## First Stiefel-Whitney claop

We will show that the two definitions of the first Stiefel-Whitney class coincide. Let Z: E B be a rank n vector bundle over B, with B paracompact. Def\_: Define GeHom(II,(B), Zz) as follows. For  $c: S' \longrightarrow B$ , define  $\Psi_{z}(ECJ) = \begin{cases} 0 & \text{if } C^{*}(Z) & \text{is trivial} \\ \Psi_{z}(ECJ) = \begin{cases} 1 & \text{if } C^{*}(Z) & \text{is non-trivial} \end{cases}$ Uz is well-defined since if C, Cz are homotopic then  $C_1^*(z) \cong C_2^*(z)$ . Moreover, there are only two bundles over S', En and MB & En; by the clutching construction since Tro (GLA(IR)) has. two elements.

Recall  $\mathcal{K}: H'(\mathcal{B}; \mathbb{Z}_2) \longrightarrow Hom(H_1(\mathcal{B}), \mathbb{Z}_2)$  is an  $\exists$ . Let  $\widetilde{\mathcal{A}}: Hom(\mathcal{A}_1(\mathcal{B}), \mathbb{Z}_2) \longrightarrow Hom(\pi_1(\mathcal{B}), \mathbb{Z}_2)$  be the Hom dual of the abelianization map  $\mathcal{A}$ . Since  $\mathbb{Z}$  is abelian,  $\widetilde{\mathcal{A}}$  is an  $\cong$ . Hence we have an iso

 $H^{1}(B; \mathbb{Z}_{2}) \xrightarrow{\mathcal{R}} Hom(H_{1}(B), \mathbb{Z}_{2}) \xrightarrow{\widetilde{A}} Hom(\Pi_{1}(B), \mathbb{Z}_{2})$ Define  $\widetilde{W}_{1}(\mathcal{S}) := (\widetilde{A} \cdot \mathcal{R})^{1}(\mathcal{Y}_{2}).$   $\begin{array}{l} \underline{Def 2}: \ Choose \ \alpha \ classifying \ map \ for \ \xi, \\ f: B \longrightarrow G_n(\mathbb{R}^{\infty}). \ Define \\ \hline W_1(\Xi) := f^*(W_1) \\ where \ W_1 = W_1(\mathcal{S}^n) \in H^1(G_n(\mathbb{R}^{\infty}); \mathbb{Z}_2). \\ \hline \underline{Theorem}: \ W_1(\Xi) = \widetilde{W}_1(\Xi). \\ \hline \underline{Proof}: \ Let \ f: B \longrightarrow G_n \ be \ \alpha \ classifying \ map \ fir \ \Xi. \\ So \ \Xi = f^*(\mathcal{S}^n) \ and \ wi \ have \ the \ bundle \ map : \end{array}$ 



By definition,  $W_1(z) = f^*(W_1(x^n))$ . It suffices to show that  $\widetilde{A} = \chi(f^*(W_1(x^n))) = \Psi_z$  as defined above. Let  $c: S' \longrightarrow B$  then  $c^*(z) \cong c^*(f^*(z)) \cong (f \circ c)^*(z)$ as rank n victor bundled over S'. But  $\operatorname{Vect}_n^R(S') \xleftarrow{} [S', G_n]$  $(f \circ c)^*(z) \xleftarrow{} f \circ c$ So  $c^*(z) = (f \circ c)^*(z)$  is trivial  $\Leftrightarrow$  foc is nullhomotopic  $\Leftrightarrow$  [f o c] = 1 in  $\pi_1(G_h)$ 

 $\iff f_*([C]) = 1 \quad in \quad \Pi_1(G_n)$ 

We claim that  $\pi_1(G_n) \cong \mathbb{Z}_2$ . To see this note that  $G_n$  has a CW-complex with a single 1-rell and

at most two 2-cells and  $G_1 \subseteq G_n$  is a subcomplex, from the cell-structure of  $G_h$ .  $G_1 = IRP^{\omega}$  has a single l-cell and a single 2-cell and the attaching map is given by  $z \rightarrow z^2$  map. In panticular,  $\pi_i(G_1) = \mathbb{Z}_2$ . When  $n \neq \partial$ , there is another two cell attached which means that  $\pi_1(G_n) \cong \pi_1(G_1)/e$  for some  $e \in \pi_i(G_1)$  so  $\pi_1(G_n) = 1$  or  $\mathbb{Z}_2$ . But we have  $\pi_1(G_h) \longrightarrow [S', G_n] \stackrel{I-I}{\longleftrightarrow} \operatorname{Vect}_n^R(S') = \{ \mathcal{E}^n, MB \oplus \mathcal{E}^{n_i} \}$ 

So  $\Pi_1(G_n) \neq 1$  hence  $\Pi_1(G_n) \cong \mathbb{Z}_2$ . Thus

We claim that  $\tilde{A} \cdot \chi \circ f^*(W,(\delta^n)) = \Psi_z$ . To see this note that the following diagram commutes

$$\begin{array}{c} H'(B;\mathbb{Z}_{2}) \xrightarrow{\mathcal{N}} Hom(H_{1}(B),\mathbb{Z}_{2}) \xrightarrow{\widetilde{A}} Hom(\pi_{1}(B),\mathbb{Z}_{2}) \\ \uparrow f^{*} \qquad \qquad \uparrow \tilde{f}_{*} \qquad \qquad \uparrow \tilde{f}_{*} \\ H'(G_{n};\mathbb{Z}_{2}) \xrightarrow{\mathcal{N}} Hom(H_{1}(G_{n}),\mathbb{Z}_{2}) \xrightarrow{\widetilde{A}} Hom(\pi_{1}(G_{n}),\mathbb{Z}_{2}) \end{array}$$

Hence  $\tilde{A} \cdot \mathcal{K} \cdot f^*(W_1(\mathcal{S}^n)) = \tilde{f}_*(\tilde{A}(\mathcal{K}(W'(\mathcal{S}^n))))$ . Let  $a \in \pi_1(G_n)$ be the generator of  $\pi_1(G_n) \cong \mathbb{Z}_2$  then  $\tilde{A}(\mathcal{K}(W'(\mathcal{S}^n)))(a) = 1$ For  $c: S' \longrightarrow B$ ,  $f_*([c]) = md$  for m = 0 or 1.

Hence,  

$$f_*(\tilde{A}(x(w'(s^n)))(\varepsilon_{3}) = \tilde{A}(x(w'(s^n)))(f_*(\varepsilon_{3})))$$

$$= \tilde{A}(x(w'(s^n)))(m \times ))$$

$$= M$$
So  $f_*(\tilde{A}(x(w_1(t^n))) = U_{z})$ 
Corollary: Let  $\tilde{z}$  be a rank n vector bundle over B,

with B paracompact. Choose a classifying map 
$$f: B \rightarrow G_n$$
  
for  $\check{Z}$  and identify  $Z_2$  with  $\pi_1(G_n)$ . Then  
 $H'(B; Z_2) \xrightarrow{\check{A} \circ K} Hom(\pi_1(B), \pi_1(G_n))$   
 $W_1(\check{z}) \xrightarrow{\check{F}_*} f_*$