$$\times \colon H^{i}(X) \times H^{j}(X) \longrightarrow H^{i+j}(X)$$

m cellular (ohomology given by (α×β)(c)= Sd(eⁱ)β(eⁱ) if c=eⁱ×eⁱ, i and j cells in X O otherwise

(Can also define in singular (Oh). Let $\Delta: X \longrightarrow X \times X$ be the diagonal embedding. Thm (see Munkres) For de HP(X), BEHB(X), $\alpha \circ \beta = \mathcal{D}^{\#}(\alpha \times \beta).$ Note: For a CW-complex A is not cellular, so the RHS Only make sense in singular (as well as LAS). (true for all sing coeffo), For a ∈ H"(X;Z), a×a∈ H^{*}(X×X;Z)=[××X,Z) so we can nepresent $X \times \alpha$ by a map $f_{\alpha} \colon X \times X \longrightarrow K(\mathbb{Z}_{2}, 2n)$ Moreover, aud E H²ⁿ(X; Zz) can be represented by a map $g_a: X \longrightarrow K(\mathbb{Z}_{*}, \mathbb{Z})$. Since $(f_a: \Delta)^* = \Delta^* \cdot f_{\alpha}^*$, we have. $X \times X \xrightarrow{f_{\alpha}} K(\mathbb{Z}_2, 2n)$

Since $(f_{a} \Lambda)^{*}(\Lambda) = \Lambda^{*}(d \times d) = d \cup d = g_{\alpha}^{*}(\Lambda)$, so $f_{d} \circ \Lambda$ and g_{α} are homotopic.

1 a ga

With
$$\mathbb{Z}_{2}$$
-coeffor, \times and \cup are commutative, so if
 $T: X \times X \to X \times X$ then $T^{*}(\alpha \times \alpha) = \alpha \times \alpha$.
 $(x,y) \mapsto (y,x)$
But $T^{*}(\alpha \times \alpha)$ is represented by map $f_{\alpha} \cdot T$ so f_{α} and
 $f_{\alpha} \cdot T$ are homotopic. Let $F: X \times X \times I \longrightarrow K(\mathbb{Z}_{2}, 2n)$ be
the homotopy $(F(-, 0) = f_{\alpha}, F(-, 1) = f_{\alpha} \cdot T)$.
Since $T^{2} = id$, we can compose $F + T \times id$ $(T \times id : X \times X \times I \odot)$
to get a homotopy $F \circ T \times id$) $w \stackrel{H}{} \to (F \cdot T \times id)(-, 0)$
 $= f_{\alpha} \circ T$ and $(F \circ (T \circ id))(-, 1) = f_{\alpha} \circ T^{*} = f_{\alpha}$.
Composing these gives a loop
 $S^{'} \times X \times X \longrightarrow K(\mathbb{Z}_{2}, 2n)$,
representing an element in $H^{2n}(S' \times X \times X; \mathbb{Z}_{2})$.
It turns out that this map $w \stackrel{I}{} (l be null \cdot homotople)$,
here this map extends to
 $D^{'} \times X \times X \longrightarrow K(\mathbb{Z}_{2}, 2n)$.
Again, compose the T to get map
 $S^{'} \times X \times X \longrightarrow K(\mathbb{Z}_{2}, 2n)$
which is null homotopic.
Eventually, we get a map
 $S^{''} \times X \times X \longrightarrow K(\mathbb{Z}_{2}, 2n)$

s.t.
$$(S_{1}, X, y)$$
 and $(-S_{2}, y, X)$ go to the same
point in $K(\mathbb{Z}_{2}, 2n)$. Thus
 $S^{\omega} \times X \xrightarrow{Id \times \Delta} S^{\omega} \times (X \times X) \longrightarrow K(\mathbb{Z}_{2}, 2n)$
 $(S_{1} \times) \longmapsto (S_{2} \times X) \longrightarrow (S_{2} \times$