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Grope metrics on the knot concordance set

Tim D. Cochran, Shelly Harvey and Mark Powell

Abstract

To a special type of grope embedded in 4-space, that we call a branch-symmetric grope, we
associate a length function for each real number q � 1. This gives rise to a family of pseudo-
metrics dq, refining the slice genus metric, on the set of concordance classes of knots, as the
infimum of the length function taken over all possible grope concordances between two knots.
We investigate the properties of these metrics. The main theorem is that the topology induced
by this metric on the knot concordance set is not discrete for all q > 1. The analogous statement
for links also holds for q = 1. In addition, we translate much previous work on knot concordance
into distance statements. In particular, we show that winding number zero satellite operators are
contractions in many cases, and we give lower bounds on our metrics arising from knot signatures
and higher order signatures. This gives further evidence in favor of the conjecture that the knot
concordance group has a fractal structure.

1. Introduction

Let C be the set of smooth concordance classes of knots. This is in fact a group under connected
sum, but in this paper we will primarily consider C as a real valued metric space, and study
satellite-type operators on C which are typically not homomorphisms.

An explicit study of metrics on the set of concordance classes of knots was begun by the first
and second authors [10]. Metrics were studied arising from the slice genus, and the homology
norm, which measures the second Betti number of a 4-manifold in which two knots K and J
cobound an annulus. One drawback of this study is that distances between knots are all integer
valued.

Below we define, for each real number q � 1, a new pseudo-metric, dq, which refines the slice
genus by taking advantage of deeper, higher order geometric information in order to define
rational (and potentially real) valued notions of distance. A length is associated to a special
type of grope that is built out of symmetric gropes, by counting the genera of the component
surfaces. The distance between two knots is then defined as the infimum of the lengths of all
possible grope concordances between the two knots. We will often omit the adjective ‘pseudo’.

We show that our metrics capture much subtlety of knot concordance, in the following sense.
Let U be the unknot, and let Ctop be the set of topologically locally flat concordance classes
of knots. For q > 1, the distance between two topologically concordant knots vanishes, whence
we obtain an induced pseudo-metric dqtop on Ctop.

Theorem 2.13. For any q > 1 there exist uncountably many sequences of knots {Ki}i�0

such that dq(Ki, U) > 0 for all i but dq(Ki, U) → 0 as i → ∞. In particular, if q > 1 then
neither of the topologies on C and Ctop, induced by dq and dqtop respectively, are discrete.
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For links of at least two components, the analogous result holds for q = 1 as well in the
smooth case; see Section 7.

We stated the second sentence of the theorem for both the smooth and topological cases, but
the proof for the smooth case is relatively straightforward. A pseudo-metric that is not a metric
certainly does not induce a discrete topology, and for q > 1, every topologically slice knot has
distance zero from the unknot (see Remark 2.8), so in fact dq only induces a pseudo-metric
on C, and not a metric. Thus in the smooth case the second sentence of Theorem 2.13 can
be deduced without the first sentence, whereas in the topological case one of the sequences of
knots from the first sentence of the theorem seems to be required. Even for Ctop, we are not able
to show that dq is an honest metric. However, in order to show non-discreteness in this way,
one would have to find a non-topologically slice knot that lies in the intersection of the grope
filtration of knot concordance, that is, that bounds a height n symmetric grope for every n.
Since this latter question remains open, one needs the sequences of knots of Theorem 2.13 to
show that Ctop is non-discrete when q > 1.

Next, in addition to studying the metric space, we consider the action of natural operators
on (C, dq) called satellite operators. We show that winding number zero operators are often
contraction operators. This gives further evidence that C has the structure of a fractal space
as conjectured in [14].

Let C� be the set of concordance classes of m-component links with all pairwise linking
numbers vanishing. We will extend our metric to this set. Let Cm

SL be the concordance group
of m-component string links, also with pairwise linking numbers vanishing.

Proposition 5.11. For any winding number zero string link operator R(−, η) there is an
N , depending only on the geometric winding numbers of R(−, η), such that for each q > N ,
R : (Cm

SL, d
q) → (C�, dq) is a contraction mapping. In particular, for any winding number zero

pattern knot P , and any q greater than the geometric winding number of P , the satellite
operator P : (C, dq) → (C, dq) is a contraction mapping.

The same holds if R is a string link, and the codomain of the operator R(−, η) becomes C�
SL.

Of course there are many possible metrics of this character which one could define on the
knot concordance set; perhaps the reader will come up with his or her own. However, we think
that any reasonable notion ought to satisfy certain meta-properties, which are satisfied by our
metrics. These are as follows.

• Refines the slice genus metric. In particular the slice genus is an upper bound.
• Winding number zero operators are contractions.
• Reflects the known complexity of knot concordance; has a relation to the algebraic

concordance group, Casson–Gordon invariants, and the n-solvable filtration.
• Induces a non-discrete topology.

One may wonder why we do not consider metrics defined using half-gropes rather than
symmetric gropes. After all, in order to surger a surface to a disk, one only requires that
a half basis of curves bounds framed disjointly embedded disks; the other half of first
homology need not bound any surface at all. However beware that all knots with Arf
invariant zero bound half-gropes of arbitrarily large order [36], therefore all Arf invariant
zero knots would likely have very small norm in such a metric space. Also, the construction
of topological disks in Freedman–Quinn [19] uses symmetric gropes. Dual spheres have an
extra significance in dimension 4: the slogan of [19, Chapter 5] is that disks can be embedded
topologically when there is a good fundamental group, in the presence of dual spheres. So
it seems to be natural to only consider symmetric gropes as being close approximations to
disks.
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Another refinement of the slice genus already in the literature is the stable slice genus of
Livingston [28]. However, this is not known to satisfy the properties above other than the first.
In particular, no knot is known to have non-zero stable slice genus less than 1/2.

In a future paper, we will consider another metric on the smooth knot concordance group
which has a closer relationship to the bipolar filtration [11] and ‘smooth invariants’ of knot
concordance, which do not necessarily vanish on topologically slice knots, such as those
invariants arising from Heegaard Floer theory, Khovanov homology, and contact topology.

Organization of the paper

Section 2 gives the definition of our metrics and many of their important properties. Section 3
proves that the knot signatures give lower bounds. Section 4 gives definitions involving string
links and string link infections which are needed for the rest of the paper. Section 5 investigates
the effect of string link infections and satellite operators on the metrics. It is shown that winding
number zero operators are contractions whenever q is larger than the geometric winding number
of the operator. Examples of knots which yield sequences of knots exhibiting the non-discrete
behavior of C are constructed in Section 6. The analogous examples for the link case are given
in Section 7. Section 8 then proves lower bounds arising from higher order L(2) ρ-invariants.
Finally Section 9 shows that the identity map is not a quasi-isometry between our metric spaces
and knot concordance with the slice genus metric.

Concerning Tim Cochran

We are saddened by the loss of the first author, Tim Cochran, who passed away on December
16, 2014, before the completion of this paper. Tim played an extremely important role in this
paper and wrote a large portion of it. However, since he was neither able to verify nor influence
the final version, any errors in the paper should be attributed to the other two authors.

2. Definition of the metric

A grope is a special type of 2-complex, with a decomposition into a union of finitely many
stages

⋃
k Xk, and a specified boundary. Each stage Xk is a union of surfaces with boundary,

whose interiors are disjoint. When k � 2 each surface has exactly one boundary component.
The boundary of X1 is the boundary of the grope. The intersection Xk ∩Xj = ∅ for |k − j| > 1,
and the intersection Xk ∩Xk+1, for k � 1, is equal to the boundary of Xk+1 and forms a subset
of a standard symplectic basis for the first homology of Xk.

We will work with two types of gropes. First we define symmetric gropes, then we use these to
define branch-symmetric gropes. A symmetric grope has a height n ∈ N. For n = 1 a symmetric
grope is precisely a compact, oriented surface G1 with a single boundary component on each
connected component; the boundary components are called the base circles. A symmetric grope
Gn+1 of height n + 1 is defined inductively as follows: take a height one symmetric grope G1

and let {αj | j = 1, . . . , 2g(G1)} be a standard symplectic basis of circles for the first homology
of G1 where g(G1) = genus(G1). Then a symmetric grope of height n + 1 is formed by attaching
a connected symmetric grope Gj

n of height n to each αj along its base circle; the base circles of
Gn+1 are the boundary components of G1. The kth stage of the symmetric grope is the union
of the surfaces that were introduced by the (n− k + 1)th inductive step in the construction,
where taking a height one symmetric grope counts as the first step. We denote the stages of a
symmetric grope from p through q inclusive by Gp:q.

Next we define a branch-symmetric grope. Let Σ1:1 be a compact oriented surface with
either one or two boundary components on each connected component and let {αj | j =
1, . . . , 2g(Σ1:1)} be a standard symplectic basis of circles for the first homology of Σ1:1 where
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α2i−1and α2i form a dual pair for each 1 � i � g(Σ1:1). For each αj for j = 1, . . . , 2g(Σ1:1),
attach a connected symmetric grope Gj

mj
of some height mj � 0 to αj , no subsurface of which

is a disk, and such that m2i = m2i−1 for 1 � i � g(Σ1:1). For this purpose we take a grope of
height 0 to be the empty set. This defines a branch-symmetric grope Σ. It may be that Σ is
not a symmetric grope.

In the above definition, we call the union of the two gropes attached to a single dual
pair of basis curves α2i and α2i−1 a branch of Σ. Let mj(Σ) be the height of the grope
attached to αj . We define the length of the branch to be ni(Σ) := m2i(Σ) = m2i−1(Σ). When
it is clear, we write nj instead of nj(Σ). Note that for each i, α2i−1 and α2i must each
have a grope of the same height attached to them, but the various surface stages may have
different genera (they do not have to be the homeomorphic gropes). We say that the (k − 1)th
stage surfaces Gj

(k−1):(k−1) of the symmetric gropes Gj
nj

are the kth stage surfaces Σk:k

of Σ.
For a branch-symmetric grope Σ, let g1(Σ) be the genus of Σ1:1. For each i = 1, . . . , g1(Σ), we

have a dual pair of basis curves α2i−1 and αi. Define gi2(Σ) to be the sum of the genera of the
two second-stage surfaces which are attached to these basis curves α2i−1 and α2i. We denote the
union of these two surfaces by Σi

2:2. If ni(Σ) = 0 then gi2(Σ) = 0. Suppose ni(Σ) � 1. Note that
in this case gi2(Σ) � 2 since we do not allow disks. Inductively let gik(Σ), for 3 � k � ni(Σ) + 1,
be the sum of the genera of the surfaces at the kth stage which are attached to the basis curves
of Σi

(k−1):(k−1). Since gik−1(Σ) is the genus of the collection Σi
(k−1):(k−1), there are precisely

2gik−1(Σ) surfaces at the kth stage which are attached to the basis curves of Σi
(k−1):(k−1). We

denote the union of these surfaces by Σi
k:k. When it is clear, we will drop the Σ and write gik

(respectively g1) instead of gik(Σ) (respectively g1(Σ)).

Lemma 2.1. Let Σ be a branch-symmetric grope. For each 1 � i � g1(Σ) and 2 � k �
ni(Σ) + 1 we have

gik(Σ) � 2gik−1(Σ) � 2k−1.

Proof. Each surface has genus at least one. The second inequality follows from induction. �

We say that two oriented knots K and J in S3 cobound a branch-symmetric grope Σ if Σ is
a branch-symmetric grope, Σ1:1 has two boundary components, and we have a framed smooth
embedding ι : Σ ↪→ S3 × I where ι−1(∂(S3 × I)) = ∂Σ1:1, ι|ι−1(S3×{0}) = K and ι|ι−1(S3×{1}) =
−J . We also say that K and J are grope concordant via Σ.

Let q � 1 be a real number. We define a metric for each q � 1 as follows. For a branch-
symmetric grope Σ, define

‖Σ‖q :=
g1(Σ)∑
i=1

1
qni(Σ)

⎛⎝1 −
ni(Σ)+1∑

k=2

1
gik(Σ)

⎞⎠ . (2.2)

Now we set

dq(K,J) := inf
Σ
{‖Σ‖q | K and J cobound a branch-symmetric grope Σ in S3}.

Remark 2.3. (1) As a basic example, a surface Σ of genus g, with no higher surfaces, has
‖Σ‖q = g for any q � 1. In particular the slice genus of K is an upper bound for dq(K,U),
where U is the unknot. Any slice genus one knot with Arf invariant one has distance one from
the unknot, since the Arf invariant obstructs the knot from bounding any height 2 grope by
[16, Theorem 8.11 and Remark 8.2].
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Figure 1. A branch-symmetric grope Σ.

(2) Note that for constant g1(Σ), and q > 1, the metric dqΣ approaches zero for high height
gropes. For q > 1, the same is true if every surface has genus one, since then the grope distance
is

1 − 1
2
− 1

4
− 1

8
− · · · − 1

2ni(Σ)
.

Here is a concrete example a computation of ‖Σ‖q. Consider the grope Σ shown in Figure 1.
The first-stage surface has genus three, so g1 = 3. Enumerate the holes/symplectic basis pairs

from left to right. The first pair α1, α2 has no higher stage surfaces attached to it, so n1 = 0.
The second pair α3, α4 has height 2 symmetric gropes attached, and the third pair α5, α6 has
height one gropes attached. Thus n2 = 2 and n3 = 1. Next, the second-stage surfaces attached
to α3 and α4 are of genus two and one, respectively. Therefore g2

2 = 2 + 1 = 3. The third-stage
surfaces have the sum of their genera g2

3 = (1 + 1) + (1 + 1 + 2 + 3) = 9. Finally the second-
stage surfaces attached to α5 and α6 both have genus two, so g3

2 = 4. We can therefore compute
the length of Σ to be

‖Σ‖q =
1
q0

(1) +
1
q2

(
1 − 1

3
− 1

9

)
+

1
q

(
1 − 1

4

)
= 1 +

5
9q2

+
3
4q

.

Remark 2.4. There is a natural trade-off between the height of gropes versus the genus
of the first-stage surface. One can often increase the height of the grope at the expense of
increasing the genus of the first or subsequent stages; constructions can be found in, for example,
[17, 24], and our Proposition 5.3. For a high q parameter a high grope is valued more, whereas
for a low q parameter a low genus of the first stage has more value. Here ‘more value’ means:
gives rise to smaller distance.

We also remark on the operation of grope splitting [26, Lemma 4]. Iterating this operation
can make every surface at the second stage or higher of genus one, at the cost of a huge increase
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Figure 2. Grope splitting.

in the first-stage genus. An example is shown in Figure 2. On the left, the first-stage surface
has genus one, one of the second-stage surfaces has genus two and the other has genus one.
The length with q = 1 is 1 − 1

3 = 2
3 . On the right, after grope splitting, the first-stage surface

is genus two, and there are now four genus one surfaces in the second stage. Two come from
parallel copies of the genus one second-stage surface from the original grope, and two come
from splitting the genus two second-stage surface of the original grope into two genus one
second-stage surfaces for the new split group, via a tube that adds a handle to the original
first-stage surface. The length with q = 1 is (1 − 1

2 ) + (1 − 1
2 ) = 1. So we have arranged all

higher surfaces to be genus one, but it has increased the genus of the first stage and increased
the length of the grope. Setting q > 1 simply divides both lengths by q.

Lemma 2.5. For every q � 1, the function dq determines a pseudo metric on the set of
concordance classes of knots C.

Proof. If two knots are concordant then they cobound an annulus, which is a grope Σ with
g1 = 0, and consequently the sum in the equation for dqΣ(K,J) is vacuous. We note that the
function dqΣ(K,J) is always nonnegative, since all the grope attached to the first stage must
be symmetric. It is helpful to consider each hole (that is, dual pair of curves in a symplectic
basis) of Σ1:1 separately, to begin with for q = 1. For each hole the contribution is 1 minus
the contribution from higher surfaces attached to the two associated dual curves. On the other
hand, the highest that each term 1/gik can be is 1/2k−1. Thus

ni+1∑
k=2

1
gik

�
ni+1∑
k=2

1
2k−1

�
∞∑
k=1

1
2k

= 1.

As a consequence, the infimum of ‖Σ‖1 over all possible grope concordances between concordant
knots K and J is indeed zero. When q > 1, the entire contribution of a hole is multiplied by
a positive constant 1/qni . Thus the infimum of ‖Σ‖q, over all Σ bounded by K and J , is also
zero for any q > 1. This shows that the distance function dqG is well defined and that it is a
pseudo-metric.

Symmetry is apparent from the definition. The triangle inequality is also straightforward.
To see this suppose, K0 and K1 are grope concordant via Σ01 while K1 and K2 are grope
concordant via Σ12. Glue the two gropes together along K1 to yield a new grope Σ02 = Σ01 ∪K1

Σ12 in S3 × I whose distance function satisfies ‖Σ02‖q = ‖Σ01‖q + ‖Σ12‖q. By considering the
infima over all possible gropes we obtain triangle inequality for dq. �

Remark 2.6. It is possible for the q = 1 distance function to vanish for knots which cobound
the simplest possible infinite grope, that is, every surface is genus one. It is an open question
whether such knots are necessarily concordant.
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We call dq : C → R�0 the q-grope pseudo-metric. We can also define a pseudo-norm which
gives rise to the pseudo-metric.

Definition 2.7. We say that an oriented knot K in S3 bounds a branch-symmetric grope Σ
if Σ is a branch-symmetric grope, and we have a framed smooth embedding ι : Σ ↪→ B4 where
ι−1(∂B4) = ∂Σ1:1 and ι|ι−1(∂B4) = K. Define ‖Σ‖q as the quantity on the right-hand side of
equation (2.2) let

‖K‖q := inf
Σ
{‖Σ‖q |K bounds a branch-symmetric grope Σ}.

Equivalently, we could define the grope q-norm of a knot K to be ‖K‖q := dq(K,U).

We note that, for knots K and J ,

‖K# − J‖q = dq(K,J).

Remark 2.8. While a topologically slice knot bounds an arbitrary height smoothly
embedded grope, the genera of the higher stages grow exponentially with the height in the
known proofs [33, Proposition 2.2.4; 20, Theorem 5.2]. We do not know how to prove, and
indeed doubt that it is true, that a topologically slice knot bounds the simplest infinite grope.
Thus it is possible that with the q = 1 pseudo-metric, topologically slice knots are positive
distance from the unknot, meaning that dq is a metric instead of a pseudo-metric. On the
other hand, topologically slice knots have zero distance from the unknot for q > 1, since they
bound gropes with arbitrarily large height, all of which have the same first-stage genus. As
mentioned in the introduction, we have also been investigating metrics which, by taking signs
into account, connect much more closely with the known obstructions for topologically slice
knots to be smoothly slice.

Example 2.9. The trefoil and the figure eight knot are not algebraically concordant,
therefore they do not cobound any grope of height 3. We will see shortly that this implies
that the distance dq(31, 41) � 1/2q. The purpose of this example is to explain how to compute
an upper bound for the distance between the trefoil 31 and the figure eight knot 41. First,
the connect sum is genus two, so 2 is certainly an upper bound. A standard Seifert surface
for K := 31# − 41 has an unknotted curve of self-linking zero on it, so the slice genus of K is
one, and so in fact dq(31, 41) � 1. However, the sum 31#41 is also Arf invariant zero, and so
therefore bounds a grope of height two, as we shall see. We are not able to extend the genus
one surface just constructed to a grope of height two. Instead we will find a grope of height
two based on a genus two first-stage surface, by finding second-stage surfaces to attach to the
pushed in Seifert surface F . For suitably high values of q, this will reduce our upper bound.

A Seifert form for K is given by

A =

⎛⎜⎜⎜⎝
1 0 0 0
1 1 0 0
0 0 −1 0
0 0 1 1

⎞⎟⎟⎟⎠
We can change basis using

B =

⎛⎜⎜⎜⎝
−2 1 1 −1
1 0 1 1
3 −1 0 1
−1 1 1 0

⎞⎟⎟⎟⎠
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so that

BTAB =

⎛⎜⎜⎜⎝
−8 2 −1 −2
3 0 2 1
−1 2 4 0
−2 1 1 0

⎞⎟⎟⎟⎠.

Now all diagonal entries have even self-intersections. The corresponding curves bound on F
bound immersed disks further into the 4-ball than the Seifert surface F . We will construct
these disks and then improve them into framed embedded surfaces.

Draw a link (with intersections between dual curves) on the Seifert surface for 31#41

representing the curves in the new basis. Push them off the Seifert surface so that they become
disjoint. The self-linking numbers correspond to the difference between the framing of the
surfaces’ normal bundles and the desired framing in order to have a framed grope. Since the
diagonal entries of BTAB are even, the failure of second-stage surfaces to be correctly framed
will be rectified by adding local cusps, which change the framing on the boundary by ±2. The
resulting self-intersections will then be resolved into additional genus.

Find a null-homotopy of the link components, ignoring the Seifert surface, recording each
time one component crosses another. This determines immersed caps for the Seifert surface,
further into the 4-ball. Add cusps to fix the framings as above. Convert all self-intersections into
genus in the standard way, adding a Seifert surface for the Hopf link, a twisted annulus instead
of a neighborhood of the intersection point. We then remove the intersections between different
surfaces, following [16, Theorem 8.13]. There is a linking torus Tαi

in a neighborhood of each
basis curve αi ⊂ F , the boundary of a regular neighborhood ∂(cl(ναi)), which is disjoint from
the surface attached to αi, is disjoint from F , but intersects the surface Σβi

attached to βi,
where βi is the basis curve on F (in the new basis) that is symplectically dual to αi. Tube each
intersection of another surface into (a parallel copy of) Tαi

. This removes the intersection at
the cost of increasing the genus. Repeat this operation to obtain disjointly embedded framed
second-stage surfaces.

It thus remains to determine upper bounds for the second-stage surface genera. If we show
the sum of the genera to be at most (k1, k2) for the first and second symplectic basis pair,
respectively, then

‖K‖q � 1
q

(
2 − 1

k1
− 1

k2

)
.

We found a height 2 grope with k1 = 16, k2 = 4, which gives an upper bound of 27/16q. For q
sufficiently high, this upper bound improves on the genus one surface realizing the slice genus
constructed at the beginning of this example. Note that for a better upper bound, if a certain
amount of second-stage genus seems inevitable, one should arrange for as much of the genus
as possible to appear above one basis pair.

While the height two grope constructed above starts with a pushed in Seifert surface, we
remark that all known constructions of higher gropes do not proceed in this way. Instead they
construct high gropes at the expense of increasing first-stage genus. If this difficulty could be
circumvented, we could prove the smooth case of Theorem 2.13 with q = 1.

We can extend our metrics to links which have all pairwise linking numbers vanishing. We
say that two ordered, oriented links K and J cobound a branch-symmetric grope Σ if there is
a framed smooth embedding of ι : Σ = 
jΣj ↪→ S3 × I where Σj is a branch-symmetric grope
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for 1 � j � m, with ι−1(∂(S3 × I)) = ∂Σ1:1, ι|ι−1(S3×{0}) = K and ι|ι−1(S3×{1}) = −J . We also
say that K and J are grope concordant via Σ. Then define

‖Σ‖q :=
m∑
j=1

g1(Σj)∑
i=1

1
qnji(Σ)

⎛⎝1 −
nji(Σ)+1∑

k=2

1
gjik (Σ)

⎞⎠ ,

where gjik (Σ) := gik(Σj) and nji(Σ) = ni(Σj). Now we can define

dq(K,J) = inf
Σ
{‖Σ‖q |K and J cobound a branch-symmetric grope Σ in S3 × I}.

Similarly we can define the notion of an m-component link L, with vanishing pairwise linking
numbers, bounding a branch-symmetric grope, just like we did for knots, and use this to
define the q-norm ‖L‖q of the link L. It is easy to see that ‖L‖q = dq(L,U), where U is the
m-component unlink.

Recall that an ordered, oriented, m-component link L bounds a symmetric grope G of height
n if G = G1 
 · · · 
Gm is a disjoint union of height n symmetric gropes Gi for i = 1, . . . ,m,
and we have a framed smooth embedding ι : G ↪→ B4 where ι−1(∂B4) = ∂G and ι|∂Gi

= Li for
all i. Here ∂Gi is the boundary of the first-stage surface of Gi and ∂G = 
i∂Gi. In this case,
we say that L ∈ Gn.

Proposition 2.10. Let L be a link and n � 2. If L bounds a branch-symmetric grope
Σ that has a branch of length at most n− 1 then ‖Σ‖q � 1

qn−22(n−2) . Thus, if L /∈ Gn, then

‖L‖q � 1
qn−22(n−2) .

Proof. Let Σ = (Σ1, . . . ,Σm) be a branch-symmetric grope bounding L with a branch that
has length at most n− 1. Without loss of generality assume that it is the first branch of Σ1,
so n11 � n− 2. By Lemma 2.1, gjik � 2k−1. Therefore

‖Σ‖q � ‖Σ1‖q =
g1(Σ1)∑
i=1

1
qn11

(
1 −

n1i+1∑
k=2

1
g1i
k

)
� 1

qn11

(
1 −

n11+1∑
k=2

1
2k−1

)

=
1

qn112n11
� 1

qn−22(n−2)
=

1
(2q)n−2

.

Thus ‖L‖q � 1
qn−22(n−2) . �

Obstructions to a knot or link being (n + 2)-solvable are obstructions to the knot or link
bounding a grope of height n, so the preceding proposition translates many results from the
literature on the solvable filtration into statements about the distance between knots in our
grope metric. For the convenience of the reader we recall the definition of n-solvability for
knots, originating from [16], and reformulated as given below in [14, Definition 2.3].

Definition 2.11. We say that a knot K is (n)-solvable if the zero surgery manifold MK

bounds a compact oriented 4-manifold W with the inclusion induced map Hi(MK ; Z) →
Hi(W ; Z) an isomorphism for i = 0, 1, and such that H2(W ; Z) has a basis consisting of 2k
embedded, connected, compact, oriented surfaces L1, . . . , Lk, D1, . . . , Dk with trivial normal
bundles satisfying:

(i) π1(Li) ⊂ π1(W )(n) and π1(Dj) ⊂ π1(W )(n) for all i, j = 1, . . . , k;
(ii) the geometric intersection numbers are Li · Lj = 0 = Di ·Dj and Li ·Dj = δij for all

i, j = 1, . . . , k.
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The subgroup of C of (n)-solvable knots is denoted F(n). Such a 4-manifold W is called an
n-solution. It is not too hard to see that an (n)-solvable knot in the sense above is (n)-solvable
in the sense of [16].

The following was proved in [16].

Theorem 2.12 [16, Theorem 8.11]. For all n � 0,

Gn+2 ⊆ F(n).

Next we state our main theorem, and give the proof modulo Proposition 6.1, which actually
constructs the sequence of knots with decreasing but non-zero norms.

Theorem 2.13. For any q > 1 there exist uncountably many sequences of knots {Ki}i�0

such that dq(Ki, U) > 0 for all i but dq(Ki, U) → 0 as i → ∞. In particular, if q > 1 then
neither of the topologies on C and Ctop, induced by dq and dqtop respectively, are discrete.

As remarked in the introduction, there is a straightforward proof for the second sentence in
the smooth case, due to the fact that our q > 1 pseudo-metrics on C are not metrics.

Proof. In Proposition 6.1 we will exhibit a family of knots Kn for each n � 0 that satisfies
the following hypotheses. The knot Kn bounds a symmetric height n + 2 grope, whose first
stage has genus 2n and whose higher stages have genus one. Suppose also that Kn /∈ Gn+3.
Then these knots represent distinct concordance classes and

1
q(n+1)2(n+1)

� ‖Kn‖q � 1
2qn+1

,

where the lower bound is from Proposition 2.10 and the upper bound is by virtue of the
hypothesized height n + 2 grope. Therefore, for any q > 1, Kn converges to the class of the
trivial knot since ‖Kn‖q → 0. We will also show in the proof of Proposition 6.1 how to modify
the construction to obtain infinitely many different such sequences of knots. This completes
the proof of Theorem 2.13 modulo the rather large caveat of Proposition 6.1. �

3. Relations to knot signatures

Theorem 3.1. Suppose that K bounds a branch-symmetric grope Σ in B4. Let g be the
number of branches of Σ for which the branch length ni is less than 2. Then the Levine–Tristram
signature σK(z) satisfies

|σK(z)| � 2g, (3.2)

for any complex number z of norm one that is not a root of the Alexander polynomial ΔK .

Proof. From the branch-symmetric grope Σ, we will construct a simply connected
4-manifold V , with ∂V ∼= S3, in which K bounds a (null-homologous) slice disk Δ. Recall
that, by definition, Σ comes equipped with an identification of its tubular neighborhood with
the product Σ ×D2. For each branch of Σ for which ni is less than 2, perform surgery on B4

along a push off α′
i of one of the two circles, αi, out of the two dual attaching circles for that

branch. For each branch of Σ for which ni is at least 2, perform surgery on B4 along circles,
α′
i, β

′
i, which are push-offs of both of the two dual attaching circles αi, βi for that branch.

Here α′
i, β

′
i are push-offs of αi, βi respectively, into the second-stage surfaces of grope that they
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bound. The framings for these surgeries are dictated by the product structure on the tubular
neighborhoods.

Since any link in the interior of B4 bounds a collection of disjointly embedded disks, the
result of such surgeries is a manifold V that is diffeomorphic to a punctured connected sum of
copies of either S2 × S2 or S2×̃S2. In particular σ(V ) = 0 and H2(V ) is free abelian of rank
2g + 4e, where e is the number of branches of Σ for which ni is at least 2. Since, after surgery,
the corresponding circles bound embedded disks whose interiors are disjoint from Σ, the slice
disk Δ is essentially Σ surgered ambiently using two copies of each of these disks. It follows that
Δ is null homologous and H2(V − Δ; Z) ∼= H2(V ; Z). In the cases α′

i, β
′
i, the process of forming

Δ is called symmetric surgery, and is described in the proof of [16, Theorem 8.11, h = 1] (see
also [19, Section 2.3]). Moreover, in the proof of [16, Theorem 8.11], a very precise collection of
oriented surfaces, E = {Sj , Bj | 1 � j � 2e} was described, representing a basis for the second
homology of the 2e copies of S2 × S2 created by the surgeries on the 2e circles α′

j , β
′
j . We also

use the procedure of the h = 1.5 part of the proof, which tubes Si+g twice into parallel copies
of the Bi, in order to remove intersections between Si and Si+g that arose from pushing off
the contraction.

These surfaces have the following properties. They are disjointly embedded in V − Δ except
that Sj intersects Bj transversely once with positive sign, and they have trivial normal bundles.
Moreover, the Bj are essentially the capped-off second-stage grope surfaces, which, since third
stage grope surfaces exist, satisfy π1(Bj) ⊂ π1(V − Δ)(1). The Sj begin as 2-spheres pushed
off the contraction, then half of them are tubed into copies of the Bj to remove intersections
created by the push off operation. All the Sj also satisfy π1(Sj) ⊂ π1(V − Δ)(1). Consequently,
not only is the intersection matrix for the corresponding summand of H2(V − Δ; Z) a direct
sum of 2e hyperbolic matrices, but this matrix even represents the intersection form for H2(V −
Δ; Z[t, t−1]) (for this summand).

Now we follow the proofs of [11, Proposition 4.1; 15, Theorem 3.7]. Let d = pr be a prime
power and let Σd(K) denote the d-fold cyclic cover of S3 branched over K, which is well
known to be a Zp-homology sphere [2, Lemma 4.2]. Since Δ represents zero in H2(V, ∂V ),
H1(V − Δ) ∼= Z, generated by the meridian. Thus the d-fold cyclic cover of V branched over
Δ, denoted Ṽ , is defined and has boundary Σd(K). Since H1(V ; Zp) = 0, it follows from the
proof of [2, Lemma 4.2] that H1(Ṽ ; Zp) = 0. Thus the first and third betti numbers vanish:
β1(Ṽ ; Zp) = 0 = β3(Ṽ ; Zp).

To compute the signature of Ṽ we make V into a closed 4-manifold and use the G-signature
theorem. Let (B4, FK) be the 4-ball together with a Seifert surface for K pushed into its
interior. Let

(Y, F ) = (V,Δ) ∪ (−B4,−FK)

be the closed pair, let W̃ denote the d-fold cyclic branched cover of (B4, FK), and let Ỹ be
the d-fold cyclic branched cover of (Y, F ). Note that Zd acts on Ṽ , Ỹ , and W̃ with V , Y , and
B4, respectively, as quotient. Choose a generator τ for this action. Let Hi(Ỹ , j; C), 0 � j < d,
denote the exp(2πij

d )-eigenspace for the action of τ∗ on Hi(Ỹ ; C); let βi(Ỹ , j) denote the rank
of this eigenspace, and let χ(Ỹ , j) denote the alternating sum of these ranks (similarly for Ṽ

and W̃ ). Let σ(Ỹ , j) denote the signature of the exp(2πij
d )-eigenspace of the isometry τ∗ acting

on H2(Ỹ ; C) (similarly for Ṽ and W̃ ). By a lemma of Rochlin, using the G-signature theorem
[34][2, Lemma 2.1], since Ỹ is closed and [F ] · [F ] = 0,

σ(Ỹ , j) = σ(Y ).

Since Ỹ = Ṽ ∪ −W̃ glued along the rational homology sphere Σd(K), this translates to

σ(Ṽ , j) − σ(W̃ , j) = σ(V ) − σ(B4) = 0.
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Moreover, it is known that σ(W̃ , j) is a pr-signature of K [38], [21, Chapter 12], implying
that

σK(ωj) = σ(W̃ , j) = σ(Ṽ , j), (3.3)

where ω = exp(2πi
d ). Since these roots of unity are dense in the circle, σK(z) = σK(ωj) for

some r and j. Hence it suffices to show that

|σ(Ṽ , j)| � 2g. (3.4)

Since π1(E) ⊂ π1(V − Δ)(1), the collection E lifts to a collection

Ẽ =
{
tkS̃i, t

jB̃i | 0 � k, j < d− 1, 1 � i � 2e
}

of 4ed embedded surfaces in Ṽ . Indeed, their regular neighborhoods lift, so each has self-
intersection 0. Moreover, for different i and k the collections of lifts are disjoint except that
tkS̃i and tkB̃i intersect transversely in one point. Since duals exist, it can easily be seen that Ẽ is
a basis for a τ -invariant subspace of H2(Ṽ ; C) of rank 4ed (for more details see the proof of [11,
Theorem 6.2]). Hence we can speak of the jth eigenspace (Ẽ , j). For each fixed i, let S̃i and B̃i

denote the τ -invariant d-dimensional subspaces with bases τkS̃i and τkB̃i as k varies. Since
the roots of td − 1 are distinct, the jth eigenspaces of S̃i and B̃i have dimension one, generated
by, say, sij and bij where sis ∈ S̃i. Thus (Ẽ , j) has dimension 4e and has {sij | 1 � i � 2e} and
{bij | 1 � i � 2e} generating Lagrangian subspaces of rank 2e. Hence σ(Ẽ , j) = 0.

Finally note that the jth-eigenspace of H2(Ṽ ; C) decomposes as (Ẽ , j) ⊕Dj for some Dj

(the direct sum is orthogonal with respect to the intersection form since the intersection form
restricted to (Ẽ , j) is nonsingular). Hence the rank of Dj is β2(Ṽ , j) − 4e. But the argument on
the top of page 2118 of [11], in particular equation (4.4), establishes that β2(Ṽ , j) = β2(V ).
Since the latter is 4e + 2g, the rank of Dj is 2g. Thus

|σ(Ṽ , j)| = |σ(Dj)| � rankDj = 2g,

establishing (3.4) and finishing the proof. �

Corollary 3.5. If K is a knot and z is a complex number of norm one that is not a root
of ΔK then

|σK(z)|
4q

� ‖K‖q.

Moreover, if Arf(K) �= 0, then

1 +
max{|σK(z)| − 2, 0}

4q
� ‖K‖q.

Proof. Suppose K bounds a branch-symmetric grope Σ in B4. Let b0, b1, e denote the number
of branches of Σ for which ni is 0,1, or greater than 1, respectively. We order the branches
so that ni = 0 for 1 � i � b0, ni = 1 for b0 + 1 � i � b0 + b1, and ni � 2 for i � b0 + b1 + 1.
Then

‖Σ‖q = b0 +
b0+b1∑
i=b0+1

1
q

(
1 − 1

gi2

)
+

g1(Σ)∑
i=b0+b1+1

1
qni

(
1 −

ni+1∑
k=2

1
gik

)
� b0 +

b1
2q

� g(Σ)
2q

,
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Figure 3. A 3-component string link.

where g(Σ) = b0 + b1. By Theorem 3.1, 2g(Σ) � |σK(z)|. Thus

|σK(z)|
4q

� ‖Σ‖q.

Since this true for every Σ, the first claimed result follows. For the second part, if Arf(K) �= 0
then K cannot bound any symmetric grope of height 2, so b0 � 1. Thus

b0 + b1/2q � 1 +
g(Σ) − 1

2q
� 1 +

max{|σK(z)| − 2, 0}
4q

,

since gik � 2, from which the second claimed result follows. �

4. Definitions on string links

Let I denote the interval [0, 1].

Definition 4.1 (String links and string link concordance). Fix m points, p1, . . . , pm ∈
D2. An m-component string link L is an embedding L : {p1, . . . , pm} × I ↪→ D2 × I such
that (pi, j) �→ (pi, j) for i = 1, . . .m and j = 0, 1. An example is depicted in Figure 3. Let
Li = im({pi} × I) be the ith component of L. Denote the exterior of a string link L by
EL := D2 × I � νL, where we identify L with its image, and νL is a regular neighborhood
of L.

A concordance between string links L0, L1 is an embedding {p1, . . . , pm} × I × I ⊂ D2 × I ×
I with im({pi} × I × {j}) = Li

j ⊂ D2 × I × {j} for i = 1, . . . ,m and j = 0, 1, and (pi, k, x) �→
(pi, k, x) for i = 1, . . . ,m, k = 0, 1 and for all x ∈ I. We say that L0, L1 are string link
concordant or concordant.

Note that a string link L0 is concordant to the trivial string link, LT : (pi, x) �→ (pi, x) for
all x ∈ I, if and only if its closure

L̂0 := L0 : {p1, . . . , pm} × I ⊂ D2 × I

{(x, 0) ∼ (x, 1)| x ∈ D2} ∪S1×S1 S1 ×D2 ∼= S3

is slice. We call the string link L0 slice too.
The orientation of I (in {p1, . . . , pm} × I) determines an orientation of L. We often conflate

L and its oriented image, and use L to denote both.
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Figure 4. A 3-multidisk and some strands of R that intersect it.

Definition 4.2 (Concordance group of string links). The sum L0#L1 of two string links is
given by

L0#L1 : {p1, . . . , pm} × I ↪→ D2 × I

(pi, x) �→
{
L0(pi, 2x) 0 � x � 1/2
L1(pi, 2x− 1) 1/2 < x � 1.

The inverse −L of a string link L is given by

−L : {p1, . . . , pm} × I ↪→ D2 × I

(pi, x) �→ (pi,−x).

With these notions of addition and inverse, the set of concordance classes of m-component
string links form a group Cm

SL, the string link concordance group.

Now we give the definition of a string link infection. One should think about these as
operators (functions) Cm

SL → C�.

Definition 4.3 (String link infection). An m-multidisk D is the standardly oriented unit
disk D2 together with a collection of m ordered embedded subdisks D1, . . . , Dm in D2 with
pi ∈ Int(Di). Here the pi are the same points as in Definition 4.1.

Let R = R1 ∪ · · · ∪R� ⊂ S3 be a link, let D be an m-multidisk, and let ψ : D ↪→ S3 be
an embedding where R intersects D transversely and R ∩ (D � (∪i Int(Di))) = ∅. The data
(R,ψ) are called a pattern. Two patterns are equivalent if they are ambiently isotopic through
patterns. An example of thickened multidisk together with some strands of R is shown in
Figure 4.

These data determine a satellite operator R(−, ψ) : Cm
SL → C� from the concordance group

of m-component string links to the set of concordance classes of �-component links, as follows.
Set B = D × I, oriented using the product orientation, and set H = B � (∪i Int(Di) × I) ⊂

B. Denote the boundary of ψ(Di) by ηi(R,ψ), and let η(R,ψ) be the m-component unlink
η1(R,ψ) ∪ · · · ∪ ηm(R,ψ). When it is clear, we will suppress the (R,ψ) and just write η or ηi.
We identify D with D × {0} and note that ψ extends to an orientation preserving embedding
ψ : B ↪→ S3 with R ∩ H = ∅. Note that the image of H can be identified with the exterior
of the trivial string link T , and in this identification ηi is the ith meridian of T . Given an
m-component string link L, remove the image of H from S3, and replace it by EL, identifying
the ith longitude of L with the ith longitude of T and the ith meridian of L with the ith meridian
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of T . The resulting 3-manifold is again homeomorphic to S3 (see [9, Definition 2.2] for more
details)

f : cl(S3 � ψ(H)) ∪ EL

∼=−→ S3.

Denote the image f(R) by R(L,ψ), the output of the string link operator R(−, ψ) acting on L.
When it is clear, we may drop the ψ and write R(L). In addition, when L has one component,
ψ is determined by the curve η so we may write R(L, η).

By definition, the (algebraic) winding matrix of R(−, ψ) is an �×m matrix over Z with
columns aw1, . . . , awm, where each awi ∈ Z� is the element of H1(ER; Z) �−→ Z� represented
by ηi(R,ψ). We say that an operator has (algebraic) winding number k if every entry of the
matrix is equal to k.

The geometric winding number of (R,ψ) is an m-tuple (w1, . . . , wm) ∈ (N0)m where wi is
the minimal number of intersections of R with the subdisk Di, that is, the number of strands
of R that pass through ηi(R,ψ). Here the minimum is taken over all representatives of the
pattern equivalence class of (R,ψ). We remark that for the geometric winding number, the
count does not take orientations into account.

The above definition can be easily adapted to the case that R is a string link. In that case,
we obtain a function

R(−, η) : Cm
SL → C�

SL.

Next we define the notion of grope concordance of string links.

Definition 4.4. A grope concordance between m-component string links L0 and L1 is
an embedding of an m-component grope G ⊂ D2 × I × I with ∂G ⊂ ∂(D2 × I × I), ∂G ∩
(D2 × I × {j}) = Lj and ∂G ∩ (D2 × {k} × I) = {p1, . . . , pm} × {k} × I, for k, j ∈ {0, 1}. We
say that L0 and L1 cobound the grope G.

We can easily extend our metrics to string links.

Definition 4.5. The distance dq(L, J) between two m-component string links L and J

with all pairwise linking numbers vanishing, is the distance dq(L̂, Ĵ) between their closures L̂

and Ĵ . We say that a string link J bounds a group of height n, that is J ∈ Gm
n , if the closure

satisfies Ĵ ∈ Gm
n .

5. The effect of satellite operations and string link infections

Classical satellite operators are operators on the metric spaces (C, dq). More generally, as
described above, string link infections may be viewed as functions (Cm

SL, d
q) → (C�, dq). In this

section, we show that these functions are Lipschitz continuous, where the Lipschitz constant
depends on the geometric winding number. We also show that algebraic winding number zero
operators are contraction mappings for any q bigger than the geometric winding number.

Definition 5.1. A tip of a grope Σ consists of a basis curve on a top stage surface; that
is, a surface in Σ to which no further surfaces are attached.

A cap for a grope Σ (of multiplicity k) is a planar surface D2 � (
k
i=1 Int(Di)) embedded in

D4 � νΣ such that Di ⊂ D2 is a disk, ∂D2 is a normal framing push off of a tip of Σ, and the
interior boundary 
k

i=1∂Di is a collection of meridians of L = ∂Σ1:1. Note that this definition
of a cap is not standard. We call each interior boundary component ∂Di a tip of the cap or a
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cap tip. A capped grope is a grope for which every top stage surface has a symplectic basis of
tips to which caps are attached.

We can similarly define a tip and a cap for a grope concordance, and obtain the notion of a
capped grope concordance.

Lemma 5.2. If a link L bounds a grope G in a simply-connected 4-manifold W , then the
grope can be capped.

Proof. Consider the embedded framed link {�j} consisting of the tip circles of G. Any link in
the interior of a simply-connected 4-manifold bounds a set of smoothly immersed 2-disks {δj}
in the interior of W , which we may assume to intersect G transversely. By boundary twisting,
we may also assume that for each immersion the given framing on {�j} extends to {δj} [19,
Corollary 1.3B]. Any such collection of framed immersions can be replaced by a collection that
is disjointly embedded (by pushing intersections off the boundary) [19, Section 1.5]. Then
each transverse intersection of one of the embedded disks δj with one of the surface stages of
G can be ‘pushed down’ (by an isotopy) to create two new intersections with a lower stage [19,
Section 2.5]. In this fashion we may assume that all of the intersections of {δj} with G are
with the first-stage surfaces. After removing small 2-disks from the δj at these intersection
points, we have a collection of disjointly embedded genus zero surfaces whose boundaries are
disjoint copies of circle fibers of the regular neighborhood of the first-stage surfaces. These can
be joined by disjoint tubes in this circle bundle to meridians of L, until we arrive at a collection
of caps, that is a disjoint collection of framed genus zero surfaces Fj whose interiors are in the
complement of G, wherein the boundary of Fj is the tip �j together with a number of disjoint
parallel copies of certain meridians of L (the cap tips). �

A similar lemma holds when G is a grope concordance. The next proposition is our main
technical result for constructing gropes.

Proposition 5.3. Let R(−, ψ) : Cm
SL → C� be a satellite operator as in Definition 4.3 (where

R is a link or string link; in the latter case we have a function Cm
SL → C�

SL) with geometric
winding numbers (w1, . . . , wm), where the link η(R,ψ) bounds a symmetric grope Gη of height
h in (S3 � (R ∪ Int(ψ(B)))) × [0, 1]. Let L0, L1 be string links that are grope cobordant via a
branch-symmetric grope GL = (GL1 , . . . , GLm

) ⊂ D2 × I × I. Then R(L0, ψ) and R(L1, ψ) are
grope cobordant via a branch-symmetric grope GR(L), that, loosely speaking, is formed from
wj copies of GLj

for 1 � j � m, and multiple copies of the components of Gη attached to tips
of the copies of GL. More specifically,

(A) the genus of the first-stage surface of GR(L)s is

g1(GR(L)s) =
�∑

j=1

ws
jg1(GLj

); (5.4)

where ws
j is the number of strands of Rs that pass through the jth subdisk of D;

(B) a branch, B′, of the new grope GR(L) consists (abstractly) of a copy of a branch, B, of
GL along with (a boundary connected sum of) copies of Gη attached to each tip of B.
Thus the length of B′ is h more than the length of B; and

(C) for each tip of B the number of copies of Gηj
used is equal to the jth cap multiplicity,

that is, to the number of meridians of Lj occurring in the (punctured) cap chosen for
this tip of B.
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Moreover, in the special case that R is a slice link and L1 is a trivial string link, so R(L1, ψ)
bounds slice disks Δ ↪→ B4, then, by appending Δ to GR(L), we have that R(L0, ψ) bounds
a grope in B4; and for this case the weaker condition that the link (η1, . . . , ηm) bounds a
symmetric grope of height h in B4 − Δ is sufficient.

The techniques used in the following proof are very similar to those used in [17, Proposition
3.4, Corollary 3.14; 24, Theorem 3.4]. The difference is that we keep precise track of the genera
and the number of copies used in the construction.

Proof. We will assume that R is a link in S3. The proof is essentially the same if R is a
string link.

First, we will describe a simple grope concordance G′ between R(L0) and R(L1). By
hypothesis the string link L0 ↪→ D2 × I × {0} is grope cobordant via GL, in D2 × I × I to
the string link L1 in D2 × I × {1}. Note that by Lemma 5.2 we can choose caps for GL.
We can assume that the tips of these caps are assumed to be copies of the meridians of the
components of L1, since in the proof of Lemma 5.2 the final tubing to the boundary can be
done in either direction, to L0 or to L1; in particular we can choose all tubes so that they lead
to meridians of L1. Henceforth in this proof we assume that these caps are part of GL. The
choices of caps will affect the structure of the grope.

Let (w1, . . . , wm)L denote the string link obtained by taking, for each 1 � j � m, wj parallel
copies of the jth component of L and then perhaps changing the string orientation of some of the
copies as needed below. Thus (w1, . . . , wm)L0 is grope cobordant in B × [0, 1] to (w1, . . . , wm)L1

via a grope that we will call (w1, . . . , wm)GL. The latter is obtained by taking parallel copies
of the components of GL.

For each strand of the sth component of R that passes through ηj we need a copy of the
jth component of the grope concordance GL. This copy of (GL)j will (below) become part of
the first-stage surface for the sth-component of the grope concordance G′. This observation
justifies equation (5.4). Moreover this grope concordance is capped by parallel copies of the
caps of GL.

A key observation is that each of the cap tips of (w1, . . . , wm)GL will not be a meridian of
(w1, . . . , wm)L1, but rather will be a ‘fat meridian’ of say the jth-component of L1 (a circle
that encloses all the parallel copies of (L1)j which were taken). So it is best to think of taking
parallel copies of the components of L1 that lie inside the original tubular neighborhood of
L1, so that these new fat meridians are actually the same as the meridians of the original
components of L1.

Now let B denote the complementary 3-ball to ψ(B), meaning S3 = B ∪ ψ(B) where
ψ : B → S3 is an extension of ψ : D → S3 as described in Definition 4.1. Then, by definition of
string link infection, (S3, R(Lk)), for k = 0, 1, decomposes as

(ψ(B), (w1, . . . , wm)Lk) ∪ (B, R ∩ B),

for a certain choice of string orientations on the components of (w1, . . . , wm)Lk. Now define a
grope concordance G′ from R(L0) to R(L1) by

G′ ≡ (w1, . . . , wm)GL ∪ ((R ∩ B) × [0, 1]) ↪→ (B × [0, 1]) ∪ (B × [0, 1]) ≡ S3 × [0, 1].

Recall that the boundaries of the punctured caps of G′ are copies of the meridians of the
original components of L1 in B × {1}. But these are identified, in the process of string link
infection, with copies of the circles ηj in S3 × {1}.

Now we will add extra stages to the grope concordance (S3 × [0, 1], G′). First extend G′

to (S3 × [0, 2], G′′) by adding the product annuli R(L1) × [1, 2] ↪→ S3 × [1, 2]. By hypothesis
(η1, . . . , ηm) ↪→ S3 × {1} bounds a symmetric grope Gη of height h in (S3 � (R ∪ Int(ψ(B)))) ×
[1, 2] and hence certainly bounds such a grope in the exterior of the product annuli R(L1) ×
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Figure 5. A schematic of the construction of GR(L). The links R(Li) are drawn as single circles
and each component grope is drawn as a genus one surface.

[1, 2] ↪→ S3 × [1, 2]. So, finally, we can add copies of the ±Gηj
↪→ S3 × [1, 2] to each of the

copies of ±ηj that occur as tips of the caps of G′′. The resulting grope, which we call GR(L),
is a grope concordance from R(L0) to R(L1) each of whose branches has length h more than
that of the corresponding branch of GL. A schematic of the construction is shown in Figure 5.

Moreover, in the case that R is a slice link and L1 is a trivial string link, so R(L1) is a
slice link which bounds some slice disks Δ ↪→ B4, then, by appending Δ to GR(L) constructed
above, we have that R(L0) bounds a grope in B4 with essentially the same topology and
combinatorics as above. Moreover, for this case the weaker condition that the link (η1, . . . , ηm)
bounds a symmetric grope of height h in B4 − Δ is sufficient, as can be seen by analyzing the
previous paragraph. �

The following corollary generalizes [17, Proposition 3.4, Corollary 3.14; 4, Proposition 4.7;
24, Theorem 3.4]. Recall that we denote the set of m component links that bound a grope of
height n in D4 by Gm

n , and we say that a string link J ∈ Gm
n if Ĵ ∈ Gm

n .

Corollary 5.5. Let R = (R1, . . . , R�) be a slice link (or a slice string link) that admits a
system of slice disks Δ. Suppose the link (η1, . . . , ηm) are the data of a string link infection as
above and bounds a symmetric grope of height h in the exterior of Δ. Suppose L ∈ Gm

n . Then
R(L) ∈ G�

n+h.

Proof. The hypotheses of Corollary 5.5 are the hypotheses of the special case in the last
sentence of Proposition 5.3. �

Recall that a doubling operator is a special case of a string link infection wherein R is a
slice link (or a slice string link) and �k(ηj , Rk) = 0 for all j, k; see for example [12, p. 1598;
13, p. 1425; 1, Definition 1.3]. The latter condition says that the algebraic winding number is
zero.

Consider the special case of a string link infection when R = P is a knot and m = 1, so
η = η1 is a single curve. We can think of P as a knot in the solid torus S3 − (B − (D1 × I)),
called the pattern knot. Then P (−, η) : C → C is called a satellite operator. The algebraic and
geometric winding numbers are now both just single numbers.
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Figure 6. A schematic of the proof for m = 3.

Corollary 5.6. For any doubling operator (R, η), R(Gm
n ) ⊂ G�

n+1. In particular for any
winding number zero pattern knot P which is a slice knot when viewed in S3, the induced
(faithful) satellite operator P : C → C satisfies P (Gn) ⊂ Gn+1 for each n.

Here faithful refers to the lack of potential twistings that could occur during a satellite
operation; see [35, p. 111].

Proof. Since (R, η) is a doubling operator, R = (R1, . . . , R�) is an �-component slice link.
Let Δ be a collection of slice disks. Moreover, (η1, . . . , ηm) forms a trivial link in S3 −R, for
which �k(ηj , Rk) = 0 for all j, k. Hence the following lemma can be applied to find a collection
of disjointly embedded height one gropes with boundary the ηi. The proof is then finished by
applying Corollary 5.5 with h = 1. �

Lemma 5.7. For any link (or string link) R, and any set of disjoint circles {η1, . . . , ηm} in the
exterior of R for which �k(ηi, ηj) = �k(ηi, Rk) = 0 for all i, j, k, the link {η1, . . . , ηm} bounds
a height one grope whose interior lies in (S3 −R− η1 − η2 − · · · − ηm) × [0, 1]. Moreover, for
any set of slice disks Δ for a link (or string link) R, the link {η1, . . . , ηm} bounds a height one
grope in B4 − Δ.

Proof. For each ηj , choose a Seifert surface Sj whose interior is disjoint from the other
ηi. For each j, let Fj ↪→ S3 × [0, j] be the surface bounding ηj which consists of the product
annulus ηj × [0, j] together with a copy of Sj ↪→ S3 × {j}. Since the Sj occur in different levels,
these surfaces in S3 × [0,m] are disjoint. Moreover, if i �= j then Fj is disjoint from ηi × [0,m].
After a slight adjustment along the annulus part of Fj , we can assume it is disjoint from
ηj × [0,m] except where they coincide at ηj × {0}. After smoothing corners, we may assume
that the Fj are transverse to each component of R× [0,m], hence intersect each component in
pairs of points with opposite signs. Using disjoint arcs in these components as guides, we can
alter each Fj by adding tubes to get it disjoint from R× [0,m]. This yields the desired height
one grope. A schematic of the proof is shown in Figure 6.

The case of slice disks is easier and actually follows from the above case by assuming that
the slice disks are products R× [0, ε] near the boundary, and finding the grope in R× [0, ε] as
above. �
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Definition 5.8. A map f : (X, d) → (Y, d′) between pseudo-metric spaces is Lipschitz con-
tinuous if there exists some δ � 0, called a Lipschitz constant of f , such that d′(f(x), f(w)) �
δd(x,w) for all x,w ∈ X.

Proposition 5.9. For any pattern knot P and any q, the satellite operator P : (C, dq) →
(C, dq) is Lipschitz continuous with Lipschitz constant equal to the geometric winding number
of P .

Proof. Let gw(P ) be the geometric winding number of P . Suppose that K and J are
arbitrary knots and Σ is any grope concordance between them. From Σ we will construct a
grope concordance G between P (K) and P (J). It will suffice to show that ‖G‖q � gw(P )‖Σ‖q
since this implies that dq(P (K), P (J)) � gw(P )dq(K,J), which implies that P is Lipschitz.

To construct G, we essentially repeat the first part of the proof of Proposition 5.3. In this
simple case, a satellite operation is a string link infection where B is simply a thickening of the
meridional disk of the solid torus in which P lies. By hypothesis the knotted arc K ↪→ B × {0}
is grope cobordant via Σ, in B × [0, 1] to the knotted arc J in B × {1}. Taking gw(P ) parallel
copies of Σ and changing some orientations, we see that the string link gw(P )K is grope
cobordant in B × [0, 1] to gw(P )J via a grope that we will call gw(P )Σ. Let B denote the
complementary 3-ball to D. Now define a grope concordance G from P (K) to P (J) by

G ≡ gw(P )Σ ∪ ((P ∩ B) × [0, 1]) ↪→ (B × [0, 1]) ∪ (B × [0, 1]) ≡ S3 × [0, 1].

The grope G is composed of gw(P ) copies of Σ (some with altered orientation) banded together
along their boundaries. Thus the genus of the first-stage surface of G is gw(P ) times that of Σ
and each branch of Σ is repeated gw(P ) times. Thus, for any q,

‖G‖q = gw(P ) ‖Σ‖q,

as desired. �

A special case of Lipschitz continuity is the following.

Definition 5.10. A map f : (X, d) → (Y, d′) between pseudo-metric spaces is called a
contraction mapping if there exists some 0 � δ < 1 such that d′(f(x), f(w)) � δd(x,w) for
all x,w ∈ X.

Proposition 5.11. For any winding number zero satellite operator R(−, η) there is an
N , depending only on the geometric winding numbers of R(−, η), such that for each q > N ,
R : (Cm

SL, d
q) → (C�, dq) is a contraction mapping. In particular, for any winding number zero

pattern knot P , and any q > gw(P ), the satellite operator P : (C, dq) → (C, dq) is a contraction
mapping.

This gives further evidence that C has the structure of a fractal space as conjectured in [14].

Proof. Suppose that R = (R1, . . . , R�) and η = (η1, . . . , ηm). Let ws
j , for 1 � s � � and 1 �

j � m, be the number of strands of Rs that ‘pass through’ ηj . Let N = maxj{
∑�

s=1 w
s
j} =

maxj{wj}. Fix any q > N . We will show that R : (Cm, dq) → (C�, dq) is a contraction mapping;
here we omit η from the notation of the operator for brevity.

In the case that N = 0 then all ws
j = 0 so, for any L, R(L) = R. Thus dq(R(L0), R(L1)) = 0

for all L0, L1, so R is a contraction mapping for δ = 0.
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Henceforth we assume that N > 0. Let δ = N
q , so 0 � δ < 1. We will show that, for all string

links L0, L1,

dq(R(L0), R(L1)) � δdq(L0, L1). (5.12)

Since R(−, η) has winding number zero, Lemma 5.7 ensures that the link (η1, . . . , ηm) bounds a
symmetric grope Gη of height 1 in (S3 − (R ∪ B)) × [0, 1]. Suppose that L0 is grope cobordant
to L1 via a grope Σ. Recall that

‖Σ‖q =
m∑
j=1

g1(Σj)∑
i=1

1
qnji

(
1 −

nji+1∑
k=2

1
gjik

)
=

m∑
j=1

‖Σj‖q.

Let G denote the grope concordance from R(L0) and R(L1) constructed in Proposition 5.3.
Hence

g1(Gs) =
m∑
j=1

ws
jg1(Σj); 1 � s � �.

Moreover, Gs is formed from ws
j parallel copies of Σj with copies of the surfaces Gη attached

to all tips (and sum over j). The key point is that, for fixed j the topology of all of these copies
is the same, independent of s. Thus

dq(R(L0), R(L1)) � ‖G‖q =
�∑

s=1

‖Gs‖q =
�∑

s=1

m∑
j=1

ws
j‖Σj ∪ copies Gη‖q

=
�∑

s=1

m∑
j=1

ws
j

g1(Σj)∑
i=1

1
qnji+1

(
1 −

nji+1∑
k=2

1
gjik

− 1
gjinji+2

)
.

Now if we just ignore the last terms arising from the final stage surfaces, we can continue with:

�
�∑

s=1

m∑
j=1

ws
j

g1(Σj)∑
i=1

1
qnji+1

(
1 −

nji+1∑
k=2

1
gjik

)

=
�∑

s=1

m∑
j=1

ws
j

q
‖Σj‖q =

1
q

m∑
j=1

‖Σj‖q
(

�∑
s=1

ws
j

)

�N

q
‖Σ‖q = δ‖Σ‖q.

Hence dq(R(L0), R(L1)) � δ‖Σ‖q. Since this is true for any grope concordance Σ from L0 to
L1, this establishes inequality (5.12).

In particular, any pattern knot P with winding number zero is an example of such a string
link operator with � = m = 1 and N = gw(P ). �

6. Examples exhibiting the non-discrete behavior

Proposition 6.1. For each m � 3, there exists a family of knots, {Km
n |n � 0}, such that

Km
n bounds a symmetric height n + 2 grope, whose first stage has genus 2n and whose higher

stages have genus one. Moreover, Kn /∈ Gn+3.

Note that Proposition 6.1 completes the proof of Theorem 2.13.
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Figure 7. Left: the ribbon knot Rm and the infection curve η. Right: the infected knot
Km

n := Rm(Km
n−1).

Proof. First, for any fixed m, we will recursively define knots Km
n , each of which bounds a

symmetric grope of height n + 2. Let K0 = Km
0 be the mirror image of the knot (independent

of m) given in [17, Figure 3.6], that bounds a symmetric height 2 grope whose first- and
second-stage surfaces each have genus one. The other relevant property of K0 is that ρ0(K0),
the integral of its Levine–Tristram signature function, is negative, as shown in [17, Lemma
4.5]. Let Rm be the ribbon knot shown on the left-hand side of Figure 7. The −m in the box
indicates m full left-handed twists between the bands. Below the dotted η circle on the left of
Figure 7 one sees what we mean by half a negative twist. Let ηm be an oriented unknotted
circle which has linking number zero with Rm. An example of a curve with this property is
shown as dashed in the figure. The actual ηm we will use will be described presently. Then let
Km

n ≡ Rm(Km
n−1) as shown on the right-hand side of Figure 7, for the particular choice of η

in the left-hand diagram. Henceforth we will suppress m from the notation until it becomes
relevant. For any such η, the pair (R, η) implicitly symbolizes a winding number zero pattern,
since the exterior of a neighborhood of η is a solid torus and R gives a pattern knot inside this
solid torus, which, by abuse of notation, we will also call R. Thus R(−, η) defines a doubling
operator. Since K0 ∈ G2, by repeatedly applying Corollary 5.6, we see that Kn ∈ Gn+2. By the
second sentence of Proposition 5.11, for any q > gw(R), R is a contraction operator, so the
sequence Kn converges to the class of the trivial knot in (C, dq). Below we will show that,
for certain choices of η, Kn /∈ Gn+3 which implies that each knot in the sequence represents a
distinct concordance class. This will be enough to show that (C, dq) does not have the discrete
topology for any q > gw(R).

However, to prove Corollary 2.13 for all q > 1 we must choose ηm very carefully and prove
that Kn bounds a symmetric height n + 2 grope whose first stage has genus 2n and whose higher
stages have genus one. For this we must look more carefully at the gropes constructed in the
proof of Proposition 5.3. In particular we are in the special case covered in the last paragraph
of the statement of that proposition. The existence of the ηm we require is guaranteed by the
following lemma.

Lemma 6.2. Let R be a knot with cyclic rational Alexander module. Then there exist a
curve η with the following properties:

(1) η bounds an embedded disk in S3 that intersects R transversely in two points with
opposite signs;

(2) η generates the rational Alexander module of R;
(3) η bounds, in the exterior of R, an embedded genus one surface with symplectic basis

x, y, each of which bounds a cap in S3 that intersects R precisely once.
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Proof of Lemma 6.2. The rational Alexander module of Rm, henceforth denoted by A, is
cyclic with order (mt− (m + 1)((m + 1)t−m). Let α be a generator. Since Q[t, t−1] is a PID
and since t1 + t−1 − 2 is relatively prime to the order of A (t±1 − 1 cannot be a factor of any
Alexander polynomial of a knot), there is a class β ∈ A such that

α = (t1∗ − 1 + t−1
∗ − 1)β. (6.3)

After possibly by multiplying α and β by the same positive integer, we may assume without
loss that α and β come from the integral Alexander module and hence are represented by
homotopy classes η̃ and b in π1(S3 −Rm)(1), and that equation (6.3) holds in the integral
Alexander module. The desired circle η will be a particular representative of the homotopy
class η̃. By (6.3) we have the following statement in π1(S3 −R):

η̃γ = (μbμ−1)b−1(μ−1bμ)b−1 = [μ, bμ−1b−1],

where μ is the homotopy class of a fixed meridian of Rm and γ ∈ π1(S3 −R)(2). Redefine
η̃ = η̃γ since they both represent α. Now the proof follows that of [17, Lemma 3.9]. Of course
μ is represented by an actual geometric meridian, by which we mean an oriented circle in
S3 −R that bounds an embedded disk D1, that hits R in only one point and which contains
the basepoint in its boundary. We can represent bμ−1b−1 by another such meridian, that is
there is an embedded disk, D2, whose boundary represents this class, which intersects R in one
point, and which intersects D1 only at the basepoint. These two disks will be the caps of the
punctured torus we now define. The circles x ∨ y ≡ ∂D1 ∪ ∂D2 form an embedded wedge of
circles. We can thicken each circle to get two plumbed annuli, forming an embedded punctured
torus, Gη, whose boundary realizes the commutator η̃ (see [17, Lemma 3.9] for a figure and
more details). Let η be the boundary of Gη. Then η satisfies 2. and 3. Moreover the torus can
be surgered along either D1 or D2 showing that η also bounds an embedded disk that hits R
in two points. This completes the proof of Lemma 6.2. �

Now assume that η satisfies the properties in Lemma 6.2. Thus η bounds a genus one height
one grope Gη in the exterior of a slice disk Δ for R. Moreover, this grope is capped by disks D1,
D2, each of which intersects Δ in single point. Now suppose, inductively, that Kn−1 bounds a
symmetric height (n + 1) grope G whose first stage has genus 2n−1, whose higher stage surfaces
all have genus one and moreover where each tip of G has a cap with multiplicity 1. Thus the
punctured caps are merely ‘pushing’ annuli. We will apply the last paragraph of Proposition 5.3
with h = 1. By part (A) of Proposition 5.3, R(Kn−1) bounds a grope Σ whose first stage has
genus twice that of G, namely 2n. Moreover, by part (B) of Proposition 5.3, the union of all
except the top stage surfaces of Σ consists of a boundary connected sum of two parallel copies
of G, so all of the surfaces in stages 2 through n + 1 are genus one surfaces. By part (C) of
Proposition 5.3, the (n + 2)th-stage of Σ consists of these pushing annuli together with one
copy of the punctured torus Gη per annulus. Thus Kn bounds a symmetric height n + 2 grope
Σ whose first stage has genus 2n and whose higher stage surfaces all have genus one. Moreover
each tip of Σ is capped by a copy of D1 or D2 which have multiplicity one. This finishes the
inductive step of the proof that Kn bounds a symmetric height n + 2 grope Σ whose first
stage has genus 2n and whose higher stage surfaces all have genus one. The base case, namely
that K0 bounds a symmetric height 2 grope whose first stage has genus 20, whose second-
stage surfaces have genus one and where each tip has a cap with multiplicity 1, was shown in
[17, Figure 3.13].

It only remains to show that, if m � 3, Km
n /∈ Gn+3. First, we claim that each (Rm, ηm) is a

robust doubling operator in the sense of [14, Definition 7.2]. This requires that A(Rm) is cyclic
with order p(t)p(t−1) where p(t) is prime, generated by η. We have these properties. Moreover,
we must verify that, for each isotropic submodule P ⊂ A(Rm), either P is a Lagrangian arising
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from the kernel of the inclusion to a ribbon disk exterior, or else the corresponding first-
order L(2)-signature of Rm, ρ(MR, φP ) is non-zero [14, Definition 7.1]. In our case Rm has
two Lagrangian subspaces corresponding to two ribbon disks and only one other isotropic
submodule, namely P = 0. In this case, the corresponding first-order signature is denoted
ρ1(Rm). The details to justify these statements are in [14, Example 7.3]. The fact that if
m � 3 then ρ1(Rm) < 0 is shown in [18, Theorem 7.2.1]. Thus Km

n is the result of applying n
successive robust doubling operators to the Arf invariant zero knot K0. Hence [14, Theorem
7.5] (or more precisely its proof) can be applied to Km

n to deduce that no positive multiple cKm
n

lies in F(n.5) as long as the equation dρ0(K0) + ρ(Rm, φP ) = 0 has no solution for 1 � d � c
and for any first-order signature of Rm (see equation (7.8) of the proof of [14, Theorem 7.5]).
Since we saw that ρ0(K0) < 0, and since the set of first-order signatures of Rm is {0, 0, ρ1(Rm)},
this equation cannot be solved. It follows that no non-zero multiple of Km

n lies in F(n+1) and
hence no non-zero multiple of Km

n lies in G(n+3) by [16, Theorem 8.11]. �

Remark 6.4. Since the Alexander polynomials of the Rm are (strongly) coprime, the set
{Km

n |n � 0,m � 3} is linearly independent in C by [14, Theorem 7.7] (with the proof modified
similarly to above).

Scholium 6.5. For any q > 1 there exist uncountably many sequences of knots {Kmn
n }∞n=1

such that ‖Kmn
n ‖q > 0 for all n and mn but whose norms satisfy

lim
n→∞ ‖Kmn

n ‖q = 0.

Every pair of elements in all of these sequences represent different concordance classes.

Proof. Alter the numbers mn used in the infinite sequence of knots whose norms tend
to zero. There are at least as many different choices of sequences of mn as there are real
numbers. �

7. The link concordance space is non-discrete for q = 1

In the case of knots, in order to show that the spaces of topological and smooth concordance
classes of knots are not discrete, we had to restrict to q > 1. When q = 1, we do not know that
d1(K,U) = 0 for all topologically slice knots and links so the distance function d1 is only well
defined on Cm, the set of smooth concordance classes of m-component links. In this situation,
which is somewhat complementary to that of Theorem 2.13 (topological, knots, q > 1 versus
smooth, links, q = 1), we can find a sequence of links whose norms tend to zero without ever
reaching zero.

Proposition 7.1. For any m � 2 there exists a sequence of m-component links L1, L2, . . .
such that each link has ‖Lj‖1 �= 0 but limj→∞ ‖Lj‖1 = 0. In particular, the link concordance
space (Cm, d1) is not discrete.

Note that the same construction as in the following proof will also provide the proof for
q > 1, but we focus on q = 1 since that is the outstanding case. For q > 1, the only difference
is to replace 1/2n−1 with 1/(2q)n−1 in the proof below.

Proof. Start with a Hopf link H = L0 ∪ L1, and Bing double the L1 component n times, to
obtain a link L = L0 ∪BDn(L1) with 2n + 1 components. According to Lin [27] (see also [31,
Corollary 6.6]), if a link bounds a grope of height n, then the Milnor invariants μL(I) vanish
for |I| � 2n.
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The component L0 bounds a symmetric grope Σ0 of height n, where all the surface stages
are of genus one. In fact this grope is embedded in S3 � L. The norm ‖Σ0‖1 = 1/2n−1. With
L0 deleted, BDn(L1) is an unlink, so bounds a collection of disks in the interior of B4, which
we call unlinking disks. Denote the union of Σ0 with the unlinking disks by Σ. We have
‖Σ‖1 = 1/2n−1 and thus ‖L‖1 � 1/2n−1. (Strictly speaking, since we do not allow disks, we
replace a small neighborhood of each of the disks with an arbitrary height grope, to obtain a
sequence of gropes with length tending to zero; the resulting infimum is zero.)

Next, nonrepeating Milnor’s invariants of length 2n + 1 are nonvanishing for L by
[8, Theorem 8.1], thus L does not bound any grope of height n + 1. By Proposition 2.10
we have that ‖L‖1 � 1/2n−1, so that we in fact determine ‖L‖1 = 1/2n−1 precisely.

We need to improve this to find a sequence of links realizing a subsequence of the
same sequence of norms, but for which each link in the sequence has the same number of
components m, for m at least 2. To achieve this, choose a collection of bands for the components
in the complement of the unlinking disks for BDn(L1), that connect components of L as desired.
As long as the resulting multi-index, obtained from identifying the indices of banded together
components, has a nonvanishing Milnor’s invariant associated to it, the same lower bound for
the norm applies. For each multi-index I and m � 2, in [8, Theorem 7.2], the first author
defined the integer δ(I) to be the least non-zero element of {|μL(I)|}, where L ranges over all
m-component links, if there is a link L with μL(I) �= 0. Otherwise δ(I) = 0. In the proof of
[8, Theorem 7.2], for each m � 2 and each multi-index I, the first author showed that the
Milnor’s invariants of the examples we constructed above (by iterated Bing doubles and banding
the components together) realize δ(I). Moreover, for m � 2 and for any N > 0, there exists a
multi-index I with m distinct indices, with |I| � N , and with δ(I) �= 0 by [30]. This gives rise
to a sequence of m-component links {J1, J2, . . . } with lower bounds on their norms given by
‖Ji‖ � 1/2F (i), for some strictly increasing function F : N → N. That is, Ji is obtained from
the Hopf link by Bing doubling one of the components F (i) + 1 times and then performing
some band moves.

We claim that the function F also determines an upper bound ‖Ji‖1 � 1/2F (i). To see this,
we need to see that the banded together link Ji still bounds a grope of height F (i) + 1. We
construct this grope as we move into D4 in the radial direction. First perform saddle moves to
cut the bands. This yields the original (2F (i)+1 + 1)-component link L constructed above for
n = F (i) + 1. Next attach the grope Σ0 in a radial slice, then move slightly further into the
4-ball to attach the unlinking disks for L with L0 deleted. This constructs a grope with the same
combinatorics as before, except there are fewer link components and therefore fewer disk (or
more accurately, arbitrary height grope) components to the grope. This completes the proof of
the claim. Thus we determine the norms of the sequence of links J1, J2, . . . precisely, as ‖Ji‖1 =
1/2F (i). Since F is strictly increasing, this completes the proof that the link concordance space
is non-discrete. �

Remark 7.2. We note that, as in the knot case above, since one can choose different Milnor’s
invariants of length n to be realized by the links constructed, there are in fact uncountably
many distinct sequences of (concordance classes of) links having the property that their norms
limit to zero but are all non-zero.

8. Lower bounds from higher order ρ-invariants

In this section, we will define lower bounds on the grope norms which can arise from all possible
gropes of height n. We will do this by investigating obstructions from higher order ρ-invariants.
The next definition first appeared in [22].
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Definition 8.1 (Rational derived series). For a group G, the rational derived series is
defined inductively as follows. Let G

(0)
r := G, and then let

G(k+1)
r := ker

(
G(k)

r → G(k)
r /[G(k)

r , G(k)
r ] → G(k)

r /[G(k)
r , G(k)

r ] ⊗Z Q

)
.

Definition 8.2 (Order n signatures). For a 3-manifold M together with a representation
φ : π1(M) → Γ, the Cheeger–Gromov Von Neumann ρ-invariant ρ(2)(M,φ) ∈ R is defined [6, 7].
Given a 4-manifold W with ∂W = M , such that φ extends over π1(W ), the ρ-invariant can
be computed as the L(2)-signature defect σ(2)(W,Γ) − σ(W ), where σ(2) is the L(2)-signature
and σ is the ordinary signature of W . The L(2)-signature is the signature of the intersection
form on H2(W ;NΓ), where NΓ is the Von Neumann algebra of ZΓ. For more details see [16,
Section 5; 5].

For n � 0, the set of order n signatures of a knot K is the set of real numbers given by
ρ-invariants ρ(2)(MK , φ : π1(MK) → Γ), where MK is the zero surgery manifold, φ : π1(MK) →
π1(W ) → π1(W )/π1(W )(n+1)

r =: Γ and W is an n-solution for K.

Note that there is a unique order 0 signature, where Γ = Z, so that the ρ(2)-invariant is equal
to the average of the Levine–Tristram signature function over S1 [16, Section 5].

Definition 8.3 (Extendable branches). Suppose a knot K ∈ Gn but K /∈ Gn+1, and K
bounds a symmetric grope Σ of height n. A set of branches is extendable if there exists an
embedded branch-symmetric grope Σ′ such that Σ ⊂ Σ′, and the branches in question are
contained in branches of Σ′ of length n (recall that if all branches were of length n then the
whole grope would be a symmetric grope of height n + 1).

In previous sections, we used the fact that if a knot K is not in Gn+3, then the grope norm
satisfies ‖K‖q � 1/(2q)n+1 by Proposition 2.10. In this section, we will show that order n
ρ-invariants, as well as obstructing a knot from lying in Gn+3, can give lower bounds on the
number of non-extendable branches of any height n + 2 grope. This can improve our lower
bound for the infimum of the grope length function, taken over all gropes of height n + 2.
Controlling the set of order n ρ-invariants uses the existence of a grope of height n + 2. It
could be that our knot bounds a very simple grope of height n + 1, and thus we cannot rule
out ‖K‖q = 1/(2q)n; Corollary 8.6 below gives the precise statement. Still, Theorem 8.4 does
represent a refinement of our lower bounds.

In fact, for the proof of Theorem 8.4, we could have begun with a grope of any height.
However the less we restrict, the larger the set of ρ-invariants whose infimum gives a lower
bound on the number of non-extendable branches. (Taking the infimum over a larger set
can of course result in a smaller infimum.) There are practical advantages to the way we
have proceeded. By restricting to the set of all possible order n ρ-invariants, there exist,
at least for examples constructed from iterated infections, techniques which can show the
infimum to be non-zero, and indeed arbitrarily large. We refer to [25, Theorem 4.5] for explicit
examples.

Denote the set of order n signatures of K by Sn(K). The following theorem was inspired
by [25].

Theorem 8.4. Let n � 1. Suppose that K bounds a symmetric grope Σ of height n + 2
and first-stage genus g1(Σ). Let e be the maximal cardinality amongst all sets of extendable
branches and let d = g1(Σ) − e. Then

inf{|ρn| | ρn ∈ Sn(K)} � 4d.



GROPE METRICS ON THE KNOT CONCORDANCE SET 695

Proof. We follow the idea of the proof of Theorem 3.1. Let g = g1(Σ) and let α1, . . . , α2g

be the basis curves on the first-stage surface of Σ that bound the higher grope stages. Perform
symmetric surgery on the αi. Here we mean that we perform surgery on D4 along a thickening
S1 ×D3 of a push-off of an αi curve – each such surgery adds a connected S2 × S2 or S2×̃S2

summand to D4 – and then we use the core of the resulting pair of surgery disks to reduce the
genus of Σ1:1 with either symmetric surgery. We obtain a 4-manifold V with a slice disk Δ for
K arising from the surgered first stage of Σ. Define W := V − νΔ.

As in [16, Theorem 8.11], and as explained above in the proof of Theorem 3.1, we obtain
a collection of surfaces Si, Bi, i = 1, . . . , 2g. The difference from the proof of Theorem 3.1
is that we perform symmetric surgery everywhere in the current proof, whereas before we
did asymmetric surgery for the non-extendable branches. Now we want to look at signatures
associated to (n)-solutions, that is, height n + 2 gropes only, in order to have a practically
useful condition; as remarked above, in favorable situations we actually can show that the set
of order n signatures, restricted in this way, is bounded below.

The surfaces Bi are constructed from the second-stage surfaces of Σ, capped off by the surgery
disks. The surfaces Si come from the dual surgery spheres, pushed off the contraction and then
tubed into the Bi to remove intersections between them that appear while pushing off the
contraction. The surfaces are framed and embedded, generate H2(W ; Z) ∼= Z4g = Z4d ⊕ Z4e.
The Z4d summand corresponds to non-extendable branches and the Z4e summand corresponds
to the extendable branches. The intersection form of W on H2(W ; Z) is hyperbolic, since
the intersections between the surfaces Si, Bi are Si · Sj = 0 = Bi ·Bj and Si ·Bj = δij . The
ordinary signature σ(W ) of W therefore vanishes.

Define Γ := π1(W )/π1(W )(n+1)
r , the quotient by the (n + 1)th rational derived subgroup. The

group Γ is poly-torsion-free-abelian (PTFA – see [16, Section 2]) and is therefore amenable and
in Strebel’s class D(Q) [37]. This will be useful to bound the rank of the ZΓ homology shortly.
Note that ∂W = MK , the zero surgery on K, and W is an n-solution [16, Theorem 8.11],
so that ρ(2)(MK , φ : π1(MK) → Γ) = σ(2)(W,Γ) − σ(W ) = σ(2)(W,Γ) ∈ Sn(K) is an nth order
signature of K.

The surfaces Si, Bi, for i = 2d + 1, . . . , 2g, were constructed from spheres and second-stage
surfaces belonging to branches of length n + 1 that can be extended to have length at least
n + 2, therefore they satisfy π1(Si) ⊂ π1(W )(n+1) and π1(Bi) ⊂ π1(W )(n+1). Thus these
surfaces lift to the Γ-cover. Now work over the Von Neumann algebra NΓ. For i = 2d + 1, . . . , 2g
the surfaces Si, Bi define elements of H2(W ;NΓ), in which they generate a submodule E, and
the intersection form λΓ : H2(W ;NΓ) ×H2(W ;NΓ) → NΓ restricted to E is hyperbolic.

Claim. The submodule E is a direct summand.

We have a short exact sequence

0 → E → H2(W ;NΓ) → H2(W ;NΓ)/E → 0.

The map

s : H2(W ;NΓ) → E

y �→
2g∑

i=2d+1

(y ·Bi)[Si] +
2g∑

i=2d+1

(y · Si)[Bi],

which is a homomorphism by linearity of the intersection pairing, splits this exact sequence.
This proves the claim that E is a direct summand.

Claim. The submodule E is free.
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Suppose that

C :=
2g∑

i=2d+1

ni[Si] +
2g∑

i=2d+1

mi[Bi] = 0.

Taking the intersection C ·Bk implies that nk = 0. Similarly the intersection C · Sk = 0 implies
that mk = 0. This proves the claim that E is free. Let D := H2(W ;NΓ)/E. We need to
investigate the L(2)-dimension of D.

Claim. We have that |ρ(2)(MK , φ)| � dim(2)(D).

Although D may not be a free NΓ-module, following [3, pp. 4776–80], we can define the
L(2)-signature σ(2)(W,Γ) by replacing D with P (D) = D/T (D), a projective quotient of D,
where

T (D) = {x ∈ D | f(x) = 0 for any homomorphism f : D → NΓ}
is the Von Neumann torsion submodule of D [29, p. 239]. The submodule T (D) satisfies
dim(2)(T (D)) = 0 so dim(2)(P (D)) = dim(2)(D). Note that T (E ⊕D) = T (D) since E is free.
Moreover, for any t ∈ T (D) and for any x ∈ E ⊕D we have λW (t, x) = 0. To see this note that
T (−) is functorial, and so the adjoint of λW sends t into T ((E ⊕D)∗). But T (A∗) = 0 for any
NΓ-module A by [3, Lemma 3.4]. It follows that λW (t,−) = 0 ∈ (E ⊕D)∗.

Find an NΓ-module Q such that P (D) ⊕Q ∼= NΓ� is free. Extend the intersection form λW

from E ⊕ P (D) to E ⊕NΓ� by having it vanish on Q; we also denote the extended intersection
form on E ⊕NΓ� by λW . We can then define the L(2)-signature σ(2)(λW ) as usual using the
functional calculus [16, Section 5; 3, pp. 4779–80]. We note that |σ(2)(λW |NΓ�)| � dim(2)(D),
since the absolute value of the L(2) signature is always bounded above by the L(2)-dimension
of the underlying module, and extending by the zero form on Q only increases the dimension
of the 0-eigenspace, leaving the dimensions of the positive and negative definite subspaces
unaltered. Now use that λW |E is nonsingular, and that it is defined on a free module, to
change basis so that the direct sum decomposition E ⊕NΓ� is orthogonal with respect to the
intersection form. This, together with the facts that the intersection form λW |E is hyperbolic
and σ(W ) = 0, yields:

|ρ(2)(MK , φ)| = |σ(2)(W,Γ)| = |σ(2)(λW |NΓ�)| � dim(2) D.

Now we have one last claim.

Claim. We have dim(2)(D) � 4d.

To prove the claim we will use the following dimension bound for homology over NΓ in
terms of the dimension of the Q homology, which can be found in [3, Theorem 3.11].

Theorem 8.5 [3, Theorem 3.11]. Suppose G is amenable and in D(R) with R = Q or Zp, and
C∗ is a projective chain complex over ZG with Cm finitely generated. If {xi}i∈I is a collection
of m-cycles in Cm, then for the submodules H ⊂ Hm(NG⊗ZG C∗) and H ⊂ Hm(R⊗ZG C∗)
generated by {[1NG ⊗ xi]}i∈I and {[1R ⊗ xi]}i∈I respectively, we have:

dim(2) Hm(NG⊗ZG C∗) − dim(2) H � dimR Hm(R⊗ZG C∗) − dimR H.

As noted above, Γ = G satisfies the hypothesis of Theorem 8.5. Apply the theorem
with R = Q, G = Γ and m = 2. Let C∗ = C∗(W ; ZΓ) and take the xi to be given by the
lifts to the Γ-cover of the surfaces Si, Bi corresponding to extendable branches. We have
dimQ H2(Q ⊗ZΓ C∗(W ; ZΓ)) = dimQ H2(W ; Q) = 4g, dimQ H = 4e and dim(2) H = dim(2)



GROPE METRICS ON THE KNOT CONCORDANCE SET 697

E = 4e. Thus Theorem 8.5 and additivity of the L(2) dimension imply that

dim(2) D = dim(2) H2(W ;NΓ) − dim(2) E � dimQ H2(W ; Q) − dimQ Q ⊗ E

= 4g − 4e = 4d.

This completes the proof of the claim that dim(2)(D) � 4d. Combined with the inequality

|ρ(2)(MK , φ)| � dim(2)(D) proved above, this completes the proof of the Theorem 8.4, by
the following logic. We have shown that given a height n + 2 symmetric grope with d non-
extendable branches, there exists an order n ρ(2)-invariant which is at most 4d. Considering
all possible gropes of height n + 2, they correspond to possibly different representations
φ : π1(MK) → Γ, so the infimum of the order n signatures becomes a lower bound for the
number of non-extendable branches of any height (n + 2) grope. �

Corollary 8.6. For each n � 0 we have

infρn∈Sn(K){|ρn|}
4(2q)n+1

� inf
{
‖Σ‖q K bounds a branch-symmetric grope Σ all of whose

branches have length at least n + 1

}
� inf{‖Σ‖q |K bounds a symmetric grope Σ of height � n + 2}.

Thus, for each n � 0, we have

min
{

infρn∈Sn(K){|ρn|}
4(2q)n+1

,
1

(2q)n

}
� ‖K‖q.

Proof. Let Σ be a branch-symmetric grope where each branch has length at least n + 1
and let m be the number of branches of length n + 1. Then Σ contains a subgrope Σ′ that
is a symmetric grope of height n + 2. If d is the number of non-extendable branches of Σ′,
then d � m. By the previous theorem, Σ′ must have at least infρn∈Sn(K){|ρn|}

4 non-extendable
branches. Each branch of Σ of length n + 1 contributes at least 1/(2q)n+1 to ‖Σ′‖q. Thus we
see that

infρn∈Sn(K){|ρn|}
4(2q)n+1

� d

(2q)n+1
� m

(2q)n+1
� ‖Σ‖q.

This completes the proof of the first statement of the corollary.
For the second part, suppose K bounds a branch-symmetric grope and let n � 0 be fixed.

If all the branches of Σ have length at least n + 1 then by the proof of the first part, we
see that infρn∈Sn(K){|ρn|}

4(2q)n+1 � ‖Σ‖q. Otherwise, there is some branch of length at most n, so by
Proposition 2.10 we have ‖Σ‖q � 1/(2q)n. �

9. Quasi-isometries to knot concordance with the slice genus metric

Recall that a map of metric spaces f : (X, dX) → (Y, dY ) is a quasi-isometry if there exist
constants A � 1 and B � 0 such that

1
A
dX(x, y) −B � dY (f(x), f(y)) � A · dX(x, y) + B

for any x, y ∈ X, and if there is a constant C � 0 such that for any z ∈ Y there exists an x ∈ X
such that dY (z, f(x)) � C.

Let ds be the metric on C defined by the slice genus, which was studied in detail in [10]. Let
‖–‖s be the associated norm. Not only are the slice and grope metric spaces not isometric, but
we show that the identity is not even a quasi-isometry. It is unknown whether there is another
quasi-isometry between them, but we do not expect one to exist.
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Proposition 9.1. For any q � 1, neither of the identity maps Id : (C, ds) → (C, dq) nor
Id: (C, dq) → (C, ds) are quasi-isometries.

Proof. First we will show that for any A � 1 and for any B � 0 there exists a knot K such
that

1
A
‖K‖s −B > ‖K‖q.

From this, we see that the left-hand side of the condition for Id: (C, ds) → (C, dq) to be a quasi-
isometry is violated. Since q < q′ implies that ‖K‖q � ‖K‖q′ , it suffices to show this for q = 1.
Let J be a knot with slice genus one such that τ(J) = 1 (for example a trefoil), where τ : C → Z

is the invariant from knot Floer homology [32]. Let A,B be given as above. Choose m ∈ N

such that m > A(B + 1). Then choose n such that m/2n < 1; that is choose n ∈ N which is
greater than logm/ log 2. Now define K to be a connect sum of m copies of the n-fold iterated
positive Whitehead double of J , K := #m Whn

+(J). According to [23], τ(Whn
+(J)) = 1, so by

additivity τ(K) = m. Therefore ‖K‖s � m since τ(K) � ‖K‖s by [32]. Thus the left-hand side
of the inequality above satisfies

1
A
‖K‖s −B � 1

A
m−B >

1
A

(A(B + 1)) −B = 1.

On the other hand, Whn
+(J) bounds a grope of height n + 1, wherein all the stages are of genus

one, and K, the connect sum of m copies of Whn
+(J), bounds a grope of height n + 1, with

first-stage genus m and all higher stages genus one. Therefore ‖K‖1 � m/2n < 1, since the
q = 1 length of a grope of height one all of whose surfaces are genus one is 1/2n. This shows
that K has the property desired.

To show that the inverse identity map Id: (C, dq) → (C, ds) is not a quasi-isometry, we prove
that the right-hand side in the defining condition is not satisfied. That is, for any A,B there
exists a knot K with ‖K‖s > A‖K‖q + B. This is equivalent to ‖K‖s/A−B/A > ‖K‖q, and
thus we can apply the argument above with B/A replacing B. �
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