| Day 17 | Last time we defined paracompact. Note: · every metrizable space is paracompact. · every manifold is pararompact. Theorem (see Munkres Thm 41,7): Let X be a paracompact, Haussdorff space. Then there is a partition of unity on X dominates by $\{U_{\alpha}\}$. i.e. \exists continuous $\mathcal{R}_{\alpha}: X \longrightarrow [O_1]$ sit (1) support Na = Ua (2) Esupport has is locally finite (3) $\Sigma \lambda_{a}(x) = 1 \quad \forall x \in X.$ If X is a smooth mfld, then I smooth partition of unity. Note: partions of unity are useful for patching local functions together to get a global function. Ex: If $f_a: U_a \longrightarrow \mathbb{R}^n$ smooth $\Rightarrow f = \sum \lambda_a f_a$ is smooth and well-defined since · Rafa smooth on Un λ_af_a smooth on X supp Φ_a since it is defined to be zero.

- For any $x \in X$, x only like in a finite # of U_A so $\supseteq \lambda_a f_a(x)$ finite.
- f is smooth \Leftrightarrow it is smooth on each open subset of X For each X, \exists open V_x s.t. $V_x \cap U_a = \phi$ except finite $\# \alpha'$. Hence on V_a , $\leq \lambda_a f_a$ is a finite # of smooth functions.

Theorem a': If
$$\Xi = E \xrightarrow{\pi} X \times [0,1]$$
 is a vector bundle with X
paraiompact and Hausrdorff then
 $E|_{X \times \{0\}} \cong E|_{X \times \{1\}}$ (as bundles).
Proof:
Step 1 Want to find an open cover of X , $\{U_a\}$ s.t.
 $\{U_a \times [0,1]\}$ is trivial. Fix $X \in X$ and consider an open
cover of $\{X\} \times [0,1]$ by charts over which the bundle
is trivial. Can assume (by product topology) that
open sets are form $(U_{X,i} \times (a_{i,j}b_i))$ (or $U_{X,o} \times [0,b_o)$, $U_{X,m} \times (a_{m,1}]$)
Note: $\exists a \ +ubc''$
inside all of them.
Let $U_X := \bigcap_{i=1}^{m} U_{X,i}$, can use a finite the of $(a_{H,i}, b_{H,i})$)

to show that $Z|_{\mathcal{U}_{x}\times \mathcal{E}_{0,13}}$ is trivial.

Step 2 Find a partition of unity subordinate to EUx 3xex. For simplicity, assume X=compact (see MS for entire proof). Then there is a finite subcover and a finite partion of

unity. N., ..., Nr. Consider the graph of N,+...+ Nr, $d U^{=} \left\{ \left(x' \mathcal{Y}'(x) + \dots + \mathcal{Y}'(x) \right) \right\} \subset X \times [0^{1} l]^{-1}$ i.e. Since $\lambda_1(X) + \dots + \lambda_r(X) = 1$, we have that $gr_r = X \times \{1\}$. Now consider the bundle over $qr_{r_{i}} = \left\{ \left(X, \lambda_{i}(X) + \dots + \lambda_{c}(X) \right) \right\} X \in X \right\} \subseteq X \times [0, 1]$ Note: $supp(\lambda_r) \leq U_r \times [0,1]$ and $Z | U_r \times [0,1] = trivial.$ So for $X \notin U_r$, $\eta_1(x) + \dots + \eta_r(x) = \eta_1(x) + \dots + \eta_r(x)$ $\Rightarrow \operatorname{gr}_{r-1} \cap U_i \times [0,1] = \operatorname{gr}_r \cap U_i \times [0,1] \quad \text{for } i \neq r.$ Thus gr., and gr. only differ on U:x EO, 13. But these are both trivialized by single chart on Ur×[0,1]. and their intersection is trivialized by this chart, so they are isomorphic. keep doing this until you get to gr.= {(x, o) [x \in X }. Then $\mathcal{Z}|_{\chi \times \mathfrak{fo}\mathfrak{I}} \cong \mathcal{Z}(.$ Universal bundles for other situations (B=paracompact, Hause.)

• For complex wctor bundles, we have $\mathcal{Y}^h \longrightarrow G_n(\mathbb{C}^\infty)$ and \mathcal{Y}^n = canonical n-plane bundle over G_n . complex Grassmann $\begin{cases} nomotopy classes \\ of map to G_n(\mathbb{C}^\infty) \end{cases} \longleftrightarrow \mathbb{Vect}^n_{\mathfrak{C}}(B) \end{cases}$ For principal G-bundles (G=top group) or vector bundles with restricted structure groups, so(n), spin(n), etc.,
 have universal bundles EG and bundles are classified by classifying maps to BG.