that U satisfies the r-convexity condition
discussed in Section 27 for some r > 0. If

∥f∥r,w < 1,(32.13)

then it is easy to see that
T (f) ∈ U(32.14)

under these conditions, using (32.9). More precisely, it suffices to ask that U
satisfy the weaker version of r-convexity in which (27.1) is replaced by a strict
inequality. If there is a local base for the topology of V consisting of balanced
open sets that satisfy this r-convexity property, then it follows that every linear
mapping T from c00(X, k) into V is continuous with respect to the topology τr
on c00(X, k).
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33 Sequential continuity

Let X and Y be topological spaces, and let f be a mapping from X into Y .
As usual, f is said to be sequentially continuous at a point x ∈ X if for each
sequence {xj}∞j=1 of elements of X that converges to x we have that {f(xj)}∞j=1

converges to f(x) in Y . Of course, if f is continuous at x, then f is sequentially
continuous at x. If f is not continuous at x, then there is an open set V ⊆ Y
that contains f(x) with the property that if U ⊆ X is an open set that contains
x, then f(U) ̸⊆ V . If there is a local base for the topology of X at x with only
finitely or countably many elements, then one can use this to get a sequence
{xj}∞j=1 of elements of X that converges to x such that {f(xj)}∞j=1 does not
converge to f(x) in Y . If f : X → Y is sequentially continuous at every x ∈ X,
then we may simply say that f is sequentially continuous as a mapping from
X into Y . Thus continuous mappings are sequentially continuous in this sense,
and the converse holds when X satisfies the first countability condition, so that
for each x ∈ X there is a local base for the topology of X at x with only finitely
or countably many elements.

Let k be a field with a qk-absolute value function | · | for some qk > 0, and
let V , W be topological vector spaces over k with respect to | · | on k. If a
linear mapping T from V into W is sequentially continuous at any point in V ,
then T is sequentially continuous at every point in V , because of continuity
of translations. Thus one might normally simply say that T is sequentially
continuous when T is sequentially continuous at 0. Of course, if there is a local
base for the topology of V at any point with only finitely or countably many
elements, then V has the same property at every point, because of continuity
of translations again. In this case, sequential continuity at 0 implies continuity
at 0, as before.

LetX be a nonempty set, and let c00(X, k) be the space of k-valued functions
on X with finite support, as in Section 1. Remember that c00(X, k) is a topo-
logical vector space over k with respect to the topology induced by the topology
on c(X, k) that corresponds to the strong product topology, as in Section 19.
If {fj}∞j=1 is a sequence of elements of c00(X, k) that converges to another el-
ement f of c00(X, k) with respect to this topology, then {fj}∞j=1 converges to
f pointwise on X, and the supports of the fj ’s are contained in a finite subset
of X, as in Section 24. Let V be another topological vector space over k with
respect to | · | on k, and let T be a linear mapping from c00(X, k) into V . It is
easy to see that T is sequentially continuous, using the properties of convergent
sequences in c00(X, k) just mentioned.

Let V be a topological vector space over k again, and suppose that there
is a local base for the topology of V at 0 with only finitely or countably many
elements. This implies that there is a sequence U1, U2, U3, . . . of open subsets of
V that contain 0 such that every open set in V that contains 0 also contains Uj

for some j. We may ask that Uj+1 ⊆ Uj for each j too, since otherwise we can
replace Uj with U1∩· · ·∩Uj . Suppose that | · | is nontrivial on k, and let t0 be a
nonzero element of k with |t0| < 1. Let W be another topological vector space
over k, and let T be a linear mapping from V into W . If T is not continuous at
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0, then there is an open set UW ⊆ W that contains 0 and satisfies

T (tj0 Uj) ̸⊆ UW(33.1)

for each j. This implies that there is a sequence {vj}∞j=1 of elements of V such
that vj ∈ Uj and

T (tj0 vj) ̸∈ UW(33.2)

for each j. In particular, {vj}∞j=1 converges to 0 in V under these conditions,
because vj ∈ Uj for each j.

34 Bounded linear mappings

Let k be a field with a nontrivial qk-absolute value function | · | for some qk > 0,
and let V , W be topological vector spaces over k with respect to | · | on k.
Remember that boundedness of subsets of V or W was defined in Section 23.
A linear mapping T from V into W is said to be bounded if for each bounded
set E ⊆ V we have that T (E) is bounded in W . If T is continuous, then it
is easy to see that T is bounded, directly from the definitions. Similarly, let
us check that T is bounded when T is sequentially continuous. Suppose that
E ⊆ V is bounded, and that T (E) is not bounded in W . Let t be an element
of k such that |t| > 1, which exists because | · | is nontrivial on k. If T (E) is
not bounded in W , then there is a sequence {vj}∞j=1 of elements of E such that

{t−j T (vj)}∞j=1 does not converge to 0 in W , by the same type of argument as

in (24.1) and (24.2). However, it is easy to see that {t−j vj}∞j=1 converges to

0 in V under these conditions, because {vj}∞j=1 is bounded in V and {t−j}∞j=1

converges to 0 in k. If T is sequentially continuous, then it follows that

t−j T (vj) = T (t−j vj) → 0 as j → ∞(34.1)

in W , which is a contradiction, as desired.
Suppose for the moment that there is a local base for the topology of V

at 0 with only finitely or countably many elements. Also let t0 be a nonzero
element of k such that |t0| < 1, which exists because | · | is nontrivial on k. If T
is not continuous at 0, then there is an open set UW ⊆ W that contains 0 and
a sequence {vj}∞j=0 of elements of V that converges to 0 such that (33.2) holds
for each j, as in the previous section. Note that {vj}∞j=1 is a bounded sequence
in V , since it converges to 0 in V , as in Section 24. If T is a bounded linear
mapping from V into W , then it follows that {T (vj)}∞j=1 is a bounded sequence
in W . Using this, it is easy to see that

T (tj0 vj) = tj0 T (vj) → 0 as j → ∞(34.2)

in W , because {tj0}∞j=1 converges to 0 in k. This contradicts (33.2), so that
bounded linear mappings from V into W are continuous in this situation.

LetX be a nonempty set, and let c00(X, k) be the space of k-valued functions
on X with finite support, as in Section 1. As usual, this is a topological vector
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space over k with respect to the topology induced by the topology on c(X, k)
that corresponds to the strong product topology, as in Section 19. If T is any
linear mapping from c00(X, k) into a topological vector space V over k, then
T is bounded as a linear mapping from c00(X, k) into V . One way to see this
is to use the fact that T is sequentially continuous, as in the previous section.
Alternatively, if E ⊆ c00(X, k) is bounded with respect to this topology on
c00(X, k), then E is bounded pointwise on X, and the supports of the elements
of E are contained in a finite subset of X, as in Section 23. Using this, one can
check more directly that T (E) is bounded in V . One can also look at this in
terms of the continuity of T on finite-dimensional linear subspaces of c00(X, k).

Let V , W be topological vector spaces over k again, and let T1, T2 be
bounded linear mappings from V into W . We would like to check that their
sum T1 + T2 also defines a bounded linear mapping from V into W . If E is any
subset of V , then it is easy to see that

(T1 + T2)(E) ⊆ T1(E) + T2(E).(34.3)

If E is bounded in V , then T1(E) and T2(E) are bounded in W , and hence
T1(E)+T2(E) is bounded in W , as in Section 23. This implies that (T1+T2)(E)
is bounded in W , using (34.3), and the fact that subsets of bounded sets are
bounded as well.

35 Strongly bounded linear mappings

Let k be a field with a nontrivial qk-absolute value function | · | for some qk > 0
again, and let V , W be topological vector spaces over k. Let us say that a
linear mapping T from V into W is strongly bounded if there is an open set
UV ⊆ V such that 0 ∈ UV and T (UV ) is bounded in W . This implies that
T is continuous, and in particular that T is bounded. In the other direction,
if T is continuous, and if there is a nonempty bounded open set in W , then
T is strongly bounded. Similarly, if T is bounded, and if there is a nonempty
bounded open set in V , then T is strongly bounded.

Let X be a nonempty set, let c(X, k) be the vector space of all k-valued
functions on X, and let c00(X, k) be the linear subspace of c(X, k) consisting of
functions with finite support in X, as in Section 1. Remember that c00(X, k) is
a topological vector space with respect to the topology induced by the topology
on c(X, k) that corresponds to the strong product topology, as in Section 19. Let
V be a topological vector space over k again, and let T be a strongly bounded
linear mapping from V into c00(X, k), with respect to the topology on c00(X, k)
just mentioned. Thus there is an open set UV ⊆ V such that 0 ∈ UV and T (UV )
is bounded in c00(X, k). In this situation, it follows that the supports of the
elements of T (UV ) are contained in a finite subset of X, as in Section 23. This
implies that the support of every element of T (V ) is contained in the same finite
subset of X, because UV is absorbing in V , as in Section 22. This is basically
the same as saying that T (V ) has finite dimension in this case.

49



Let us now take c(X, k) to be equipped with the topology determined by
(11.7). Let W be a topological vector space over k, and let T be a strongly
bounded linear mapping from c(X, k) into W , with respect to this topology on
c(X, k). Hence there is an open set U in c(X, k) such that 0 ∈ U and T (U)
is bounded in W . Because of the way that this topology on c(X, k) is defined,
there is a finite set X0 ⊆ X such that

{f ∈ c(X, k) : f(x) = 0 for every x ∈ X0}(35.1)

is contained in U . This implies that T maps (35.1) onto a bounded subset of
W , because T (U) is bounded in W . If {0} is a closed set in W , then one can
check that {0} is the only bounded linear subspace of W . It follows that T is
equal to 0 on (35.1) under these conditions, so that T (f) only depends on the
restriction of f to X0 for each f ∈ c(X, k).

Let V , W be topological vector spaces over k again, and suppose that T1,
T2 are strongly bounded linear mappings from V into W . Thus there are open
sets U1, U2 ⊆ V such that 0 ∈ U1, U2 and T1(U1), T2(U2) are bounded subsets
of W . Hence U1 ∩ U2 is an open set in V that contains 0, and T1(U1 ∩ U2),
T2(U1 ∩ U2) are bounded subsets of W . As in (34.3),

(T1 + T2)(U1 ∩ U2) ⊆ T1(U1 ∩ U2) + T2(U1 ∩ U2),(35.2)

which implies that (T1+T2)(U1∩U2) is bounded in W , because sums of bounded
sets are bounded too. This shows that T1 + T2 is strongly bounded as a linear
mapping from V into W as well.

36 Linear functionals on c00(X, k)

Let k be a field, and let X be a nonempty set. As in Section 1, c(X, k) denotes
the space of k-valued functions on X, and c00(X, k) is the linear subspace of
c(X, k) consisting of functions with finite support in X. If f ∈ c00(X, k) and
g ∈ c(X, k), then f g ∈ c00(X, k) too, and we put

λg(f) =
∑
x∈X

f(x) g(x),(36.1)

which reduces to a finite sum in k, as usual. This defines a linear functional on
c00(X, k) for each g ∈ c(X, k), and every linear functional on c00(X, k) is of this
form.

Let | · | be a qk-absolute value function on k for some qk > 0. Observe that

|λg(f)| ≤ ∥f∥qk,|g|(36.2)

for every f ∈ c00(X, k) and g ∈ c(X, k), where the right side of (36.2) is as in
(20.1) or (26.1), depending on whether qk = ∞ or qk < ∞, respectively. In both
cases, we are taking

w(x) = |g(x)|(36.3)
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for each x ∈ X, which defines a nonnegative real-valued function on X.
Note that

Ng(f) = |λg(f)|(36.4)

defines a qk-seminorm on c00(X, k) for each g ∈ c(X, k). Using this, (36.2)
corresponds to (26.6) applied to (36.4). Similarly, (36.3) corresponds to (26.5)
applied to (36.4).

It follows from (36.2) that λg is continuous on c00(X, k) with respect to the
topology τqk defined in Section 32, and using the topology on k determined by
the qk-metric associated to | · |, as usual. This could also be derived from the
discussion in Section 32, but it is easier to use (36.2).

If X has only finitely many elements, then c00(X, k) is the same as c(X, k),
and the topologies τr on c00(X, k) defined in Section 32 are the same as the
topology determined on c(X, k) by (11.7). If X is countably infinite, then all of
the topologies τr on c00(X, k) defined in Section 32 are the same as the topology
induced on c00(X, k) by the strong product topology on c(X, k) as in Section
19. In this situation, the continuity of λg for any g ∈ c(X, k) with respect to
this topology on c00(X, k) can be obtained from the discussion in Section 31.
This can also be derived from (36.2), using (26.11) with r = qk when qk < ∞.

Let X be any nonempty set again. If g ∈ c00(X, k), then λg can be defined
in the same way as a linear functional on c(X, k), and this linear functional
is continuous with respect to the topology determined on c(X, k) by (11.7), as
in Section 30. In particular, the restriction of λg to c00(X, k) is continuous
with respect to the topology induced by the topology determined on c(X, k) by
(11.7), which is the same as the topology determined by (11.7) as a collection of
qk-seminorms on c00(X, k). Conversely, if λ is any linear functional on c00(X, k)
that is continuous with respect to this topology on c00(X, k), then λ is of the
form λg with g ∈ c00(X, k). This is analogous to the argument in Section 30,
with some simplifications.

Suppose for the moment that g is a k-valued function on X whose support
has only finitely or countably many elements. Under these conditions, λg is con-
tinuous with respect to the topology induced on c00(X, k) be the strong product
topology on c(X, k), as in Section 19. This can be verified using arguments like
those for sets X with only finitely or countably many elements. Alternatively,
if X1 is any nonempty subset of X, then there is a natural linear mapping from
c00(X, k) onto c00(X1, k), which is defined by restricting k-valued functions f
on X to X1. It is easy to see that this mapping is continuous with respect to the
topologies that correspond to the strong product topology as before. If X1 con-
tains the support of g, then λg on c00(X, k) is the same as the analogous linear
functional on c00(X1, k) composed with the restriction mapping from c00(X, k)
onto c00(X1, k). In particular, if the support of g has only finitely or countably
many elements, then one can take X1 to be a subset of X with only finitely or
countably many elements that contains the support of g. This permits one to
reduce to the earlier discussion applied to X1.
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37 The case where k = R,C

Suppose now that k = R or C with the standard absolute value function, so
that we can take qk = 1. Let X be any nonempty set again, and let c00(X, k) be
the space of k-valued functions on X with finite support, as in Section 1. If g is
any k-valued function on X, then λg defines a continuous linear functional on
c00(X, k) with respect to the topology τ1 defined in Section 32, as in the previous
section. Suppose instead that λg is continuous on c00(X, k) with respect to the
topology τr defined in Section 32 for some r > 1. This implies that there is a
positive real-valued function w on X such that

|λg(f)| ≤ ∥f∥r,w(37.1)

for every f ∈ c00(X, k), where ∥f∥r,w is as in (20.1) or (26.1), depending on
whether r = ∞ or r < ∞. More precisely, the continuity of λg with respect to
τr on c00(X, k) implies a condition like (29.8). In this situation, this corresponds
to having a constant times the maximum of finitely many weighted ℓr norms
applied to f on the right side of (37.1). In order to get (37.1), one can take w
to be the same constant times the maximum of the finitely many weights on X
just mentioned.

If f ∈ c00(X, k), then there is an f̃ ∈ c00(X, k) such that

|f̃(x)| = |f(x)|(37.2)

and
f̃(x) g(x) = |f(x)| |g(x)|(37.3)

for every x ∈ X. Applying (37.1) to f̃ , we get that∑
x∈X

|f(x)| |g(x)| = λg(f̃) ≤ ∥f̃∥r,w = ∥f∥r,w.(37.4)

This implies that∑
x∈X

(w(x) |f(x)|) (|g(x)|w(x)−1) =
∑
x∈X

|f(x)| |g(x)| ≤ ∥f∥r,w(37.5)

for every f ∈ c00(X, k). If f ∈ c00(X, k), then w−1 f ∈ c00(X, k) too, and we
can apply (37.5) to w−1 f to get that∑

x∈X

|f(x)| |g(x)|w(x)−1 ≤ ∥w−1 f∥r,w = ∥f∥r.(37.6)

The second step in (37.6) uses the definitions (20.1), (26.1) of ∥ · ∥r,w, and ∥f∥r
is the corresponding unweighted ℓr norm of f , as in Section 6.

If A is any nonempty finite subset of X, then we can apply (37.6) to the
function f equal to 1 on A and to 0 on X \A, to get that∑

x∈A

|g(x)|w(x)−1 ≤ (#A)1/r,(37.7)
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where #A denotes the number of elements of A. Let ϵ > 0 be given, and suppose
that

|g(x)|w(x)−1 ≥ ϵ(37.8)

for each x ∈ A. Combining this with (37.7), we get that

ϵ (#A) ≤ (#A)1/r,(37.9)

and hence
#A ≤ ϵ−r/(r−1).(37.10)

Remember that r > 1, by hypothesis. It follows that the number of x ∈ X that
satisfy (37.8) is bounded by the right side of (37.10), and is finite in particular.
Applying this to ϵ = 1/n with n ∈ Z+, we get that the support of |g(x)|w(x)−1

in X has only finitely or countably many elements. Equivalently, this means
that the support of g in X has only finitely or countably many elements.

Let k be a field with a qk-absolute value function | · | for some q > 0, and
suppose that | · | is archimedian on k, as in Section 21. Suppose also that k is
complete with respect to the q-metric (4.8) associated to | · |, in the usual sense
that Cauchy sequences in k with respect to this q-metric converge to elements
of k. As usual, one can reduce to the case of ordinary absolute value functions
and metrics, by replacing |x| on k by |x|q when q < 1. Under these conditions,
a famous theorem of Ostrowski implies that k is isomorphic to R or C, in such
a way that | · | corresponds to a q-absolute value function on R or C that is
equivalent to the standard absolute value function. Remember that equivalence
of q-absolute value functions on a field was defined in Section 21.

38 Weak topologies

Let k be a field with a qk-absolute-value function | · | for some qk > 0, and let
V be a vector space over k. If λ is a linear functional on V , then

Nλ(v) = |λ(v)|(38.1)

defines a qk-seminorm on V . Let Λ be a nonempty collection of linear functionals
on V , so that

N (Λ) = {Nλ : λ ∈ Λ}(38.2)

is a nonempty collection of qk-seminorms on V . The topology determined on V
by N (Λ) as in Section 11 is known as the weak topology determined on V by Λ.
By construction, each element of Λ is a continuous linear functional on V with
respect to this topology. This implies that linear combinations of elements of Λ
are also continuous on V with respect to this topology, because of continuity of
addition and multiplication on k. Equivalently, this is the weakest topology on
V with respect to which the elements of Λ are continuous. Let us say that Λ is
nondegenerate on V if for each v ∈ V with v ̸= 0 there is a λ ∈ Λ such that

λ(v) ̸= 0.(38.3)
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This is the same as saying that Λ separates points in V , and it implies that
N (Λ) is nondegenerate on V , as defined in Section 11.

Let U be an open subset of V with respect to the weak topology determined
by Λ, and suppose that 0 ∈ U . This implies that there are finitely many elements
λ1, . . . , λl of Λ and positive real numbers r1, . . . , rl such that

{u ∈ V : |λj(u)| < rj for every j = 1, . . . , l} ⊆ U.(38.4)

In particular, this means that

{u ∈ V : λj(u) = 0 for every j = 1, . . . , l} ⊆ U.(38.5)

We may also ask that the λj ’s be linearly independent as linear functionals on
V , by discarding ones that can be expressed as linear combinations of the others.

Let µ be a linear functional on V , and suppose that µ is continuous with
respect to the weak topology determined on V by Λ. This implies that there is
an open set U ⊆ V with respect to this topology such that 0 ∈ U and

|µ(u)| < 1(38.6)

for every u ∈ U , as in Section 30. Let λ1, . . . , λl be finitely many elements of Λ
that satisfy (38.5). Under these conditions, we have that

{u ∈ V : λj(u) = 0 for every j = 1, . . . l} ⊆ {u ∈ V : µ(u) = 0}.(38.7)

More precisely, if | · | is trivial on k, then (38.7) follows directly from (38.5),
because (38.6) implies that µ(u) = 0. Otherwise, suppose that | · | is not trivial
on k, and that λj(u) = 0 for each j = 1, . . . , l. If t ∈ k, then we have that
λj(t u) = t λj(u) = 0 for each j = 1, . . . , l, so that t u ∈ U , by (38.5). This
implies that

|t| |µ(u)| = |µ(t u)| < 1,(38.8)

as in (38.6). It follows that µ(u) = 0, as desired, because (38.8) holds for every
t ∈ k, and | · | is supposed to be nontrivial on k. This shows that (38.7) holds
in both cases. Using (38.7), one can check that µ can be expressed as a linear
combination of λ1, . . . , λl.

Let X be a nonempty set, and let c(X, k) be the vector space of k-valued
functions on X, as in Section 1. If x ∈ X, then

λx(f) = f(x)(38.9)

defines a linear functional on c(X, k). The qk-seminorm on c(X, k) corresponding
to (38.9) as in (38.1) is the same as (11.6) for each x ∈ X. Thus the topology
determined on c(X, k) by (11.7) is the same as the weak topology corresponding
to the collection of linear functionals on c(X, k) of the form (38.9) for some
x ∈ X.
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39 Dual norms

Let k be a field with a qk-absolute value function | · | for some qk > 0, and let
V be a vector space over k with a q-norm N for some q > 0, with respect to | · |
on k. A linear functional λ on V is said to be bounded if there is a nonnegative
real number C such that

|λ(v)| ≤ C N(v)(39.1)

for every v ∈ V . Suppose for the moment that | · | is not trivial on k, so that
boundedness of subsets of V can be defined as in Section 23, which can be used
to define boundedness of linear mappings from V into other topological vector
spaces over k as in Section 34. In this case, a subset of V is bounded in the
sense of Section 23 if and only if it is bounded with respect to N in the usual
sense, which means that it is contained in a ball centered at 0 with respect to
N . A linear functional λ on V is bounded in the sense of Section 34 if and only
if λ is bounded on bounded subsets of V , which is equivalent to asking that λ
be bounded on every ball in V centered at 0 with respect to N in this situation.
Clearly (39.1) implies that λ is bounded in the sense of Section 34. Conversely,
if λ is bounded on any ball in V centered at 0 with positive radius with respect
to N , then it is easy to see that λ satisfies a condition like (39.1), using the
nontriviality of | · | on k.

If λ satisfies a condition like (39.1), then λ is continuous on V , as in Section
29. Conversely, suppose that λ is continuous at 0 on V , which implies that there
is a positive real number r such that

|λ(v)| < 1(39.2)

for every v ∈ V with N(v) < r. If | · | is nontrivial on k, then this implies a
condition like (39.1), as in the previous paragraph. If | · | is trivial on k, then
(39.2) implies that λ(v) = 0, and we also get a condition like (39.1). Thus
boundedness of a linear functional on V in the sense of (39.1) is equivalent to
continuity in both cases.

Let V ′ be the dual space of continuous linear functionals on V . It is easy to
see that V ′ is also a vector space over k with respect to pointwise addition and
scalar multiplication. If λ ∈ V ′, then put

N ′(λ) = inf{C ≥ 0 : (39.1) holds},(39.3)

which is more precisely the infimum of the set of nonnegative real numbers C
for which (39.1) holds. This set is nonempty, as in the preceding paragraph.
One can check that the infimum is always attained, so that

|λ(v)| ≤ N ′(λ)N(v)(39.4)

for every v ∈ V .
Of course, (39.1) holds with C = 0 if and only if λ(v) = 0 for every v ∈ V .

Using this, one can verify that N ′ defines a qk-norm on V ′ with respect to | · |
on k, which is the dual qk-norm on V ′ associated to N on V . In particular, the
qk-norm version of the triangle inequality for N ′ follows from the corresponding
property of | · | on k.
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40 Dual spaces

Let k be a field with a qk-absolute value function | · | for some qk > 0, and let V
be a topological vector space over k with respect to | · | on k. Also let V ′ be the
dual space of continuous linear functionals on V . As before, one can verify that
V ′ is also a vector space over k with respect to pointwise addition and scalar
multiplication. More precisely, V ′ may be described as the topological dual of
V , to emphasize the role of the continuity condition.

Suppose for the moment that | · | is nontrivial on k, so that boundedness of
subsets of V can be defined as in Section 23. Let E be a nonempty bounded
subset of V . If λ ∈ V ′, then λ(E) is a bounded subset of k, as in Section 34.
Put

N ′
E(λ) = sup

v∈E
|λ(v)|(40.1)

for each λ ∈ V ′. One can check that this defines a qk-seminorm on V ′ with
respect to | · | on k. Thus

N ′ = {N ′
E : E is a nonempty bounded subset of V }(40.2)

is a collection of qk-seminorms on V ′. This collection is nonempty, and in fact
nondegenerate, because finite subsets of V are bounded in V . This leads to a
topology on V ′, as in Section 11. If the topology on V is determined by a single
q-norm N for some q > 0, then the topology determined on V ′ by (40.2) is the
same as the topology determined by the dual qk-normN ′ defined in (39.3). More
precisely, if E is any nonempty bounded subset of V , then (40.1) is bounded by
a constant multiple of N ′(λ) in this case. In the other direction, if E is a ball in
V centered at 0 with positive radius with respect to N , then E is a nonempty
bounded subset of V , and N ′ is bounded by a constant multiple of N ′

E .
Let | · | be any qk-absolute value function on k again. If v ∈ V , then

Lv(λ) = λ(v)(40.3)

defines a linear functional on V ′. The collection of these linear functionals Lv

with v ∈ V leads to a topology on V ′ as in Section 38, which is known as the
weak∗ topology on V ′. This collection automatically separates points in V ′, so
that V ′ is always Hausdorff with respect to the weak∗ topology. Suppose now
that | · | is nontrivial on k, so that (40.2) also determines a topology on V ′, as
before. If v ∈ V , then Ev = {v} is a bounded set in V , and

N ′
Ev

(λ) = |λ(v)| = |Lv(λ)|(40.4)

for every λ ∈ V ′, where N ′
Ev

is as in (40.1). This implies that the topology
determined on V ′ by (40.2) is at least as strong as the weak∗ topology on V ′.

LetX be a nonempty set, and let c00(X, k) be the space of k-valued functions
on X with finite support, as in Section 1. Remember that every linear functional
on c00(X, k) can be expressed as λg as in (36.1) for some k-valued function g on
X. These linear functionals are also continuous on c00(X, k) with respect to the
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topology τqk defined in Section 32, as in Section 36. Thus we can identify the
topological dual of c00(X, k) as a topological vector space over k with respect
to the topology τqk with the space c(X, k) of all k-valued functions on X. The
corresponding weak∗ topology on the topological dual of c00(X, k) with respect
to the topology τqk corresponds exactly to the topology determined on c(X, k)
by (11.7). Remember that τqk contains the topology τ∞ on c00(X, k), which is
the same as the topology induced on c00(X, k) by the strong product topology
on c(X, k), as in Section 19. If E is a bounded subset of c00(X, k) with respect
to τqk , then it follows that E is bounded with respect to the topology induced on
c00(X, k) by the strong product topology on c(X, k), which were characterized
in Section 23. Using this characterization, it is easy to see that the topology
determined on the topological dual of c00(X, k) with respect to τqk by (40.2) is
the same as the weak∗ topology.

41 The dual of c(X, k)

Let k be a field with a qk-absolute value function | · | for some qk > 0, let X
be a nonempty set, and let c(X, k) be the space of k-valued functions on X, as
in Section 1. Remember that c(X, k) is a topological vector space over k with
respect to the topology determined by (11.7). If g is a k-valued function on X
with finite support, then

λg(f) =
∑
x∈X

f(x) g(x)(41.1)

defines a continuous linear functional on c(X, k) with respect to this topology,
as in Section 30. We have also seen that every continuous linear functional
on c(X, k) is of this form. Thus the topological dual c(X, k)′ of c(X, k) with
respect to this topology can be identified as a vector space over k with the space
c00(X, k) of k-valued functions on X with finite support.

Suppose that | · | is nontrivial on k, so that boundedness of subsets of c(X, k)
can be defined as in Section 23, with respect to the topology determined by
(11.7). As in Section 23, a subset E of c(X, k) is bounded with respect to this
topology if and only if E is bounded pointwise on X. In particular, if w is a
nonnegative real-valued function on X, then

Ew = {f ∈ c(X, k) : |f(x)| ≤ w(x) for every x ∈ X}(41.2)

is a bounded subset of c(X, k). Every bounded subset of c(X, k) is contained
in a set of this form, and one can also restrict one’s attention to positive real-
valued functions w on X. It follows that the topology determined on c(X, k)′

by (40.2) with V = c(X, k) is the same as the topology obtained by restricting
one’s attention to bounded subsets of c(X, k) of the form (41.2).

Let w be a nonnegative real-valued function on X again, and put

w0(x) = sup{|t| : t ∈ k, |t| ≤ w(x)}(41.3)
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for each x ∈ X. Thus w0 is a nonnegative real-valued function on X such that

w0(x) ≤ w(x)(41.4)

for every x ∈ X. By construction,

Ew0
= Ew,(41.5)

where Ew and Ew0 are as in (41.2). If | · | is not discrete on k, as in Section 21,
then

w0(x) = w(x)(41.6)

for every x ∈ X. Otherwise, if | · | is discrete on k, then the nontriviality of | · |
on k implies that w0 is greater than or equal to a positive constant multiple of
w on X. In this case, one can also simply restrict one’s attention to nonnegative
real-valued functions w on X whose values are values of | · | on k, so that (41.6)
holds on X. Note that the values of w0 on X are values of | · | on k when | · | is
discrete on k.

Suppose for the moment that | · | is an ultrametric absolute value function
on k, so that we can take qk = ∞. If g ∈ c00(X, k) and w is a nonnegative
real-valued function on X, then

N ′
Ew

(λg) = sup
f∈Ew

|λg(f)| = sup
f∈Ew

∣∣∣∣∑
x∈X

f(x) g(x)

∣∣∣∣(41.7)

≤ sup
f∈Ew

(
max
x∈X

(|f(x)| |g(x)|)
)
.

The first step in (41.7) corresponds to (40.1), the second step uses (41.1), and
the third step uses the ultrametric version of the triangle inequality. It follows
that

N ′
Ew

(λg) ≤ max
x∈X

(w(x) |g(x)|) = ∥g∥∞,w,(41.8)

using the definition (41.2) in the first step, and the definition (20.1) of ∥ · ∥∞,w

in the second step. If w0 is as in (41.3), then we get that

N ′
Ew

(λg) = N ′
Ew0

(λg) ≤ ∥g∥∞,w0(41.9)

for every g ∈ c00(X, k), using (41.5) in the first step, and the analogue of (41.8)
with w replaced by w0 in the second step.

In the other direction, we have that

N ′
Ew

(λg) ≥ max
x∈X

(w0(x) |g(x)|) = ∥g∥∞,w0
(41.10)

for every g ∈ c00(X, k), by considering f ∈ Ew supported at a single point in
X. Combining this with (41.9), we get that

N ′
Ew

(λg) = ∥g∥∞,w0
(41.11)
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for every g ∈ c00(X, k). If (41.6) holds, then it follows that

N ′
Ew

(λg) = ∥g∥∞,w(41.12)

for every g ∈ c00(X, k). In particular, (41.12) holds when | · | is not discrete on
k, as before. Otherwise, if | · | is discrete on k, then we have seen that w0 is
greater than or equal to a positive constant multiple of w on X, because | · | is
nontrivial on k. This implies that ∥g∥∞,w0

is greater than or equal to the same
positive constant times ∥g∥∞,w for each g ∈ c00(X, k), by the definition (20.1)
of ∥g∥∞,w. Combining this with (41.10), we get that N ′

Ew
(λg) is greater than

or equal to the same positive constant times ∥g∥∞,w for every g ∈ c00(X, k).
To summarize a bit, we are supposing for the moment that | · | is a nontrivial

ultrametric absolute value function on k. As before, the topology determined
on c(X, k)′ by (40.2) with V = c(X, k) is the same as the topology obtained by
restricting one’s attention to subsets of c(X, k) of the form (41.2). The discussion
in the preceding paragraph implies that this topology on c(X, k)′ corresponds
exactly to the topology induced on c00(X, k) by the strong product topology
on c(X, k), as in Section 19. This also uses the description of this topology on
c00(X, k) in Section 20. This correspondence between topologies is a bit simpler
when | · | is not discrete on k, so that (41.12) holds for every nonnegative real-
valued function w on X. Otherwise, if | · | is discrete on k, then we have (41.8)
and an analogous inequality in the other direction with an extra constant factor,
which is sufficient for the earlier statement about topologies on c00(X, k). In
this case, one can also simply restrict one’s attention to nonnegative real-valued
functions w on X whose values are values of | · | on k, so that we have (41.6),
and hence (41.12).

Now let k be R or C with the standard absolute value function, so that we
can take qk = 1. If g ∈ c00(X, k) and w is a nonnegative real-valued function
on X, then it is easy to see that

N ′
Ew

(λg) ≤
∑
x∈X

w(x) |g(x)| = ∥g∥1,w,(41.13)

using the definition (26.1) of ∥g∥1,w in the second step. If f is a k-valued function
on X such that

|f(x)| = w(x) and f(x) g(x) = |g(x)|w(x)(41.14)

for every x ∈ X, then f ∈ Ew and

λg(f) =
∑
x∈X

f(x) g(x) =
∑
x∈X

w(x) |g(x)| = ∥g∥1,w.(41.15)

This implies that
N ′

Ew
(λg) ≥ |λg(f)| = ∥g∥1,w,(41.16)

and hence that
N ′

Ew
(λg) = ∥g∥1,w,(41.17)

by combining (41.13) and (41.16). It follows that the topology determined on
c(X, k)′ by (40.2) with V = c(X, k) corresponds exactly to the topology τ1
defined on c00(X, k) in Section 32 in this case.
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42 Equicontinuity

Let k be a field with a qk-absolute value function | · | for some qk > 0, and let V ,
W be topological vector spaces over k with respect to | · | on k. A collection E
of linear mappings from V into W is said to be equicontinuous if for each open
set UW ⊆ W that contains 0 there is an open set UV ⊆ V such that 0 ∈ UV and

T (UV ) ⊆ UW .(42.1)

More precisely, this is really an equicontinuity condition at 0, which implies a
uniform version of equicontinuity at every point, because of linearity, and as
in (29.2). In particular, equicontinuity of E implies that each element of E is
continuous. If E consists of finitely many continuous linear mappings from V
into W , then it is easy to see that E is equicontinuous. In order to check that
a collection E of linear mappings from V into W is equicontinuous, it suffices
to verify that the previous condition holds for every UW in a local sub-base for
the topology of W at 0. Similarly, if E is equicontinuous, then one can take UV

to be in a local base for the topology of V at 0.
If V is a topological vector space over k, then

v 7→ t v(42.2)

defines a continuous linear mapping from V into itself for each t ∈ k, as in
Section 14. Let r be a positive real number, and let Er be the collection of
linear mappings on V of the form (42.2) with |t| ≤ r. Thus Er is equicontinuous
on V if and only if for each open set U ⊆ V that contains 0 there is another
open set Ũ ⊆ V such that 0 ∈ Ũ and

t Ũ ⊆ U(42.3)

for every t ∈ k with |t| ≤ r. The definition of a topological vector space implies
that this holds for some r > 0, as mentioned at the beginning of Section 16. If
| · | is not the trivial absolute value function on k, then one can use this and the
continuity of (42.2) for each t ∈ k to get that Er is equicontinuous on V for every
r > 0. However, if | · | is the trivial absolute value function on k, then Er consists
of only multiplication by 0 when r < 1, so that Er is trivially equicontinuous.
In this case, E1 consists of all linear mappings on V of the form (42.3) for some
t ∈ k. If there is a local base for the topology of V at 0 consisting of balanced
open sets, then it is easy to see that E1 is equicontinuous on V . The converse
also holds, by the same type of argument as in Section 16.

Let V , W be topological vector spaces over k again, and suppose that the
topology on W is determined by a nonempty collection NW of q-seminorms on
W with respect to | · | on k, as in Section 11. As usual, q > 0 is allowed to
depend on the element of NW here. In this situation, a collection E of linear
mappings from V into W is equicontinuous if and only if for each NW ∈ NW

and r > 0 there is an open set UV ⊆ V such that 0 ∈ UV and

NW (T (u)) < r(42.4)
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for every u ∈ UV and T ∈ E . This uses the fact that open balls in W with
respect to elements of NW centered at 0 and with positive radius form a local
sub-base for the topology of W at 0, as in Section 11. If t ∈ k and t ̸= 0, then
(42.4) implies that

NW (T (v)) < |t| r(42.5)

for every v ∈ t UV and T ∈ E , as in Section 29.
Now suppose that the topology on V is also determined by a nonempty

collection NV of q-seminorms on V with respect to | · | on k, where q > 0 is
allowed to depend on the element of NV . In this case, a collection E of linear
mappings from V into W is equicontinuous if and only if for each NW ∈ NW

and r > 0 there are finitely many elements NV,1, . . . , NV,l of NV and positive
real numbers r1, . . . , rl such that (42.4) holds for every u ∈ V that satisfies

NV,j(u) < rj(42.6)

for each j = 1, . . . , l, and for every T ∈ E . In particular, if for each NW ∈ NW

there are finitely many elements NV,1, . . . , NV,l of NV and a nonnegative real
number C such that

NW (T (u)) ≤ C max
1≤j≤l

NV,j(u)(42.7)

for every v ∈ V and T ∈ E , then E satisfies the preceding characterization
of equicontinuity. In the other direction, if E is equicontinuous, and if | · | is
nontrivial on k, then one can verify that E satisfies this second condition. This
is similar to the analogous statement for continuous linear mappings in Section
29.

43 Uniform boundedness

Let k be a field with a nontrivial qk-absolute value function | · | for some qk > 0,
and let V , W be topological vector spaces over k with respect to | · | on k. Thus
boundedness of subsets of V and W can be defined as in Section 23. Let us say
that a collection E of linear mappings from V into W is uniformly bounded on
a set E ⊆ V if ∪

T∈E
T (E)(43.1)

is bounded in W . If this holds for every bounded set E ⊆ V , then we say that
E is uniformly bounded on bounded subsets of V . If E is uniformly bounded
on bounded subsets of V , then every element of E should be a bounded linear
mapping from V into W , as in Section 34. If E is a collection of finitely many
bounded linear mappings from V into W , then E is uniformly bounded on
bounded subsets of V . This uses the fact that the union of finitely many bounded
subsets of W is also bounded in W , as in Section 23.

Let E be an equicontinuous collection of linear mappings from V into W ,
and let us verify that E is uniformly bounded on bounded subsets of V . This
is analogous to the fact that continuous linear mappings are bounded, as in
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Section 34. Let E be a bounded subset of V , and let UW be an open set in W
that contains 0. Thus there is an open set UV ⊆ V that contains 0 and satisfies
(42.1), by equicontinuity. Because E is bounded in V , there is a t0 ∈ k such
that

E ⊆ t UV(43.2)

for every t ∈ k with |t| ≥ |t0|. This implies that

T (E) ⊆ t T (UV ) ⊆ t UW(43.3)

for every T ∈ E and t ∈ k with |t| ≥ |t0|, by (42.1). It follows that (43.1) is
contained in t UW for every t ∈ k with |t| ≥ |t0|, so that E is uniformly bounded
on E, as desired.

Let E be a collection of linear mappings from V into W again, and put

E(v) = {T (v) : T ∈ E}(43.4)

for each v ∈ V . If E(v) is a bounded subset of W for each v ∈ V , then E is said
to be bounded pointwise on V . This is the same as saying that E is uniformly
bounded on E = {v} for each v ∈ V , which holds in particular when E is
uniformly bounded on bounded subsets of V . If E is a collection of continuous
linear mappings from V into W , then the Banach–Steinhaus theorem gives a
criterion for the equicontinuity of E in terms of pointwise boundedness and Baire
category. More precisely, it suffices to ask that the set of v ∈ V such that E(v)
is bounded in W be of second category in W .

Let us say that a collection E of linear mappings from V into W is uniformly
strongly bounded if there is an open set U ⊆ V such that 0 ∈ U and E is uniformly
bounded on U . In particular, this implies that every element of E is strongly
bounded, as in Section 35. If E is a collection of finitely many strongly bounded
linear mappings from V intoW , then it is easy to see that E is uniformly strongly
bounded. If E is any uniformly strongly bounded collection of linear mappings
from V into W , then E is equicontinuous. If E is an equicontinuous collection
of linear mappings from V into W and if there is a nonempty bounded open
subset of W , then E is uniformly strongly bounded. More precisely, if there is a
nonempty bounded open subset of W , then a suitable translate of it will contain
0. Similarly, if a collection E of linear mappings from V into W is uniformly
bounded on bounded subsets of V , and if there is a nonempty bounded open
subset of V , then E is uniformly strongly bounded.

44 Mappings on c00(X, k), continued

Let k be a field with a qk-absolute value function | · | for some qk > 0, let X be
a nonempty set, and let c00(X, k) be the space of k-valued functions on X with
finite support, as in Section 1. Also let V be a topological vector space over
k with respect to | · | on k, and let E be a collection of linear mappings from
c00(X, k) into V . If | · | is trivial on k, then the topology induced on c00(X, k)
by the strong product topology on c(X, k) as in Section 19 is the same as the
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discrete topology on c00(X, k). In this case, E is automatically equicontinuous
with respect to this topology on c00(X, k). Let us suppose from now on in this
section that | · | is nontrivial on k.

Let δy ∈ c00(X, k) be as defined in (1.3) for each y ∈ X. Put

E(δy) = {T (δy) : T ∈ E}(44.1)

for each y ∈ X, as in (43.4), and which is a subset of V in this situation. Of
course, if E is bounded pointwise on c00(X, k), as in the previous section, then
E(δy) is a bounded subset of V for every y ∈ X. Conversely, if E(δy) is bounded
in V for each y ∈ X, then it is easy to see that E is bounded pointwise on
c00(X, k), because the δy’s form a basis for c00(X, k) as a vector space over k.
This also implies that E is uniformly bounded on bounded subsets of c00(X, k)
with respect to the topology induced on c00(X, k) by the strong product topology
on c(X, k), because of the characterization of bounded subsets of c00(X, k) with
respect to this topology in Section 23.

If X has only finitely or countably many elements, then we have seen that
every linear mapping from c00(X, k) into V is continuous with respect to the
topology induced on c00(X, k) by the strong product topology on c00(X, k), as
in Section 31. Similarly, if X has only finitely or countably many elements, and
if E(δy) is bounded in V for every y ∈ X, then E is equicontinuous with respect
to this topology on c00(X, k). This can be verified directly when X has only
finitely many elements. If X is countably infinite, then the argument is almost
the same as the one for continuity of linear mappings from c00(X, k) into V , as
in Section 31.

Let 0 < r ≤ ∞ be given, and let τr be the corresponding topology defined
on c00(X, k) as in Section 32. The topology induced on c00(X, k) by the strong
product topology on c(X, k) is the same as τ∞, which is contained in τr, as
in (32.5). In particular, this implies that every bounded set in c00(X, k) with
respect to τr is bounded with respect to the topology induced on c00(X, k)
by the strong product topology on c(X, k). If E(δy) is a bounded subset of
V for each y ∈ X, then it follows that E is uniformly bounded on bounded
subsets of c00(X, k) with respect to τr, because of the analogous statement for
the topology induced on c00(X, k) by the strong product topology on c(X, k)
mentioned earlier. Note that every bounded set in c00(X, k) with respect to the
topology induced by the strong product topology on c(X, k) is also bounded
with respect to τr, because of the characterization of these bounded sets in
Section 23. Suppose now that there is a local base for the topology of V at 0
consisting of balanced open sets that satisfy the r-convexity condition discussed
in Section 27. If E(δy) is a bounded set in V for each y ∈ X, then one can check
that E is equicontinuous with respect to τr on c00(X, k). This is very similar to
the argument in Section 32 for the continuity of linear mappings from c00(X, k)
into V with respect to τr on c00(X, k) under these conditions.
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45 Equicontinuous linear functionals

Let k be a field with a qk-absolute value function | · | for some qk > 0, and let
V be a topological vector space over k with respect to | · | on k. As usual, we
may consider k as a one-dimensional topological vector space over itself, with
respect to the topology determined by the qk-metric (4.8) associated to | · | on
k. Let E be a collection of linear functionals on V . If E is equicontinuous on V ,
then there is an open set U ⊆ V such that 0 ∈ U and

|λ(u)| < 1(45.1)

for every λ ∈ E and u ∈ U . Conversely, suppose that there is an open set U ⊆ V
such that 0 ∈ U and (45.1) holds for every λ ∈ E and u ∈ U . If | · | is trivial on
k, then (45.1) implies that

λ(u) = 0,(45.2)

and it is easy to see that E is equicontinuous on V . If | · | is nontrivial on k, then
one can also check that the previous condition implies that E is equicontinuous
on V , using (30.3). In this case, E is uniformly strongly bounded on V , as in
Section 43.

LetX be a nonempty set, let c(X, k) be the space of k-valued functions onX,
and let c00(X, k) be the linear subspace of c(X, k) consisting of functions with
finite support on X, as in Section 1. Remember that c(X, k) is a topological
vector space over k with respect to the topology determined by (11.7). If g is
an element of c00(X, k), then

λg(f) =
∑
x∈X

f(x) g(x)(45.3)

defines a continuous linear functional on c(X, k). Every continuous linear func-
tional on c(X, k) is of this form, as in Section 30. Note that

λg(δy) = g(y)(45.4)

for every g ∈ c00(X, k) and y ∈ X, where δy ∈ c00(X, k) is as defined in (1.3).
Let G be a subset of c00(X, k), and put

EG = {λg : g ∈ G}.(45.5)

Thus EG is a collection of continuous linear functionals on c(X, k), and every
collection of continuous linear functionals on c(X, k) is of this form.

Suppose for the moment that |·| is trivial on k. If there is a finite set X0 ⊆ X
such that

supp g ⊆ X0(45.6)

for every g ∈ G, then it is easy to see that EG is equicontinuous on c(X, k).
Conversely, suppose that EG is equicontinuous on c(X, k). This implies that
there is an open set U in c(X, k) such that 0 ∈ U and

λg(f) = 0(45.7)
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for every g ∈ G and f ∈ U , as before. In this situation, we get that there is a
finite set X0 ⊆ X such that

{f ∈ c(X, k) : f(x) = 0 for every x ∈ X0} ⊆ U,(45.8)

as in (30.7). In particular, if y ∈ X \ X0, then (45.8) implies that δy ∈ U . It
follows that

g(y) = λg(δy) = 0(45.9)

for every g ∈ G and y ∈ X \X0, using (45.4) in the first step, and (45.7) in the
second step. This implies that (45.6) holds for every g ∈ G.

Suppose now that | · | is nontrivial on k. If EG is equicontinuous on c(X, k),
then there is an open set U in c(X, k) such that 0 ∈ U and

|λg(f)| < 1(45.10)

for every g ∈ G and f ∈ U . As before, there is a finite set X0 ⊆ X such that
(45.8) holds, because of the way that the topology is defined on c(X, k). If f
is an element of the left side of (45.8), then t f is an element of the left side of
(45.8) for every t ∈ k, so that t f ∈ U for every t ∈ k. This implies that

|t| |λg(f)| = |λg(t f)| < 1(45.11)

for every g ∈ G and t ∈ k, and hence that (45.7) holds for every g ∈ G, because
| · | is nontrivial on k. It follows that (45.6) holds for every g ∈ G, using (45.9),
as before. The equicontinuity of EG on c(X, k) also implies that EG is bounded
pointwise on c(X, k), as in Section 43. This implies in turn that G is bounded
pointwise on X, by (45.4). Conversely, if there is a finite set X0 ⊆ X such
that (45.6) holds for every g ∈ G, and if G is bounded pointwise on X, then
one can check that EG is equicontinuous on c(X, k). Of course, the pointwise
boundedness of G on X is the same as the pointwise boundedness of G on X0

when (45.6) holds for every g ∈ G.

46 Back to c00(X, k)

Let k be a field with a nontrivial qk-absolute value function | · | for some qk > 0,
and let X be a nonempty set. As in Section 1, c(X, k) denotes the space of k-
valued functions on X, and c00(X, k) is the linear subspace of c(X, k) consisting
of functions with finite support in X. Let δy ∈ c00(X, k) be as in (1.3) for
each y ∈ X, and remember that the collection of δy with y ∈ X is a basis for
c00(X, k) as a vector space over k. If g ∈ c(X, k), then

λg(f) =
∑
x∈X

f(x) g(x)(46.1)

defines a linear functional on c00(X, k), and every linear functional on c00(X, k)
is of this form, as in Section 36. Note that

λg(δy) = g(y)(46.2)
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for every g ∈ c(X, k) and y ∈ X, as in (45.4), although the setting here is a bit
different. If G is a subset of c(X, k), then

EG = {λg : g ∈ G}(46.3)

is a collection of linear functionals on c00(X, k), and every collection of linear
functionals on c00(X, k) is of this form.

If EG is bounded pointwise on c00(X, k), then G is bounded pointwise on X,
by (46.2). Conversely, suppose that G is bounded pointwise on X. This means
that there is a nonnegative real-valued function w on X such that

|g(x)| ≤ w(x)(46.4)

for every g ∈ G and x ∈ X. Using this, one can check that

|λg(f)| ≤ ∥f∥qk,w(46.5)

for every g ∈ G and f ∈ c00(X, k), where the right side of (46.5) is as in (20.1)
when qk = ∞, and as in (26.1) when qk < ∞. This simple estimate is similar
to (36.2), and one can also derive (46.5) from (36.2).

It follows from (46.5) that EG is equicontinuous with respect to the topology
τqk defined on c00(X, k) as in Section 32. This could also be obtained from the
discussion in Section 44, but it is easier to use (46.5). Note that (46.5) implies
immediately that EG is bounded pointwise on c00(X, k). Similarly, let E be a
subset of c00(X, k) that is bounded pointwise on X, and for which the supports
of the elements of E are contained in a finite subset of X. It is easy to see that
∥f∥qk,w is bounded on E, so that EG is uniformly bounded on E, by (46.5). If
E ⊆ c00(X, k) is bounded with respect to the topology induced by the product
topology on c(X, k), as in Section 19, then we have seen in Section 23 that E has
the properties just mentioned. In particular, if E is bounded in c00(X, k) with
respect to τqk , then E has these properties, because τqk contains the topology
induced on c00(X, k) by the strong product topology on c(X, k), as in Section
32.

Suppose now that qk < ∞, and let X1 be a subset of X with only finitely or
countably many elements. Of course, if X has only finitely or countably many
elements, then one can simply take X1 = X. Suppose also that

supp g ⊆ X1(46.6)

for every g ∈ G, so that we can take w in (46.4) to satisfy

suppw ⊆ X1(46.7)

as well. Under these conditions, there is another nonnegative real-valued func-
tion w̃ on X supported in X1 such that

∥f∥qk,w ≤ ∥f∥∞,w̃
(46.8)
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for every f ∈ c00(X, k). To see this, one can basically reduce to the case where
X = X1, because it suffices to verify (46.8) when f is supported in X1. Thus
one can get (46.8) as in (26.7) when X1 has finitely many elements, and as in
(26.11) when X1 is countably infinite. It follows that

|λg(f)| ≤ ∥f∥∞,w̃
(46.9)

for every g ∈ G and f ∈ c00(X, k), by combining (46.5) and (46.9). This
implies that (46.9) that EG is equicontinuous on c00(X, k) with respect to the
topology τ∞ defined in Section 32, which is the same as the topology induced
on c00(X, k) by the strong product topology on c(X, k). This could also be
derived from remarks in Section 44 when X has only finitely or countably many
elements, and otherwise one can reduce to that situation. As in Section 36, one
can treat λg on c00(X, k) as the composition of the analogous linear functional on
c00(X1, k) with the natural restriction mapping from c00(X, k) onto c00(X1, k).
This permits the equicontinuity of EG on c00(X, k) to be obtained from the
equicontinuity of the analogous collection of linear functionals on c00(X1, k).

47 Back to c00(X, k), continued

In this section, we take k = R or C with the standard absolute value function,
so that we can take qk = 1. Let X be a nonempty set again, and let c(X, k)
and c00(X, k) be as in Section 1, as usual. Each g ∈ c(X, k) determines a linear
functional λg on c00(X, k) as in (46.1), and a subset G of c(X, k) determines
a collection of linear functionals on c00(X, k) as in (46.3). If G is bounded
pointwise on X, then there is a nonnegative real-valued function w on X that
satisfies (46.4), which implies that (46.5) holds with qk = 1. In particular, this
implies that EG is equicontinuous with respect to the topology τ1 defined on
c00(X, k) in Section 32.

Now let 1 < r ≤ ∞ be given, and suppose that G is a subset of c(X, k) such
that EG is equicontinuous on c00(X, k) with respect to the topology τr defined
in Section 32. This implies that there is a positive real-valued function w on X
such that

|λg(f)| ≤ ∥f∥r,w(47.1)

for every g ∈ G and f ∈ c00(X, k), where ∥f∥r,w is as in (20.1) or (26.1). More
precisely, the equicontinuity of EG with respect to τr on c00(X, k) implies a
condition like (42.7), which corresponds in this situation to having a constant
times the maximum of finitely many weighted ℓr norms on the right side of
(47.1). As in (37.1), one can get (47.1) by taking w to be the same constant
times the maximum of the finitely many weights on X just mentioned. Using
(47.1), one can check that∑

x∈X

|f(x)| |g(x)|w(x)−1 ≤ ∥f∥r(47.2)

for every g ∈ G and f ∈ c00(X, k), as in (37.6), and where ∥f∥r is the unweighted
ℓr norm of f , as in Section 6.
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Let 1 ≤ r′ < ∞ be the exponent conjugate to r, in the sense that

1/r + 1/r′ = 1.(47.3)

In particular, r′ = 1 when r = ∞, and r′ < ∞ because r > 1. If A is any
nonempty finite subset of X, then it is well known that (47.2) implies that(∑

x∈A

|g(x)|r
′
w(x)−r′

)1/r′

≤ 1(47.4)

for every g ∈ G, using suitable choices of functions f supported on A. Equiva-
lently, this means that ( ∑

x∈X

|g(x)|r
′
w(x)−r′

)1/r′

≤ 1(47.5)

for every g ∈ G, where the sum over X on the left side of (47.5) is defined to be
the supremum of the corresponding subsums over nonempty finite subsets A of
X. In particular, this implies that the support of each g ∈ G has only finitely
or countably many elements, as in Section 37.

Observe that

|λg(f)| ≤
∑
x∈X

|f(x)| |g(x)| =
∑
x∈X

(w(x) |f(x)|) (|g(x)|w(x)−1)(47.6)

for every f ∈ c00(X, k) and g ∈ c(X, k). If A is a nonempty finite subset of X
that contains the support of f , then we get that

|λg(f)| ≤
∑
x∈A

(w(x) |f(x)|) (|g(x)|w(x)−1).(47.7)

This implies that

|λg(f)| ≤
(∑

x∈A

|g(x)|r
′
w(x)−r′

)1/r′

∥f∥r,w(47.8)

when supp f ⊆ A, by Hölder’s inequality. If (47.5) holds for every g ∈ G, then
it follows that (47.1) holds for every g ∈ G and f ∈ c00(X, k). Of course, this
implies that EG is equicontinuous on c00(X, k) with respect to τr, as before.

48 Linear functionals on c(X, k)

Let k be a field with a nontrivial qk-absolute value function | · | for some qk > 0,
and let X be a nonempty set. Also let c(X, k) be the space of k-valued functions
on X, and let c00(X, k) be the subspace of c(X, k) consisting of functions with
finite support in X, as in Section 1. If g ∈ c00(X, k), then we can define a linear
functional λg on c(X, k) as in (45.3). As in Section 30, λg is a continuous linear
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functional on c(X, k) with respect to the topology determined on c(X, k) by
(11.7) for each g ∈ c00(X, k), and every continuous linear functional on c(X, k)
with respect to this topology is of this form. Let G be a subset of c00(X, k),
and let EG be the collection of linear functionals λg on c(X, k) with g ∈ G, as
in (45.5). Suppose that EG is bounded pointwise on c(X, k), as in Section 43,
so that

EG(f) = {λg(f) : g ∈ G}(48.1)

is a bounded subset of k for every f ∈ c(X, k). Note that

EG(δy) = {g(y) : g ∈ G}(48.2)

for each y ∈ X, by (45.4), where δy ∈ c00(X, k) is as in (1.3). Thus the
pointwise boundedness of EG on c(X, k) implies that G is bounded pointwise
on X in particular. We would like to show that the pointwise boundedness of
EG on c(X, k) also implies that the supports of the elements of G are contained
in a finite subset of X, as in (45.6). Of course, this is trivial when X has only
finitely many elements.

Suppose for the sake of a contradiction that there is no finite subset of X
that contains the supports of the elements of G. In this case, there is a sequence
{gj}∞j=1 of nonzero elements of G such that

supp gl+1 ̸⊆
l∪

j=1

supp gj(48.3)

for each positive integer l. This implies that there is a sequence {xj}∞j=1 of
distinct elements of X such that xl is in the support of gl for each l ∈ Z+,
and xl is not in the support of gj when j < l. Equivalently, this means that
gl(xl) ̸= 0 for each l, and that gj(xl) = 0 when j < l. If f is a k-valued function
on X that is supported on the set of xj ’s, j ∈ Z+, then we get that

λgl(f) =

l∑
j=1

f(xj) gl(xj)(48.4)

for each l ∈ Z+. Using this, one can choose f such that |λgl(f)| → ∞ as
l → ∞, contradicting the hypothesis that EG be bounded pointwise on c(X, k).
Thus the pointwise boundedness of EG on c(X, k) implies that the supports of
the elements of G are contained in a finite subset of X, as desired. We have
also seen that G is bounded pointwise on X in this situation, so that EG is
equicontinuous on c(X, k), as in Section 45.

Suppose for the moment that X has only finitely or countably many ele-
ments. This implies that the topology determined on c(X, k) by (11.7) is also
determined by a translation-invariant qk-metric, as in Sections 9 and 12. If
k is complete with respect to the qk-metric (4.8) associated to | · |, then one
can check that c(X, k) is complete with respect to any translation-invariant qk-
metric that determines the same topology on c(X, k). Under these conditions,
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the Baire category theorem implies that c(X, k) is of second category. Thus the
equicontinuity of EG could be obtained from the pointwise boundedness of EG
on c(X, k) using the Banach–Steinhaus theorem in this situation.

If k is not complete, then one can pass to a completion. It is easy to see that
the pointwise boundedness of EG on c(X, k) would be maintained in passing to
a completion of k. If X is uncountable, then one can consider the restrictions
of the elements of EG to the subspace of c(X, k) consisting of functions with
support contained in a countable set X1 ⊆ X. This subspace can be identified
with the space c(X1, k) of k-valued functions on X1, and the equicontinuity of
the restrictions of the elements of EG to this subspace implies that the supports
of the restrictions of the elements of G to X1 are contained in a finite subset of
X1, as before. If this holds for every countable set X1 ⊆ X, then the supports
of the elements of G should be contained in a finite subset of X.

49 Continuity of multiplication

Let k be a field with a qk-absolute value function | · |, and let X be a nonempty
set. As usual, we let c(X, k) be the space of k-valued functions on X, equipped
with the topology determined by (11.7). This makes c(X, k) into a topological
vector space over k with respect to | · | on k, and c(X, k) is also a commutative
algebra over k with respect to pointwise multiplication of functions. It is easy
to see that

(f, g) 7→ f g(49.1)

defines a continuous mapping from

c(X, k)× c(X, k)(49.2)

into c(X, k), using this topology on c(X, k), and the corresponding product
topology on (49.2). Thus c(X, k) may be considered as a commutative topolog-
ical algebra with respect to this topology.

As in Section 1, the subspace c00(X, k) of c(X, k) consisting of functions with
finite support in X is an ideal in c(X, k) as a commutative algebra. Thus (49.1)
also leads to a mapping from c(X, k)× c00(X, k) into c00(X, k). Let 0 < r ≤ ∞
be given, and let τr be the corresponding topology defined on c00(X, k) as in
Section 32. Let us take

c(X, k)× c00(X, k)(49.3)

to be equipped with the product topology associated to the topology on c(X, k)
mentioned in the preceding paragraph and τr on c00(X, k). If X has infinitely
many elements, and if | · | is nontrivial on k, then one can check that (49.1) is
not continuous as a mapping from (49.3) into c00(X, k) with respect to these
topologies. However, if X has only finitely many elements, then c00(X, k) is
the same as c(X, k), τr is the same as the topology on c(X, k) mentioned in the
previous paragraph, and the continuity of this mapping is the same as before.
If | · | is trivial on k, then τr is the same as the discrete topology on c00(X, k)
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for every r > 0, and one can verify that (49.1) is continuous as a mapping from
(49.3) into c00(X, k), even when X has infinitely many elements.

Let 0 < r1, r2, r3 ≤ ∞ be given, and suppose that

1/r3 = 1/r1 + 1/r2,(49.4)

with the usual convention that 1/∞ = 0. Remember that ∥f∥r is defined for
nonnegative real-valued functions on X with finite support and r > 0 in (2.1)
and (2.2). If f1, f2 are nonnegative real-valued functions onX with finite supprt,
then it is well known that

∥f1 f2∥r3 ≤ ∥f1∥r1 ∥f2∥r2 ,(49.5)

by Hölder’s inequality. Remember too that ∥f∥r,w is defined for f ∈ c00(X, k),
r > 0, and nonnegative real-valued functions w on X as in (20.1) and (26.1).
Let w1, w2 be nonnegative real-valued functions on X, and put

w3(x) = w1(x)w2(x)(49.6)

for each x ∈ X. If f1, f2 ∈ c00(X, k), then

∥f1 f2∥r3,w3 ≤ ∥f1∥r1,w1 ∥f2∥r2,w2 .(49.7)

This can be obtained from (49.5) applied to |f1(x)|w1(x) and |f2(x)|w2(x).
Let us now consider (49.1) as a mapping from

c00(X, k)× c00(X, k)(49.8)

into c00(X, k). More precisely, let r1, r2 > 0 be given, and let us take (49.8)
to be equipped with the product topology corresponding to τr1 and τr2 on the
two factors of c00(X, k), where τr is as in Section 32. Similarly, let r3 > 0 be
given, and let us take c00(X, k) in the range of (49.1) to be equipped with τr3 .
If (49.4) holds, then one can use (49.7) to show that (49.1) is continuous with
respect to these topologies. In this argument, one should begin with a positive
real-valued function w3 on X, and choose positive real-valued functions w1, w2

on X so that (49.6) holds.

50 Multiplication operators

Let us continue with the same basic notation and hypotheses as in the previous
section. If a ∈ c(X, k), then

Ma(f) = a f(50.1)

defines a linear mapping from c(X, k) into itself, as in (1.8). It is easy to see that
this mapping is continuous with respect to the topology determined on c(X, k)
by (11.7). Let A be a subset of c(X, k), and consider

EA = {Ma : a ∈ A}(50.2)
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as a collection of linear mappings from c(X, k) into itself. If | · | is trivial
on k, then one can check that (50.2) is equicontinuous on c(X, k), even when
A = c(X, k). Otherwise, if | · | is not trivial on k, and if A is bounded pointwise
on X, then one can verify that EA is equicontinuous on c(X, k). In the other
direction, if | · | is not trivial on k, and if EA is bounded pointwise on c(X, k),
then A is bounded pointwise on X. One way to look at this is to use the fact
that

Ma(1X) = a(50.3)

for every a ∈ c(X, k), where 1X is the k-valued function on X equal to 1 at
every point, as in (1.1).

We can also consider (50.1) as a linear mapping from c00(X, k) into itself
for each a ∈ c(X, k). Let 0 < r ≤ ∞ be given, and let w be a nonnegative
real-valued function on X. Thus ∥f∥r,w can be defined for f ∈ c00(X, k) as in
(20.1) and (26.1). Observe that

∥Ma(f)∥r,w = ∥a f∥r,w = ∥f∥r,|a|w(50.4)

for each a ∈ c(X, k) and f ∈ c00(X, k), using |a(x)|w(x) as a nonnegative
real-valued function on X in the last step. It follows from (50.4) that for each
a ∈ c(X, k), Ma is continuous as a linear mapping from c00(X, k) into itself,
with respect to the topology τr defined in Section 32 on both the domain and
range of this mapping.

Let A be a subset of c(X, k) again, and let us now consider (50.2) as a
collection of linear mappings on c00(X, k). If |·| is trivial on k, then the topology
τr defined on c00(X, k) as in Section 32 reduces to the discrete topology for each
r > 0. Thus EA is automatically equicontinuous on c00(X, k) with respect to
τr for each r > 0 in this case. Otherwise, suppose for the moment that | · | is
not trivial on k. If EA is bounded pointwise on c00(X, k), then it is easy to see
that A is bounded pointwise on X, using (1.9). In the other direction, suppose
that A is bounded pointwise on X, so that there is a nonnegative real-valued
function wA on X such that

|a(x)| ≤ wA(x)(50.5)

for every a ∈ A and x ∈ X. If w is any nonnegative real-valued function on X
and 0 < r ≤ ∞, then we can combine (50.4) and (50.5) to get that

∥Ma(f)∥r,w ≤ ∥f∥r,wA w(50.6)

for each f ∈ c00(X, k). This implies that for each r > 0, EA is equicontinuous
on c00(X, k) with respect to τr on both the domain and range under these
conditions.

If a ∈ c00(X, k), then (50.1) may be considered as a linear mapping from
c(X, k) into c00(X, k). One can check that this mapping is continuous with
respect to the topology determined on c(X, k) by (11.7) and the topology τr
defined on c00(X, k) in Section 32 for any r > 0. Let A be a subset of c00(X, k),
and let us consider (50.2) as a collection of linear mappings from c(X, k) into
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c00(X, k). If | · | is trivial on k, then τr is the discrete topology on c00(X, k) for
each r > 0, as before. In this case, one can verify that EA is equicontinuous
with respect to the topology determined on c(X, k) by (11.7) if and only if the
supports of the elements of A are contained in a finite subset of X. Suppose
now that | · | is not trivial on k. If EA is bounded pointwise on c(X, k) with
respect to τr on c00(X, k) for some r > 0, then

EA(1X) = {Ma(1X) : a ∈ A} = A(50.7)

is a bounded set in c00(X, k) with respect to τr. This implies that A is bounded
pointwise on X, and that the supports of the elements of A are contained in
a finite subset of X. Conversely, if A has these two properties, then it is easy
to see that EA is equicontinuous with respect to the topology determined on
c(X, k) by (11.7) and τr on c00(X, k) for any r > 0.
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