Day 22 - cell structure for $G_n(\mathbb{R}^{\circ})$ con't. Recull: $e'(\sigma) = V_n^{\circ}(\mathbb{R}^m) \cap (H^{\sigma_1} \times \cdots \times H^{\sigma_n})$ is the set of orthormal frames with $X : \in H^{\sigma_i}$. Let $\overline{e}'(\sigma)$ be the set $w | x_i \in \overline{H}^{\sigma_i}$. $(frame = ordered basis of IR^n)$ Lemma: ē'(or) is homeomorphic to a closed cell of dim d(o)=(v,-1)+ ...+ (v,-n) with mterior e'(o), and the latter is mapped homeomorphically onto $e(\sigma)$ via $q' \bar{e}'(\sigma) \longrightarrow G_n(\mathbb{R}^n)$. Proof: Prove by induction on n. $[n=1] \overline{e}'(\sigma_{1}) = \{(\xi_{1}, \ldots, v_{k}, v_{1}, \ldots, v) \mid \leq \xi_{1}^{*} = 1, \xi_{k} > 0, \ldots, v\}$ klosed upper hemicphene of Soil = homeo to Do!. Assume true for n. For any two we dors u, ve tR^m with u= tV, there is a unique rotation $T(u,v): \mathbb{R}^m \longrightarrow \mathbb{R}^m$ that sends u inv and fixes everything or thogonal -o the plane spanned by U.V. Specifically, $T(u,v) \times = \times - \underbrace{(u+v) \cdot \chi}_{1+u+v} (u+v) + \partial(u \cdot \chi) v.$

T satisfies:
()
$$T(u,v)x$$
 is continuous as a function of 3 variables
() $if u,v \in IR^{k}$, then $T(u,v)x \equiv x \mod R^{k}$.
Denote $b_{i} \equiv (0, ..., 0, 1, 0, ..., 0)$. Then $(b_{1,...,b_{n}}) \in C'(\sigma)$.
 im
Let $(X_{1}, ..., X_{n})$ be any other n-frame in $C'(\sigma)$.
 $X_{i} \equiv (\overline{z}_{1}, ..., \overline{z}_{i}_{i}, 0 \cdots 0)$, $\overline{z}_{i} > 0$
 $X_{i} = (\overline{z}_{1}, ..., \overline{z}_{i}_{i}, 0 \cdots 0)$, $\overline{z}_{i} > 0$
 $X_{i} = X_{j} = S_{ij}$
Consider the rotation of IR^{m} :
 $T = T(b_{n}, X_{n}) \circ T(b_{n-1}, X_{n-1}) \circ \cdots \circ T(b_{1}, X_{1})$.
 $\circ T(b_{1}, X_{1}), T(b_{2}, X_{2}), ..., T(b_{i-1}, X_{i-1})$ leave b_{i} fixed
(since $b_{j,j} x_{j}$ has it entry zero for $j < i$ so
 $X_{j} \cdot b_{i} = b_{j} \cdot b_{i} = 0$ for $j < i$).
 $\circ T(b_{i+1}, X_{i+1}), ..., T(b_{n}, X_{n})$ fix X_{i}
(since $X_{j} \cdot X_{i} = 0$ for $i \neq j$ and j th entry of X_{i}
is zero for $j > i$ so $X_{i} \cdot b_{j} = 0$)
Consider the image of b_{i} under $T :$
 $T(b_{i-1}, X_{i-1}) \circ \cdots \circ T(b_{i}, x_{1}) : b_{i} \longmapsto b_{i}$
 $T(b_{i}, X_{i}) : b_{i} \longmapsto X_{i}$.

Hence $T: b_i \longmapsto X_i$. Let onthe be an integer with onthe on and D be the set of unit vectors $u \in \overline{H}^{O_{n+1}}$ with $b_1 \cdot u = \dots = b_n \cdot u = D$ i.e. u is of form (0, ..., 0, 4, ..., r, 0, ..., 0)with rzo in the Ont coordinate and u.u=1. The D is a closed hemisphere of dim On+1-n-1, and so is a closed ball. Define a homeomorphism $f: \tilde{e}'(\sigma_{1,...}, \sigma_{n}) \times D \longrightarrow \tilde{e}'(\sigma_{1,...}, \sigma_{n+1})$ by $f((X_1,...,X_n), \mu) = (X_1,...,X_n, T\mu)$, where T is defined using (X.,...,Xn) as above. By induction $\bar{e}'(\sigma_1, ..., \sigma_n)$ is a closed ball of dimension $(\sigma_{1}-1)+\dots+(\sigma_{n}-n)$. Hence $\bar{e}'(\sigma_{1},\dots,\sigma_{n+1})$ is homeo to a closed ball of dimension $(D_{1}-1)+\dots+(D_{n}-n)+(D_{n+1}-(n+1))$ First must show $im(f) \in \overline{\mathcal{C}}(\sigma_{1,...}, \sigma_{n+1})$. Note: T is the rotation sending w/ T(b;)=X; for i=n. (1) T(u) is a unit and orthogonal to X; for leien. To see this, note that T is a rotation hence preserves orthogonality. Thus since b: u= o for $1 \le i \le n$ and $u \cdot u = 1$, we have $T(u) \cdot T(u) = u \cdot u = 1$ and $T(b_i) \cdot T(u) = b_i \cdot u = 0 = X_i \cdot T(u) = T(b_i) \cdot T(u) = 0.$

Hence (X1,...,Xn,Tu) is an n-frame in TR". (2) $T u \in \overline{H}^{\sigma_{n+1}}$. To see this, recall that bi, x; e Roh for i=n, so TU = U mod Ron. Thus the onthe coordinate of Tu is the same as the one for u, hence is non-negative. f is clearly continuous. Moreover, T has an inverse $T' = T(X_{n}, b_{n}) \circ \cdots \circ T(X_{n}, b_{n})$ so f has a well-defined and cont. inverse, We will omit the proof that $q|_{e(\sigma)}: e'(\sigma) \longrightarrow e(\sigma)$ is a homeomorphism (see Milhor-Stasheff). We almady showed that the is 1-1 and onto. (each n-place XEE(r) has a unique orthonormal basis $M H^{\sigma'} \times \dots \times H^{\sigma_n}$). Recall q is the map which sends an n-frame in R^m to the span of the basis. 冈 Theorem: The (m) sets e(o) form the cells of a CW-complex with underlying space G_(IR"). Taking the direct limit yields a CW-structure for $G_n(\mathbb{R}^{*}).$

Need to show that each point in
$$\partial e(\sigma)$$
 belongs
to a cell of lower dimension (read in book).
How many cells in each dimension?
Def: A partition of $r \in IN$ is an unordered
sequence $i_{1,...,i_{d}}$ with $i_{1} + \cdots + i_{s} = r$. $p(r)$ is
the number of partitions.
To each Schubert symbol $(\sigma_{1,...,\sigma_{n}})$ with
 $d(\sigma) = (\sigma_{1}-1) + \cdots + (\sigma_{n}-n) = r$,
we have a partition of r (may need to cance l
zeros at beginning of sequence), with $\sigma_{i}-i \leq m-n$.
(or: The number of r -cells in $G_{n}(\mathbb{R}^{m})$ is equal
the number of partitions of r where each integer
is $\leq m-n$.

• If n, m-n≥r, this is p(r).