Day 1 - Introduction Let M be a smooth closed manifold. Q. Does M admit a nowhere zoro we ctor field? S'xS' (45) S Yes No Recall that a surface S has a nowhere zero vector field $\Leftrightarrow \chi(s) = 0$. More generally, if Mis a finite CW-complex then we can define $\chi(M) = \sum_{i=1}^{n} (-1)^{i} (\# \text{ of cells of dim } i)$ Thm: $\chi(M) = \#$ of zeros of vector field (counted w/ sign) This related to homology/cohomology: \underline{Thm} : $\chi(M) = \sum_{i=0}^{M} (-i)^{i} \operatorname{rank} \operatorname{of} H_{i}(M)$ Recall, the tangent space of M is $TM = \bigcup_{p \in M} T_pM$ = U {(p,v) | p \in M, v is a vector tangent to } M at p

Let
$$Z(M) = \{(p, \vec{o}) \mid p \in M\} \subset TM$$
 be the zero set
and $Z(M)^+$ be a pushoff of $Z(M)$ into TM .
Thm: $Z(M) \cap Z(M)^+ = \chi(M)$
Hence χ reflects an intersection $\#$.
Let χ be the Gaussian curvature for any
embedding of $M \subseteq \mathbb{R}^N$.
Thm: $\chi(M) = \frac{1}{Vol(S^*)} \int_M \chi(\chi) dvol_M$.
 $\Rightarrow \chi$ is an integral of curvature.
From deRham cohomology, $\exists n$ -form Λ_M generating
 $H^n(M;\mathbb{R}) \cong \mathbb{R}$ s.t.
 $\chi(M) = \Lambda([M])$
 \Box fundamental class in $H_n(M)$
hence we can view χ as a cohomology class Λ_M ,
called the Euler class.
More generally, using work of Stiefel, $Whithey$,
Pontrjagin, and Chern we can general χ .
 $M \longrightarrow TM$, a rank n weter bundle
How much does this structure of TM teM
us about M ?

Q. Can we find k linearly independent (hence nowhere Zero) vector fields on TM. Thm (Stiefel): Every compact 3-mild has a sit of three nowhere zero vector fields that are everywhere linearly independent. $E_{X}; T^{3} = S' \times S' \times S'$ $Ex: S^3 = unit quaternions$ (Lie group) Can find a basis at identify. Push around by left multiplication. $\Rightarrow TM^3 \cong M^3 \times IR^3$ (product bundle) To obstruct this, ran use Stiefel-Whitney classer. To any vector bundle of rank n, Z: ET, M, E locally looks like a product. For pEM, pEK sit, π'(u) = U×Rⁿ. We gef $W_i(\tilde{z}) \in H^i(M; \mathbb{Z}_2).$ Thm : If $W_i(z) \neq 0$ then z cannot have (n-i+1)everywhere linearly independent sections.

Pontrjagin/Thom Thm: A closed smooth manifold Mⁿ is the boundary of a compact smooth manifold \Leftrightarrow all the Stiefel-Whitney classes vanish. Ex: IRP² = 2W⁴, what is W⁴?

- · W, obstructs M being orientable
- For a simply connected 4-mfld, W₁=W₂=O (called a spin 4-manifold) ⇒ the intersection form is even.
 Chern classes :

 $Complex v.b. \not\in \longrightarrow C_i(\not\in) \in H^{i}(M; \mathbb{Z})$

Pontrjagin classes: can complexify a real vector bundle and consider its Chern classes.

real v.b. $z \longrightarrow p_i(z) \in H^{ii}(M; \mathbb{Z})$. Can use the Pontrjagin classes to prove: <u>Thm</u> (Milnor): I triangulated 7-mfld which is homeomorphic (in fact PL-equiv) to S² but is not diffeomorphic to S².