Day 18

Applications of the classification theorem:

Real line bundles our B:
Vect¹(X)=[X, IRP^{*}]=[X, K(Z_a, 1)] = H'(X; Z₂)

$$\implies X = S^{m}$$
 we have
 $H'(S^{m}; Z_{2}) = \begin{cases} 0 & m \neq 1 \\ Z_{2} & m = 1 \end{cases}$

Only trivial bundle when m = 1, get product + Mobins bundle over S'.

Complex line bundles over X :
$$(X = CW \text{ (complex or manifold}))$$

 $Vect^{1}_{c}(X) = [X, G_{1}(C^{\circ})] = [X, CP^{\circ}] = [X, K(\mathcal{Z}, a)]$
 $\cong H^{2}(X; \mathbb{Z})$
 $aig. top.$
 \Rightarrow when $X = S^{m}$, $H^{2}(S^{m}; \mathbb{Z}) = O$ for $m \neq a$.
 $H^{2}(S^{2}; \mathbb{Z}) \cong \mathbb{Z}$
 \Rightarrow there are \mathbb{Z} worth q (complex line bundles over
 S^{2} . Cun see this will clutching construction,

Consider a bundle over S2:

These attach along equator S'. $5' \times \mathbb{C} \longrightarrow 5' \times \mathbb{C}$ $(x, \overline{z}) \longmapsto (x, g(x) \overline{z}) \qquad g: S' \longrightarrow GL_1(\mathbb{C}) \cong U(1)$ transition map.

It turns out that the bundle only depends on homotopy class of g. $[g] \in TI_1(U(1)) \cong \mathbb{Z}$. Note: Structure group is always in SO(2) so it orientable!

Clutching (instruction $\xi = E^{-\pi} S^{h}$ Let ξ be a fiber bundle w/ fiber F over S^{h} and structure gp $G \in Homeo(F, F)$. Let N = northern hemisphere and S = southern hemisphere. Then $\xi|_{N}$ and $\xi|_{S}$ are trived. $\pi'(N) \xleftarrow{\phi_{N}} N \times F$ $\pi'(S) \xleftarrow{\phi_{S}} S \times F$ Over $S^{n-1} = N \wedge S$ $S^{n-1} \times F \xleftarrow{\phi_{N}} \pi'(S^{n}) \xleftarrow{\phi_{S}} S^{n-1} \times F$ $(x, v) \longmapsto (x, f(x)v) \quad f:S^{n-1} \to G$

Note: All water bundles over S' for
$$n \ge 2$$
 are
orientable since transition function like in a connected
component of $GL_n(\mathbb{R})$, i.e. can reduce structure group
to $SO(h)$!
Moreover, given $f: S^{n-1} \rightarrow G$, can construct a
bundle Ξ_f by gluing product bundles together.
Thm: For G path connected or $n=1$, \exists bijection
 $T_{n-1}(G) \xleftarrow{\Psi} \begin{cases} \text{isomorphism classes} \\ of f bundle over S' \\ with structure gp G \end{cases}$
 $[f] \longrightarrow \Xi_f.$
Proof: Step 1 is to show that Ψ is well-defined.
Suppose $f_0 \sim f_1$ via homotopy F_t . Let
 $\Xi_i = \Xi_{f_i} = \begin{bmatrix} E_i \\ |T_i| \\ S'n. \end{bmatrix}$
Define iso $\Xi_0 \xrightarrow{\eta} \Xi_1$. Let $\eta: E_0|_N \rightarrow E_1|_N$ be
identify.
 $\Xi_f = S \times F \cup_f N \times F_1 (x,y) \sim (x,f(x)y)$
So on $S^{n-1} \times F \subset S \times F$ we have

 $(x, v) \longmapsto (x, f_{\mathfrak{o}}(x)'v) \longrightarrow (x, f_{\mathfrak{o}}(x)'v) \longrightarrow (x, f_{\mathfrak{o}}(x)f_{\mathfrak{o}}(x)'v)$ Want to extend this to all of SXF. Note that G is a top group so the map $f_0^{-1}: S^{n-1} \longrightarrow G$ by $f_0^{-1}(x):=f_0(x)^{-1}$ makes sense and is continuous. Also f;f::Sn->G makes sense, and is continuous. Can check that since forf, fof is homotopic to constant map, Ce, sending each element to eEG. To prove this, note Fiofo is such a homotopy. Thus fifo extends to F: S -> G, hence can extend ⊕ to S×F → S×F, which give as our isomorphism. $(x, v) \longmapsto (x, \overline{f}(x) v)$ Ψ mjective Suppose ≥_f = ≥_g for some f.g. We have

By composing with another iso can acrume $\eta_s = id$.

$$\begin{array}{c} & & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & & \\ & & &$$