Proof of claim; Given r,,...,r, with r,+2r,+...+nr,=r we have

$$\begin{array}{c} \Gamma_{1} + \\ \Gamma_{2} + \Gamma_{n} \\ \Gamma_{3} + \Gamma_{3} + \Gamma_{3} \\ \vdots \\ \Gamma_{n} + \vdots \\ \Gamma_{n} + \vdots \\ \Gamma_{n} \end{array}$$

 $\Rightarrow (\Gamma_{1} + \dots + \Gamma_{n}) + (\Gamma_{2} + \dots + \Gamma_{n}) + \dots + (\Gamma_{n-1} + \Gamma_{n}) + \Gamma_{n} = \Gamma$ This gives a partition of r into at most n elements. (may need to delete zeros). Given a partition $S_{1} + \dots + S_{n} = \Gamma$ (some S_{1} may be zero). Can assume $S_{1} \ge \dots \ge S_{n}$. Let $\Gamma_{n} = S_{n}$, $\Gamma_{n-1} = S_{n-1} - S_{n}$, $\Gamma_{n-2} = S_{n-2} - S_{n-1}$, \dots , $\Gamma_{2} = S_{2} - S_{3}$, $\Gamma_{1} = S_{1} - S_{2}$. Then

$$\Gamma_{1} + 2\Gamma_{2} + 3\Gamma_{3} + \dots + n\Gamma_{n} = (S_{1} - S_{2}) + 2(S_{2} - S_{3}) + 3(S_{3} - S_{4}) + 3(S_{3} - S_{4}) + (n-1)(S_{n-1} - S_{n}) + nS_{n} = S_{1} + S_{2} + \dots + S_{n} = \Gamma_{n}$$

141	
17.1	
WZA	
14	

Consider the classifying map
$$g: G_1 \times \dots \times G_1 \rightarrow G_m$$
.
for $\delta' \times \dots \times \delta'$. We have shown that
 $g^*: H^*(G_n; \mathbb{Z}_2) \longrightarrow H^*(G_1 \times \dots \times G_1; \mathbb{Z}_2)$
 $W_1 \longmapsto Si(a_1, \dots, a_n) = i^{th}$ symm.
maps $H^*(G_n; \mathbb{Z}_2)$ is omorphically onto the
subalgebra of $H^*(G_1 \times \dots \times G_1; \mathbb{Z}_2) \cong \mathbb{Z}_2[a_1, \dots, a_n]$
consisting of polynomials in the indeterminants which
are invariant under all permutations $\sigma_D S_n$.
e.g. $(a_1a_2 + a_2a_3 + a_1a_3)(a_1a_2a_3) = tc.$
 W_2 W_3
Uniqueness of SW classes
Thm: There exists at most one correspondence satifying
the axioms (1)-(4), over paracompact spaces.
Pf; Say we have $\mathfrak{T} \to W(\mathfrak{T})$ and $\mathfrak{T} \to \widetilde{W}(\mathfrak{T})$. For \mathfrak{T}^1 ,
 $W(\mathfrak{T}^1) = \widetilde{W}(\mathfrak{T}^1) = 1 + a$.
Consider $(\mathfrak{T}^1) = \mathfrak{W}(\mathfrak{T}^*(\mathfrak{T})) = W(\mathfrak{T}^1) = 1 + a$
but since $\mathfrak{T}^* : H^1(G_1) \longrightarrow H^1(S^1)$ is an \cong we
have $W(\mathfrak{T}) = 1 + a$. Similarly $\widetilde{W}(\mathfrak{T}) = 1 + a$.

Here $W_i(\delta') = \widetilde{W}_i(\delta') = 0$ for $i \ge 1$ since it is a vank 1 vector bundle. For $\Xi = \delta' \times \cdots \times \delta'$, we have $W(\Xi) = \widetilde{W}(\Xi) = (1 + a_1) \cdots (1 + a_n)$. Monover, we have a bundle map $\Xi \longrightarrow \delta^n$ which maps $H^*(G_n; \mathbb{Z}_2) \longleftrightarrow H^*(G_1 \times \cdots \times G_i; \mathbb{Z}_2) \Longrightarrow W(\delta^n) = \widetilde{W}(\delta^n)$. For any n-plane bundle voiev a paracompact space B, choose a clossifying map $B \stackrel{f}{\to} G_n$. Then $W(\eta) = f^*(W(\delta^n)) = f^*(\widetilde{W}(\delta^n)) = \widetilde{W}(\eta)$

Existence of SW Classes

We will construct SW classes using some operations called Steenrod square and the Thom isomorphism theorem. All homology/cohomology will be with Zz coefficients.

Let $\tilde{Z}: E \xrightarrow{\pi} B$ be a rank n weter bundle over B a closed n-dimensional vector bundle. [B just needs to be paracompact but we'll assume closed to simplify arguments.] Let $F = \pi^{-1}(b)$ be a fiber, $F_0 = F \cdot \{(b, \bar{o})\}$. From algebraic topology we have

 $H^{i}(F,F_{0}) \cong H^{i}(\mathbb{R}^{n},\mathbb{R}^{n}) \cong H^{i}(\mathbb{B}^{n},2\mathbb{B}^{n}) \cong H_{n-i}(\mathbb{B}^{n}) \cong \begin{cases} \mathbb{Z}_{2} & i=n \\ 0 & i\neq n. \end{cases}$

$$\Rightarrow$$
 Hⁱ(F,F₀;Z₂) \cong $\left\{ \mathbb{Z}_{2} \mid = n \\ 0 \quad i \neq n \right\}$

Let $Z = \{(b,v) \mid b \in B, v \in \pi^{-1}(b)\}$ be the zero set and $E_0 = E \setminus Z$. We wish to compute $H'(E, E_0)$. Put a Riemannian metric on B and set $E = \{(b,v) \mid b \in B, v \cdot v \in I\}$ $E_1 = \{(b,v) \mid b \in B, v \cdot v = 1\}$.

Note that \tilde{E} is a compact (n+m)-dimensional manifold that deformation retracts to B and $\partial \tilde{E} = E_1$. Hence

$$H^{i}(E,E_{o}) \cong H^{i}(\tilde{E},\partial\tilde{E})$$
$$\cong H_{m+n-i}(\tilde{E})$$
$$\cong H_{m-(i-n)}(B)$$
$$\cong H^{i-n}(B)$$

Note: When $i \le n$, $H^{i-n}(B) = 0$ and when n=i, $H^{i-n}(B) = H^{\circ}(B) \cong \mathbb{Z}_2$.