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Step 2 B is not compact ( but para compact )

Need to use infinite Grass Mann in this case !

Theorem : Any rank n vector bundle our  a para compact

Haussdorff B admits a bundlemap{ → 8
"

.

- To prone this
,

we mimic the compact case using a

louhtably infinite but locally finite cover { Up sit .
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;

is trivial
.

Proceed as before
.
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