$$\frac{\text{Theorem } 1: \text{ Any two bundle maps from a rank n vector} \\ \text{bundle } to 8^n are bundle-homotopic \\ \hline \frac{\text{Proof}:}{\text{Gran bundle maps, get } \hat{F}_i : E \longrightarrow \mathbb{R}^n} \\ \hline \frac{\text{Inear and injective on each fiber. It suffices to produce a homotopy } \hat{F}_t : E \longrightarrow \mathbb{R}^n$$
 that is linear and injective for all t on each fiber.
There are two cases to consider
[Case 1:] $\hat{F}_0(e)$ is never a multiple of $\hat{F}_1(e)$ whenever $e \neq \overline{0}$.
In this case, we can define $\hat{F}_t(e) = (1-t)\hat{F}_0(e) + t\hat{F}_1(e)$
Then \hat{F}_t is lin. and injective on each fiber.
[Case 2:] Define $d_{evin}: \mathbb{R}^n \longrightarrow \mathbb{R}^n_{e_1} \longrightarrow e_{2i}: \qquad d_{odd}: \mathbb{R}^n \longrightarrow \mathbb{R}^n_{e_1} \longrightarrow e_{2i+1}$
to be the linear injective maps where $e_i = (0, \dots, 0, 1, 0, \dots)$.
Then \hat{F}_{\bullet} and $d_{odd} \circ \hat{F}_{\bullet}$ so we can use case 1 to show they are homotopic with the homotopy linear and injective on each fiber. Do the same for \hat{F}_i only intersect in \tilde{O} ; thus they satisfy Case 1 as well. Thwo $\hat{F}_{\bullet} \sim d_{oda} \circ \hat{F}_{\bullet} \sim d_{evin} \circ \hat{F}_i \sim \hat{F}_i$.

Suppose
$$\Psi([f_{1}]) = \Psi([g_{1}])$$
, that is $f,g: B \rightarrow G_{n}(\mathbb{R}^{n})$
with $f^{*}(\mathbb{R}^{n}) \cong g^{*}(\mathbb{R}^{n})$. Then we have bundle maps
 $f^{*}(\mathbb{R}^{n}) \xrightarrow{f} \mathbb{R}^{n}$ $f^{*}(\mathbb{R}^{n}) \xrightarrow{\gamma} g^{*}(\mathbb{R}^{n}) \xrightarrow{g} \mathbb{R}^{n}$
 $\downarrow_{B} \xrightarrow{f} \mathbb{A}^{n} f^{*}(\mathbb{R}^{n}) \xrightarrow{\gamma} g^{*}(\mathbb{R}^{n}) \xrightarrow{g} \mathbb{R}^{n}$
 $\downarrow_{B} \xrightarrow{f} \mathbb{A}^{n} \mathbb{R}^{n}$
By the privious theorem, the bundle maps f and $\tilde{g} \circ n$
are bundle homotopic, and so the maps the over are as
well. Hence $f \sim q$. Thus Ψ is injective!
We have shown everything except well-definedness.
 $[\Psi \text{ is well-defined}]$
Theorem 1: $If \Xi = E^{-\pi} B$ is a vector bundle over B
 $f_{o}, f_{i}: X \longrightarrow B$ are homotopic maps from X a paracompact-
and Haussdorff space, then $f^{*}_{o}(\Xi)$ is isomorphic to $f^{*}_{i}(\Xi)$.
Note: This is also true for principal G-bundles.
We will prove a slightly stronger theorem.
Theorem 1': $If E^{-\pi} X \times [o_{1}i]$ is a vector bundle with X
paratompact and Haussdorff then $E \cong E|_{X \times Iii} \times [o_{i}i]$ where
 $E|_{X \times Io_{i}} = E|_{X \times Iii}$ (as bundles).

Theorem 1' => Theorem 1 \: Suppose fo~f, via F:X× I→B. Then F*(Z) is a bundle over X×[0,1], and its restriction to Xx {i} is isomorphic to f: (2) for i=0,1: Use naturality of pullbacks: $(dot)_{*}(\xi) \equiv d_{*}(t_{*}(\xi))$ So by Theorem 1', $f_{\circ}^{*}(z) \cong f_{\cdot}^{*}(z)$. ·We will prove Theorem I' next time! Important Corollary : Any bundle over a contractible, paracompact, Haussdorff base space is trivial. Proof: Since B is contractible, id: B-B is homotopic to a constant map c: B-B. Theorem 1 implies $\mathfrak{Z} \cong (\mathrm{id})^*(\mathfrak{Z}) \cong \mathrm{C}^*(\mathfrak{Z}) \cong \mathrm{product} \ \mathrm{bundle}_{\ast}$