Define 
$$W_{1}(z)(z) = \begin{cases} 0 & \text{if } z^{z}(z) \text{ is trivial} \\ 1 & \text{if } z^{z}(z) & \text{not trivial} \end{cases}$$
  
Can show that this is additive since
$$\frac{1}{||||'|'||'||'|} = \text{trivial}$$
If  $z^{n}z$  then need to show pullback bundles
are same, but then  $\overline{V}z$  is null-homotopic
and  $W_{1}(z)(\overline{v}z) = W_{1}(z)(z) + W_{1}(z)(\overline{z})$ 
so need to show for nullhimotopic  $f: S' \rightarrow B_{1}$ 

$$\int_{z}^{z} (z) = \text{trivial} \leftarrow \text{later}$$
Lemma (later): All bundles over  $B^{n}$  (or contractible)
 $u = \frac{1}{2} e^{nviul}$ 
Recall,  $RP^{n} = \frac{1}{2} e^{nt} c \rightarrow \cdots c \rightarrow RP^{n} = \lim_{z \to \infty} RP^{n}$ 
To each pt  $[l] \in RP^{n}$  get a this suspace  $l \in R^{n+1}$ .

Define the canonical bundle 
$$\delta'_{n}$$
 owr  $\mathbb{RP}^{n}$  as follow:  
 $E(\delta'_{n}) = \{([a], v) \mid v \in L\} \subseteq \mathbb{RP}^{n} \times \mathbb{R}^{n+1}$  and  
 $\Pi([L], v) = [L]$   
 $\delta'_{n} = E(\delta'_{n}) \xrightarrow{\pi} \mathbb{RP}^{n}$  is a vector bundle of rank 1.  
 $\delta'_{n} = E(\delta'_{n}) \xrightarrow{\pi} \mathbb{RP}^{n}$  is a vector bundle of rank 1.  
 $\delta'_{n} = \delta'_{n} = \delta'_{n} + \delta'_{n}$ 





This is exactly the Mobius bundle

=> 81 = Mobius bundle = trivial HW: Consider RPn ~ i RPn+1 Show that  $i^{*}(x'_{n+1}) = X'_{n}$  (easy) Restriction of 8'14, to IRP". A => Vn' is non-trivial for all n ! Can do same for complex v.bs. CP<sup>h</sup>= { |-din complex U.S. of C<sup>n+1</sup>}.  $E(\chi'_{n}) = \{ ([I], v) \mid \forall \in l \} \subseteq \mathbb{CP}^{n} \times \mathbb{C}^{n+1}$ l in a 1-dim ( subspace rp<sup>n</sup> T([l],v) = [l][h=1]  $CP'=S^2$ ,  $\exists a many 1 dim C bundles over S^2$ Will darosify later. will see this is non-frivial & n.