Day 31 - Euler class

For Ξ an oriented bundle, we have the Thom isomorphism with \mathbb{Z} -coeffo.

Recall if \mathfrak{T} is oriented then each fiber F has a basis V_1, \ldots, V_n that gives the orientation that continuously varies our B. Then $H_n(F, F_0; \mathbb{Z}) \cong \mathbb{Z}$ and has a performed generator U_F . Moreover $H^n(F, F_0; \mathbb{Z}) \cong \mathbb{Z}$ has a preferred generator V_F , $\langle V_F, U_F \rangle = 1$.

<u>Theorem</u>: Let Ξ be an oriented n-plane bundle $\Xi: E \rightarrow B$, with F a fiber. Then $H^{i}(E, E_{0}; \mathbb{Z}) = 0$ for i < n and $H^{n}(E, E_{0}; \mathbb{Z})$ contains a unique u s.t.

 $\begin{array}{c} \boxed{\begin{array}{c} U \\ (F,F_{0}) \end{array}} = \mathcal{U}_{F} \\ \hline{ a \end{array}} \\ H^{k}(E;\mathbb{Z}) \xrightarrow{\cong} H^{n+k}(E,E_{0};\mathbb{Z}) \\ y \longmapsto y \cup u \end{array}$ is an $\cong \forall k$.

In particular since $H^{k}(E) = H^{k}(B)$, we have the Thom isomorphism

$$p: H^{k}(B; \mathbb{Z}) \longrightarrow H^{k+n}(E, E_{\circ}; \mathbb{Z})$$

$$x \longmapsto \pi^{*}(x) \lor u$$

 $\begin{array}{c} (\text{onsider } (E,\phi) \longrightarrow (E,E_{\circ}) \longrightarrow H^{*}(E,E_{\circ}) \longrightarrow H^{*}(E) \\ y \longmapsto y|_{E} \end{array}$

<u>Def</u>: The Euler class of an oriented bundle ξ is $e(\xi) = (\pi \hat{X} u|_{E}) \in H^{n}(B; \mathbb{Z}).$

$$H^{n}(E,E_{0}) \longrightarrow H^{n}(E) \xrightarrow{(\Pi^{*})^{1}}_{E} H^{n}(B)$$

$$u \longmapsto u|_{E} \longrightarrow (\Pi^{*})^{1} u|_{E}) = e(\underline{z}).$$
Properties:
(1) f: B \longrightarrow B' then $e(f^{*}(\underline{z})) = f^{*}(e(\underline{z}))$
 $\Rightarrow e(trivial bundle) = 0 \quad (n > 0).$
(2) If the orientation of \underline{z} is reversed then $e(\underline{z})$ change
by a sign.
(3) If n is odd then $e(\underline{z}) + e(\underline{z}) = 0.$
Pf: (onsider Thom iso
 $H^{n}(B) \xrightarrow{\Pi^{*}} H^{n}(E) \longrightarrow H^{n+n}(E, E_{0})$
 $e(\underline{z}) \longmapsto \pi^{*}(e(\underline{z})) \longmapsto \pi^{*}(e(\underline{z})) \cup u = u \cup u.$
 $u|_{E}^{''}$
So $e(\underline{z}) = \phi^{*}(u \cup u)$, where ϕ i the Thom iso.
But $a \cup b = (-D^{dima} \cdot dim^{*} b \cup a \Rightarrow u \cup u has order$
since $n = odd$. Then $e(\underline{z})$ has $order 2.$
Prop: The homomorphism $\mathbb{Z} \longrightarrow \mathbb{Z}_{0}$ induces
 $H^{n}(B; \mathbb{Z}) \longrightarrow H^{n}(B; \mathbb{Z}_{2})$
 $e(\underline{z}) \longmapsto w_{n}(\underline{z}).$
Pf: Recall $w_{n}(\underline{z}) = \phi^{*}(Sq^{n}(u))$ and $Sq^{n}(u) = u \cup u.$
where $u \in H^{n}(E, E_{0}; \mathbb{Z}_{2}) \cong \mathbb{Z}$ and ϕ is the Thom iso
with $\mathbb{Z}_{2}^{-} coef_{0}0$. In addition the integer thom

Class goes to the
$$\mathbb{Z}_2$$
-Thom class.
Prop: $e(\Im \oplus \Im') = e(\Im) \cup e(\varXi')$
 $e(\Im \oplus \Xi') = e(\varXi) \times e(\Xi')$.
Not as within as before!
• $W(\Xi)$ is a unit in rig $H^T(B; \mathbb{Z}_2)$ so can solve for
 $W(\Xi')$ as a function of $W(\Xi)$ and $W(\Xi \oplus \Xi')$.
However $e(\Xi)$ not unit in integral (observables), could
be zero in fact!
(or: If $\partial e(\Xi) \neq 0$, then Ξ can't split as sum of
two odd dim manifolds.
Ex: Let M be a smooth compact mild with $w_i(M) = 0$
(ise TM is orientable). Choose an orientation. If TM
has an orientable odd dimid subbundle Ξ then
 $e(M) = e(\Xi) \oplus e(\Xi^{\perp})$
order Ξ
 $\Rightarrow 2e(M) = 0$ in $H^n(M; \mathbb{Z}) \cong \mathbb{Z} \implies e(M) = 0$
In particular, if M is orientable then every
nowhere zero v.t. gives a trivial sub-bundle of drin 1.
 $e(M) = e(\Xi) \cup e(\Xi^{\perp}) = 0$.

<u>Prop</u>: If the oriented v.b. ξ admits a nowhere zero section then e(z) = 0. <u>Thm</u>: $\langle e(TM), [M] \rangle = \chi(M)$. for a closed orientable manifold.

Note: We have $H^{n}(M; \mathbb{Z}) \xrightarrow{\cong} Hom(H_{n}(N), \mathbb{Z})$ hence $e(TM) = 0 \iff \chi(M) = 0$.