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Heegaard Floer homology of spatial graphs

SHELLY HARVEY

DANIELLE O’DONNOL

We extend the theory of combinatorial link Floer homology to a class of oriented
spatial graphs called transverse spatial graphs. To do this, we define the notion of
a grid diagram representing a transverse spatial graph, which we call a graph grid
diagram. We prove that two graph grid diagrams representing the same transverse
spatial graph are related by a sequence of graph grid moves, generalizing the work of
Cromwell for links. For a graph grid diagram representing a transverse spatial graph
f W G! S3 , we define a relatively bigraded chain complex (which is a module over
a multivariable polynomial ring) and show that its homology is preserved under the
graph grid moves; hence it is an invariant of the transverse spatial graph. In fact, we
define both a minus and hat version. Taking the graded Euler characteristic of the
homology of the hat version gives an Alexander type polynomial for the transverse
spatial graph. Specifically, for each transverse spatial graph f , we define a balanced
sutured manifold .S3 nf .G/;  .f // . We show that the graded Euler characteristic
is the same as the torsion of .S3 nf .G/;  .f // defined by S Friedl, A Juhász, and
J Rasmussen.

57M15; 05C10

In memory of Tim Cochran

1 Introduction

Knot Floer homology, introduced by P Ozsváth and Z Szabó [18], and independently
by J Rasmussen [20], is an invariant of knots in S3 that categorifies the Alexander
polynomial. Knot Floer homology is widely studied because of its many applications in
low-dimensional topology. For example, it detects the unknot (Ozsváth and Szabó [17]),
whether a knot is fibered (P Ghiggini [5] and Y Ni [15]) and the genus of a knot [17].
The theory was generalized to links by Ozsváth and Szabó [19]. The primary goal of
this paper is to extend link Floer homology to a class of oriented spatial graphs in S3 ,
called transverse spatial graphs.

Originally, knot Floer homology was defined as the homology of a chain complex ob-
tained by counting certain holomorphic disks in a 2g–dimensional symplectic manifold
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Figure 1: Example of a diagram of a transverse spatial graph; the lines at
each vertex indicate the grouping of the incoming and outgoing edges.

with some boundary conditions that arose from a (doubly pointed) Heegaard diagram
for S3 compatible with the knot. As such, the chain groups were combinatorial but one
could not, a priori, compute the boundary map. However, Sucharit Sarkar discovered a
criterion that would ensure that the count of said holomorphic disks is combinatorial.
This crucial idea was used by C Manolescu, P Ozsváth and S Sarkar [11] to give a
combinatorial description of link Floer homology using grid diagrams. Using this
description, C Manolescu, P Ozsváth, Z Szabó and D Thurston [12] gave a combi-
natorial proof that link Floer homology is an invariant. In this paper, we generalize
the combinatorial description of Heegaard Floer homology and proof in [11; 12] to
transverse spatial graphs. Specifically, we define a relatively bigraded chain complex
(a combinatorial minus version) which is a module over F ŒU1; : : : ;UV �, where V is
the number of vertices of the transverse spatial graph and F D Z=2Z is the field with
two elements. We then show that it is well defined up to quasi-isomorphism. We
note that, independently, Y Bao [1] defined a (noncombinatorial version of) Heegaard
Floer homology for balanced bipartite spatial graphs with a balanced orientation; see
Section 6 for the relationship to our theory.

Informally, a transverse spatial graph is an oriented spatial graph where the incoming
(respectively outgoing) edges are grouped at each vertex and any ambient isotopy must
preserve this grouping. See Figure 1 for an example. Details can be found in Section 2.
To define the chain complex, we first introduce the notion of a graph grid diagram
representing a transverse spatial graph in Section 3. Roughly, a graph grid diagram
is an n� n grid of squares each of which is decorated with an X, an O (sometimes
decorated with �) or is empty, and satisfies the following conditions. Like for links,
there is precisely one O per row and column. There are no restrictions on the X’s but
if an O shares a row or column with multiple (or no) X’s then it must be decorated
with �. Moreover, each connected component must contain an O decorated with �.
See Section 3.1 for a precise definition and Figure 2 for an example.
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Figure 2: Example of a graph grid diagram
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Figure 3: Associating a transverse spatial graph to a graph grid diagram

To each graph grid diagram we associate a transverse spatial graph by connecting
the X’s to the O’s vertically and the O’s to the X’s horizontally with the convention
that the vertical strands go over the horizontal strands. See Section 3.2 for more details
and Figure 3 for an example.

We prove that every transverse spatial graph can be represented by a graph grid diagram.

Proposition 3.3 Let f W G! S3 be a transverse spatial graph. Then there is a graph
grid diagram g representing f .

However, this representative is not unique. We define a set of moves on graph grid
diagrams (cyclic permutation, commutation 0 , and stabilization 0 ), called graph grid
moves, generalizing the grid moves for links. See Section 3.2 for their definitions. We
prove that any two representatives for the same transverse spatial graph are related by
a sequence of graph grid moves.

Theorem 3.6 If g and g0 are two graph grid diagrams representing the same transverse
spatial graph, then g and g0 are related by a finite sequence of graph grid moves.

In Section 4, to each (saturated) graph grid diagram g , we assign a chain complex
.C�.g/; @�/. Saturated means that there is at least one X per row and column, and
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these graph grid diagrams correspond to transverse spatial graphs where the underlying
graphs have neither sinks nor sources. We need this technical condition to show that
@�ı@�D 0. The chain group consists of bigraded free F ŒU1; : : : ;UV �–modules, where
V is the number of O’s decorated with �. Like in link Floer homology, the generators
of the chain groups are unordered tuples of intersection points between the horizontal
and vertical line segments in the grid, with exactly one point on each horizontal and
vertical line segment. The Maslov grading is defined exactly as in [12]. Note that this
is possible since it only depends on the set of O’s on the grid. For links, the Alexander
grading lives in Zm . For transverse spatial graphs, we define an Alexander grading
that has values in H1.S

3 nf .G//, where f W G! S3 is the transverse spatial graph
associated to g . To compute this, for each point in the lattice of the grid, we define an
element of H1.S

3 n f .G//, called the generalized winding number. It is defined so
that if you can get from one point to another by passing an edge of the projection of
f .G/ coming from g , then the difference between their values is (plus or minus) the
homology class of the meridian of that edge. The Alexander grading of a generator
is obtained by taking the sum of the generalized winding numbers of the points of
the generator. Each Ui is associated with an O, and we define the Alexander grading
so that multiplication by Ui corresponds to lowering the Alexander grading by the
element of H1.S

3 n f .G// represented by the meridian of the O. See Section 4.3 for
more details. The @� map is defined by counting empty rectangles in the (toroidal) grid
that do not contain X’s. We show in Section 4 that @� ı @� D 0 and so the homology
of .C�.g/; @�/ gives a well-defined invariant for each saturated graph grid diagram.

For a given transverse spatial graph, there are infinitely many graph grid diagrams
representing it. In Section 5, we show that the homology of the bigraded chain complex
is independent of the choice of saturated graph grid diagram. To prove this, we show
that the quasi-isomorphism type of the chain complex is preserved under the three
graph grid moves.

Theorem 4.22 If g1 and g2 are saturated graph grid diagrams representing the
same transverse spatial graph f W G ! S3 then .C�.g1/; @

�/ is quasi-isomorphic
to .C�.g2/; @

�/ as relatively absolutely .H1.E.f //;Z/–bigraded F ŒU1; : : : ;UV �–
modules. In particular, HFG�.g1/ is isomorphic to HFG�.g2/ as relatively absolutely
.H1.E.f //;Z/–bigraded F ŒU1; : : : ;UV �–modules.

Thus, we can define the graph Floer homology of the sinkless and sourceless transverse
spatial graph f , denoted HFG�.f /, to be HFG�.g/ for any saturated grid diagram g

representing f . We also define a hat variant, bHFG.f / by taking the homology of the
chain complex obtained by setting U1; : : : ;UV to zero. See Sections 4.2–4.4 for more
details.
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As far as the authors are aware, there have been no papers in the past that have defined
an Alexander polynomial for an arbitrary spatial graph that do not just depend on the
fundamental group of the exterior. Kinoshita [9] defines the Alexander polynomial of an
oriented spatial graph as the Alexander polynomial of its exterior. In contrast, Litherland
[10] defined the Alexander polynomial of a spatial graph where the underlying graph is
a theta graph and his definition does not depend solely on the exterior of the embedding.
At the same time as this paper was being written, Bao [1] independently defined an
Alexander polynomial of a balanced bipartite spatial graphs with a balanced orientation
and produces a state sum formula for the polynomial. Bao’s invariant is essentially the
same as ours; see Section 6 for more details.

In Section 6, we define an Alexander polynomial for any transverse spatial graph
f W G! S3 . To do this, we associate a balanced sutured manifold .S3 nf .G/;  .f //

to f . We then define the Alexander polynomial of f , �f 2 ZŒH1.S
3 n f .G//�, to

be the torsion invariant associated to balanced sutured manifold .S3 n f .G/;  .f //

defined by S Friedl, A Juhász, and J Rasmussen [4]. We show that the graded Euler
characteristic of bHFG.f / is essentially �f . Note that �f is the image of �f under the
mapping that sends each element of H1.S

3 nf .G// to its inverse.

Corollary 6.8 If f W G ! S3 is a sinkless and sourceless transverse spatial graph
where G has no cut edges, then

�. bHFG.f // :D�f :

That is, they are the same up to multiplication by units in ZŒH1.S
3 nf .G//�.

To prove this, we first prove the stronger result that the hat version of our graph Floer
homology is essentially the same as the sutured Floer homology of .S3 nf .G/;  .f //.
We say rSHF.E.f /;  .f // to mean SFH.E.f /;  .f // considered as a bigraded
.H1.E.f //;Z2/–module but with the H1.S

3 nf .G// Alexander grading changed by
a negative sign.

Theorem 6.6 Let f W G! S3 be a sinkless and sourceless transverse spatial graph
where G has no cut edges. Then

bHFG.f /Š rSHF.E.f /;  .f //

as relatively .H1.E.f //;Z2/–bigraded F –vector spaces.

To complete the proof of Corollary 6.8, we use the theorem of S Friedl, A Juhász
and J Rasmussen stating that the decategorification of sutured Floer homology is their
torsion invariant [4].
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2 Transverse disk spatial graphs

Graph Floer homology is a version of Heegaard Floer homology defined for transverse
spatial graphs. In this section we will define the term transverse spatial graph and the
notion of equivalence of transverse spatial graphs. We will also discuss their diagrams
and Reidemeister moves.

We will work in the PL category. A graph Y is a 1–dimensional complex, consisting of
a finite set of vertices (0–simplices) and edges (1–simplices) between them. A spatial
graph f W Y ! S3 is an embedding of a graph Y in S3 . A diagram of a spatial graph
is a projection of f .Y / to S2 with only transverse double points away from vertices,
where the over and under crossings are indicated. Two spatial graphs f1 and f2 are
equivalent if there is an ambient isotopy between them. Notice that the ambient isotopy
gives a map hW S3! S3 which sends f1.Y / to f2.Y / sending edges to edges and
vertices to vertices.

Theorem 2.1 (Kauffman [8]) Let f1 and f2 be spatial graphs. Then f1 is ambient
isotopic to f2 if and only if any diagram of f2 can be obtained from any diagram of f1

by a finite number of graph Reidemeister moves (shown in Figure 4) and planar isotopy.

An oriented graph is a graph together with orientations given on each of the edges.
Let D be the 2–complex obtained by gluing three copies of the 2–simplex Œe0; e1; e2�

together so that their union is a disk and with all three of the e0’s identified to a single
point in the interior of D . Note that e0 is the unique vertex in the interior of D . We
say that D is a standard disk and e0 is the vertex associated to D . An oriented disk
graph G is a 2–complex constructed as follows. Start with an oriented graph Y . Then,
for each vertex v of Y , glue a standard disk D to Y by identifying the vertex associated
to D with v . We note that Y is a subset of the oriented disk graph, which we call the
underlying oriented graph of the oriented disk graph (or the underlying graph of G if
we do not want to consider the orientations). We say that a vertex of an oriented disk
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RI RIII

RII RIV

RV RV�

Figure 4: The graph Reidemeister moves. Reidemeister moves RI, RII, and
RIII are the same as those for knots and links. Reidemeister move RIV
moves an edge past a vertex, either over or under (over is pictured here).
Reidemeister move RV swaps two of the edges next to the vertex.

graph is a graph vertex (respectively graph edge) if it is a vertex (respectively edge) of
its underlying oriented graph. When it is clear, we will just refer to them as vertices and
edges of the oriented disk graph (and will not refer to the other 0 and 1–simplices of
the oriented disk graph as vertices or edges). For an oriented disk graph G and a given
graph vertex v of G , the set of graph edges of G with orientation going towards v are
called the incoming edges of v and the set of edges with the orientation going away
from v are called the outgoing edges of v .

Definition 2.2 A transverse spatial graph is an embedding f W G!S3 of an oriented
disk graph G into S3 where each vertex of the graph locally looks like Figure 5, each
standard disk of G lies in a plane, and locally the disk separates the incoming and
outgoing edges of the given vertex. We call the image of each of the standard disks
of G a disk of f , and the embedding of the underlying graph of G the underlying
spatial graph of f . Two transverse spatial graphs are equivalent if there is an ambient
isotopy between them.

Note that in a transverse spatial graph the incoming and outgoing edges are each
grouped together. In the ambient isotopy, at each vertex, both the set of incoming
and the set of outgoing edges can move freely. However, in an ambient isotopy, the
incoming and outgoing sets cannot intermingle, because the disk separates the edges.

Definition 2.3 A regular projection of a transverse spatial graph f W G ! S3 is a
projection that satisfies the following two conditions: (1) For each point p in the

Algebraic & Geometric Topology, Volume 17 (2017)



1452 Shelly Harvey and Danielle O’Donnol

Figure 5: A vertex of a transverse spatial graph shown with the disk

Figure 6: A diagram of a transverse spatial graph; the projections of the disks,
transverse to the plane of projection, are indicated by the straight yellow line
segments.

image of the underlying graph of G , f �1.p/ contains no more than two points and
if f �1.p/ contains two points then neither is a graph vertex. (2) All of the standard
disks of f are perpendicular to the plane of projection. A diagram for a transverse
spatial graph f W G! S3 is a regular projection of f where all the over and under
crossings are indicated.

In Figure 6, a diagram of a transverse spatial graph is shown, where the disks are
also shown in the projection. Notice that the incoming edges and outgoing edges are
grouped in the projection. We will from here forward not indicate disks in diagrams,
because the position of the disk is already clear from the diagram.

The Reidemeister moves for transverse spatial graphs are the same as the Reidemeister
moves for graphs shown in Figure 4, with the restriction that RV may only be made
between pairs of incoming edges or pairs of outgoing edges. For clarity, we will say
RV for this restriction of RV.

Theorem 2.4 Every transverse spatial graph has a diagram. If two transverse spatial
graphs are ambient isotopic, then any two diagrams of them are related by a finite
sequence of the Reidemeister moves RI–RIV, RV and planar isotopy.

Proof We first show that every transverse spatial graph has a diagram. Let f W G!S3

be a transverse spatial graph. A regular projection for the transverse spatial graph is a
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Pv

Dv

Pproj

Figure 7: The plane of projection Pproj together with a disk Dv of the
vertex v and Pv ; the plane Pv is the plane perpendicular to Pproj meeting Dv

in the line parallel to Pproj .

projection of f .G/ which is a regular projection of the underlying spatial graph of f .
That is, the projection only has transverse double points and these are away from the
vertices. We will first obtain a regular projection for the transverse spatial graph, and
next find a representative in the ambient isotopy class where the disks are transverse
to Pproj , where Pproj denotes the plane of projection for the regular projection. A
regular projection for a spatial graph is obtained in the usual way: a point projection
of a representative of the ambient isotopy class is obtained via �–perturbations of the
graph. To have the disks perpendicular to Pproj , a similar process is used. If the disk
is transverse to Pproj , we will see that there is a unique way to move it via an ambient
isotopy of f to a position where it is perpendicular to Pproj . So we need only have
all of the disks transverse to Pproj . For an arbitrary vertex v with disk Dv , let x be the
vector that is perpendicular to D and pointing in the direction of the outgoing edges.
If v remains in the same place and the neighborhood around it is allowed to rotate, there
is a full sphere of directions in which x can be pointing. Only two of these directions
will result in Dv being parallel to Pproj . By dimensionality arguments having the disks
transverse to Pproj is generic. If any of the disks are not transverse, an �–perturbation is
done. For each vertex v , let Pv be the plane that is perpendicular to Pproj and meets Dv

in the line through v and parallel to Pproj . For each disk transverse to Pproj there is
a unique map via rotation through the acute angle between Dv and Pv , moving Dv

into the plane Pv , so that it is perpendicular to Pproj ; see Figure 7.

For (topological) spatial graphs, any ambient isotopy is made up of elementary moves.
Recall that an elementary move of a spatial graph replaces a linear segment of an
edge Œei ; ej � by two new linear segments Œei ; ek � and Œek ; ej � that, together with Œei ; ej �,
bound a 2–simplex which intersects the original spatial graph only in Œei ; ej �, or is
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ei
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ej

Figure 8: An elementary move

Figure 9: An example of what can happen when a disk flips over, moving
through a position parallel to Pproj

the reverse of this move; see Figure 8. Kauffman [8] showed that any elementary
move for a spatial graph can be obtained by a sequence of the Reidemeister moves
shown in Figure 4. Now we consider transverse spatial graphs. An elementary move
of a transverse spatial graph f W G! S3 replaces a linear segment of an edge of the
underlying graph Œei ; ej � by two new linear segments Œei ; ek � and Œek ; ej � that, together
with Œei ; ej �, bound a 2–simplex T which intersects f .G/ in Œei ; ej �, or is the reverse
of this move; see Figure 8. We note that T must miss all the transverse disks. We will
show that any ambient isotopy of transverse spatial graphs is made of elementary moves
of a transverse spatial graph. First note that Reidemeister moves RI–RIV preserve the
isotopy class of a transverse spatial graph. In addition, one can still interchange a pair of
neighboring incoming edges or a pair of neighboring outgoing edges in RV. However, if
one tried to interchange an incoming with a neighboring outgoing edge at the vertex v ,
the disk from the elementary move that would result in RV would intersect the transverse
disk Dv . So Reidemeister move RV is restricted to RV. Recall that RV is the move
RV where only neighboring incoming (respectively outgoing) edges are interchanged.

We claim that one needs only Reidemeister moves RI–RIV and RV to get all ambient iso-
topies. One might be concerned that this is incomplete because of the danger of a vertex
flipping over (ie moving through a position where the disk is parallel to the plane of pro-
jection) resulting in a change in the diagram like that shown in Figure 9. However, this
move and any move like it can be obtained with the set of Reidemeister moves RI–RIV,
and RV. To discuss this we will introduce another type of graph. A flat vertex graph or
rigid vertex graph is a spatial graph where the vertices are flat disks or polygons with
edges attached along the boundary of the vertex at fixed places. The set of Reidemeister
moves for flat vertex graphs is RI–RIV as before, and the move RV* [8]. Reidemeister
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RV� RV�

Figure 10: Two different RV* moves for flat vertex graphs

RIV RI

Figure 11: How to move between the two different RV* moves shown in
Figure 10; thus only one RV* move is needed for each valence of vertices

RV RV RV RV

Figure 12: This shows how many RV moves will give a RV* move

Figure 13: The RV* move that is a result of many RV moves

move RV* is the flipping over of a flat vertex by 180ı ; see Figure 10. For the move RV*
a choice is made of how many edges are on each side when the vertex is flipped, but only
one of these moves is need together with Reidemeister moves RI–RIV to do any of the
other ones [8]; see Figure 11. In the case of transverse spatial graphs repeated use of RV
will result in what looks like a RV* move, shown in Figures 12 and 13. Thus flipping
the vertex over can be accomplished by Reidemeister moves RI–RIV and RV.

3 Graph grid diagrams

In this section, we define the notion of graph grid diagrams and explain their relationship
to transverse spatial graphs. To each graph grid diagram we associate a unique transverse
spatial graph. On the other hand, we show that every transverse spatial graph can
be represented by a nonunique graph grid diagram. As with grid diagrams for knots
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and links, we define a set of moves on graph grid diagrams (cyclic permutation,
commutation 0 , and stabilization 0 ) that we call graph grid moves. Finally, we prove that
any two graph grid diagrams representing the same transverse spatial graph are related
by a sequence of graph grid moves.

3.1 Graph grid diagrams

We will assume that the reader is familiar with grid diagrams for knots and links; see
[11; 12]. Recall that a (planar) grid diagram for a link is an n� n grid of squares in
the plane where each square is decorated with an X, an O or nothing, and such that
every row (respectively column) contains exactly one X and exactly one O. Here we
are using the notation of [12]. To each grid diagram, one can associate a planar link
diagram by drawing horizontal line segments from the O’s to the X’s in each row, and
vertical line segments from the X’s to the O’s in each column with the convention
at the crossings that a vertical segment always goes over a horizontal segment. We
will define a more general class of grid diagrams that will represent transverse spatial
graphs. Before defining a grid diagram we need a technical definition.

Definition 3.1 Suppose D is an n by n grid where each square is decorated with
an X, an O or is empty. We let X be the set of X’s and O be the set of O’s. We
say that two elements p; q 2 X[O are related if p and q share a row or column.
Let � be the equivalence relation generated by this relation. We define the connected
components of D to be the equivalence classes of �.

Definition 3.2 A graph grid diagram g is an n by n grid where each square is
decorated with an X, O or is empty, a subset of the O’s are decorated with �, and
that satisfies the following conditions. There is exactly one O in each row and column.
Each connected component contains at least one O decorated with �. If a row or
column does not contain exactly one X then the O in that row or column must be
decorated with �. The total number of rows (equivalently columns) n is called the grid
number of g . The O’s decorated with � are called vertex O’s, the number of which
will be denoted V . We will say that an O is standard if the O has exactly one X in its
row and exactly one X in its column; otherwise we say it is nonstandard. Often, it will
be convenient to number the O’s and X’s by fOig

n
iD1

and fXig
m
iD1

. When numbering,
we always assume that O1; : : : ;OV correspond to the vertex O’s.

For convenience, we may sometimes omit the � from a figure when it is clear which O’s
should have �, ie the nonstandard ones. It will also be convenient to think of the grid
as the set Œ0; n�� Œ0; n� in the plane, with vertical and horizontal grid lines of the form
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fig� Œ0; n� and Œ0; n��fig, where i is an integer from 0 to n, and the X’s and O’s are
at half-integer coordinates.

As in [11; 12], our chain complex is obtained from a graph grid diagram, with the
main difference being the definition of the Alexander grading. To define this, it is
sometimes necessary to consider toroidal graph grid diagrams instead of (planar)
graph grid diagrams. A toroidal graph grid diagram is a graph grid diagram that is
considered as being on a torus by identifying the top and bottom edges of the grid
and identifying the left and right edges of the grid. We denote the toroidal graph grid
diagram by T . We view the torus as being oriented and the orientation being inherited
from the plane. When the context is clear, we will just call it a graph grid diagram. In
a toroidal graph grid diagram, the horizontal and vertical grid lines, become circles.
We denote the horizontal circles by ˛1; : : : ; ˛n , the vertical circles ˇ1; : : : ; ˇn and we
let ˛D f˛1; : : : ; ˛ng and ˇ D fˇ1; : : : ; ˇng. When the grid is drawn on a plane, by
convention, we will order the horizontal (respectively vertical) circles from bottom
to top (respectively left to right) so that the leftmost circle is ˇ1 and the bottommost
circle is ˛1 . Note that to get a (planar) diagram from a toroidal diagram, one takes a
fundamental domain for the torus and cuts along a horizontal and vertical grid circle
and identifies it with Œ0; n/� Œ0; n/.

3.2 Graph grid diagram to transverse spatial graphs and their diagrams

Let g be a graph grid diagram. We can associate a transverse spatial f to g as follows.
First put a vertex at each of the O’s that are decorated with �. Let Oi be an O in g

lying in row ri and column ci . For each Xj in row ri , connect Oi to Xj with an
arc inside of the row (oriented from Oi to Xj ) so that it is disjoint from all the X’s
and O’s and so that all the arcs in row ri are disjoint from one another. We will call
these horizontal arcs. Now push the interior of the arcs in row ri slightly upwards,
above the plane. For each Xj in column ci , connect Xj to Oi with an arc inside of
the column (oriented from Xj to Oi ) so that it is disjoint from all the X’s and O’s and
so that all the arcs in row ci are disjoint from one another. We will call these vertical
arcs. Now push the interior of the arcs in column ci slightly downward, below the
plane. Put a disk in the squares containing O’s decorated with � and the vertex at the
disks center. In this case we say that the graph grid diagram g represents the spatial
graph f . Any choice of arcs gives the same transverse spatial graph.

Note that the aforementioned procedure will actually give us a (nonunique) projection
of the transverse spatial graph. However, this will not be a diagram of f since the
transverse disks will be parallel to the plane of projection. It will be convenient for
us to define a class of grid diagrams that give a well-defined diagram of a transverse
spatial graph when following this procedure.
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O X X X

X
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Figure 14: A graph grid diagram of a nonstandard O with the flock in L–
formation (left), and the diagram of the associated vertex for this portion of
the graph grid diagram, showing the order in which the edges appear around
the vertex (right)

O X

X

X

O

O

O

O X X

X

�

�

Figure 15: A preferred grid diagram (left), and the diagram of the transverse
spatial graph associated with this graph grid diagram (right)

Consider a graph grid diagram. For a nonstandard O, let the set of X’s that appear in a
row or column with this O be called its flock. If the X’s in the flock of an O are all
adjacent to the O or adjacent to other X’s that are adjacent to the O, then the flock
is said to be clustered. A flock is in L–formation, if the X’s are all to the right and
above the O. It should be noted that the choice of having the X’s above and to the
right of the O is arbitrary; any pair of below and to the right, above and to the left, or
below and to the left will work similarly. A preferred graph grid diagram is a graph
grid diagram where all nonstandard O’s (with more than one X in it’s flock) have their
flocks in L–formation.

Now suppose that g is a preferred graph grid diagram. We follow the procedure in the
first paragraph of this section except that now we put the transverse disks perpendicular
to the plane so that they divide the horizontal and vertical arcs. Moreover, to get a
unique diagram D , the ordering of the edges around the vertex for nonstandard O’s is
given by the convention illustrated in Figure 14. In this case we say that the graph grid
diagram g represents the diagram of the transverse spatial graph, D . We note that
the transverse spatial graph associated to this diagram is equivalent to the transverse
spatial graph obtained by following the procedure in the first paragraph of this section.
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3.3 Graph embedding to preferred graph grid diagram

We have shown that to each graph grid diagram, we can associate a transverse spatial
graph. We now show that for each transverse spatial graph, there is a (preferred) graph
grid diagram representing it.

Proposition 3.3 Let f W G ! S3 be a transverse spatial graph. Then there is a
preferred graph grid diagram g representing f . Moreover, for each diagram of a
transverse spatial graph, D , there is a preferred graph grid diagram g representing D .

Proof Choose a diagram D of the transverse spatial graph f . We construct a graph
grid diagram g , representing D , by the following procedure. At the vertices, the edges
are partitioned into two sets: incoming edges and outgoing edges, as D is a diagram of
a transverse spatial graph. Move the edges around each vertex (and perhaps the disk) by
planar isotopy so that all outgoing edges are to the right of the vertex and all incoming
edges are above the vertex, as shown in Figure 14. Away from vertices the process
is the same as that for knots or links. The arcs of the edges are made “square”. All
crossings are made so that the horizontal arc goes under the vertical arc; see Figure 16.
Then the diagram is moved via a planar isotopy so that no vertical arcs or vertices with
their incoming edge arcs are in the same vertical line, and similarly for horizontal arcs
and vertices with their outgoing edge arcs. A vertex along with its incoming edge arcs
are associated with a single column, and the vertex together with its outgoing edge arcs
are associated with a single row; see Figure 14. Each of the vertical and horizontal arcs
are also associated with a column and row of the grid, respectively. This will result
in an equal number of rows and columns. Each vertex will add a row and a column.
Each vertical arc that is not next to a vertex will add a column. Each vertical arc can
be paired with the following horizontal arc that is not next to a vertex, which will add
a row. A graph grid representation is then given by placing X’s and O’s on the n by n

grid. At each vertex a single O� is placed, then an X is placed in the same row at the
corner of each of the outgoing edges and an X is placed in the same column at the
corner for each of the incoming edge, this is done as shown in Figure 14. Next X’s
and O’s are placed along the edges at the corners consistent with the orientation: arcs
go from X’s to O’s in columns and from O’s to X’s in rows.

Figure 16: How to change a horizontal over-crossing to a vertical over-
crossing without changing the embedded graph
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Figure 17: An example of cyclic permutation of columns

3.4 Grid moves

Following Cromwell [2] and Dynnikov [3], any two grid diagrams of the same link are
related by a finite sequence of grid moves:

Cyclic permutation The rows and columns can be cyclically permuted; see
Figure 17.

Commutation Pairs of adjacent columns (respectively rows) may be exchanged
when the following conditions are satisfied. For columns, the four X’s and O’s
in the adjacent columns must lie in distinct rows, and the vertical line segments
connecting O and X in each column must be either disjoint or nested (one
contained in the other) when projected to a single vertical line. There is an
obvious analogous condition for rows; see Figure 18.

Stabilization/destabilization Let g be an .n� 1/� .n� 1/ graph grid diagram
with decorations fOig

n�1
iD1

and fXj g
n�1
jD1

. Then Ng , an n� n graph grid diagram,
is a stabilization of g if it is obtained from g as follows. Suppose there is a
row of g that contains Oi and Xj . In Ng , we replace this one row with two new
rows and add one new column. We place Oi into one of the new rows (and in
the same column as before) and Xj into the other new row (and in the same
column as before). We place decorations On and Xn into the new column so
that On occupies the same row as Xj and Xn occupies the same row as Oi . See
Figure 19 for an example. There is a similar move with the roles of columns
and rows interchanged. A destabilization is the reverse of a stabilization.

For the graph grid moves there are two differences. We will replace the usual commu-
tation with a slightly more general commutation 0 to include exchanging neighboring
columns which have entries in the same row (or rows with entries in the same columns)
and to include exchanges of rows and columns that have more than a single X in them
(or no X’s). We will also restrict the stabilization/destabilization move to only occur
along edges (which we explain below).
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Figure 18: An example of commutation of columns

ox

Figure 19: An example of stabilization

The graph grid moves

Cyclic permutation is unchanged.

Cyclic permutation The rows and columns can be cyclically permuted; see
Figure 17.

Commutation will be replaced with the more general commutation 0 .

Commutation 0 Pairs of adjacent columns may be exchanged when the following
conditions are satisfied. There are vertical line segments LS1 and LS2 on the
torus such that (1) LS1[LS2 contain all the X’s and O’s in the two adjacent
columns, (2) the projection of LS1[LS2 to a single vertical circle ˇi is ˇi , and
(3) the projection of their endpoints, @.LS1/[@.LS2/, to a single ˇi is precisely
two points. Here we are thinking of X and O as a collection of points in the
grid with half-integer coordinates. There is an obvious analogous condition for
rows; see Figure 20.

We define a generalization of stabilization, called stabilization 0 . This move will add a
jog or a nugatory crossing to the edge of the projection of the associated transverse
spatial graph.

Stabilization 0 /destabilization 0 Let g be an .n�1/� .n�1/ graph grid diagram
with decorations fOig

n�1
iD1

and fXj g
m�1
jD1

. Then Ng , an n� n graph grid diagram,
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Figure 20: Two examples of commutation 0 moves of columns

is a row stabilization 0 of g if it is obtained from g as follows. Suppose there
is a row of g that contains the decorations Ok ;Xj1

; : : :Xjl
with l � 1. In Ng ,

we replace this one row with two new rows and add one new column. We
place Ok ;Xj2

; : : : ;Xjl
into one of the new rows (and in the same column as

before) and Xj1
into the other new row (and in the same column as before). We

place decorations On and Xm into the new column so that On occupies the same
row as Xj1

and Xm occupies the same row as Ok . See Figure 21 for an example.
A column stabilization 0 is a row stabilization 0 where one reverses the roles of
rows and columns. We say that Ng is obtained from g by a stabilization 0 if it is
obtained by a row or column stabilization 0 . A destabilization 0 is the reverse of a
stabilization 0 .

Note that On will not be associated to a vertex so will not be decorated with �. Also,
if any Oi is decorated with � (including Ok ) in g then it will also be decorated with �
in Ng . We do not allow stabilization 0 of rows with no X’s in them.

Remark 3.4 If Ng is obtained as row stabilization 0 on the graph grid diagram g then
one can use multiple commutation 0 moves to change Ng into a row stabilization 0 obtained
from g , where Xj1

;Xm;On share a corner, Xj1
is directly to the left of On , and On

is directly above Xm (as in Figure 21). Note that by using only commutation, like
in [12], one can only assume that Xj1

;Xm;On share a corner, which leaves four cases
instead of one. This will allow us to simplify the proof of stabilization 0 . There is a
similar statement for column stabilization 0 .
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X1 X2 O�k X3
X1

X2 On

Xm O�k X3

Figure 21: An example of stabilization 0

3.5 The graph grid theorem

Before the main theorem of this section we need a lemma. To each diagram of a
transverse spatial graph f there are an infinite number of different graph grid diagrams
representing f that can be constructed using the procedure described in the proof of
Proposition 3.3. This procedure produces a preferred grid diagram. However, doing a
graph grid move on a preferred graph grid diagram will result in diagrams that are not
necessarily in preferred form. Moreover, if one chooses a random graph grid diagram
representing a transverse spatial, it will not necessarily be in preferred form. Indeed, in
practice, one can often reduce the size of the grid number by moving it out of preferred
form.

Lemma 3.5 Every graph grid diagram g representing a transverse spatial graph f is
related to a preferred graph grid diagram representing f by a finite sequence of graph
grid moves.

Proof Recall that a preferred grid diagram is one in which all of the nonstandard O’s
have their flocks in L–formation. Given a graph grid diagram, choose a nonstandard O
that is not in L–formation. We will explain an algorithm to move this O into L–
formation, but first we must separate this flock from any of the other flocks that are
in L–formation. If there are any X’s in the flock with this O that are also in a flock
of another O that is in L–formation, then the other L–formation flock will need to be
moved. If our nonstandard O of interest is in a column with an X that is in L–formation
with another nonstandard O, we use the following procedure to move the flock out
of the way. An example of this is shown in Figure 22. We do a row stabilization 0 at
said X; the new row is placed below the L–formation flock. Now the nonstandard O’s
no longer share an X, but if there were any X’s to the right of the previously shared X,
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Figure 22: An example of the moves needed to separate the flocks of two O�

and move the upper most flock back into L–formation

X XO*

XO

X XO*
XO

X XO*

STAB0 2 �COMM0

XO

X XO*

XO

XO

X XO*

XO

STAB0 4 �COMM0

Figure 23: An example of the moves needed to move the X in the row into L–formation

the flock was split by the stabilization 0 move and so it is no longer in L–formation. To
move the flock back into L–formation a stabilization 0 move is done at each of the X’s
to the right of the split (going from left to right), each time adding a row below the
flock. After the stabilization 0 moves are done, the columns containing an X in the
flock can be moved by commutation 0 moves to be next to the other X’s in the flock.
This is done with all of the X’s, so the flock is in L–formation again. If the X shares a
row with our O and a column with a different nonstandard O that is in L–formation, a
similar procedure is done with the roles of the rows and columns switched.
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Suppose there is no X in the flock that is already in L–formation with a different O.
Use cyclic permutation to put the O at the lower left corner of the grid. Then, a row
stabilization 0 is done on the rightmost X that is in the row with the O, adding a row to
the bottom of the diagram and adding an X and O next to each other in the new column.
Commutation 0 can be used to move the new column next to the nonstandard O, or
next to X’s that are next to the O; see Figure 23. This is repeated until all of the X’s
in the row are adjacent to the O. A similar process is done with the X’s in the column
of the O, bringing the O into L–formation. This process can be repeated until all of
the O’s are in L–formation.

This will increase the number of nonstandard O’s in L–formation, because no other
flock is moved out of L–formation. We continue until all flocks are in L–formation.

For the following proof, we need a few more definitions. If an O� is associated with a
vertex v and is in L–formation, then all of the columns that contain an X in the flock
are called v–columns, similarly those rows containing the flock are called v–rows. We
will give a name to certain sequences of the graph grid moves, which will be called
(column or row) vertex stabilization (and destabilization). A column (or row) vertex
stabilization introduces a stabilization to the left of (or below) all of the X’s in the
column (or in the row) with a nonstandard O, as shown in Figure 24. The row vertex
stabilization is a combination of a number of stabilization 0 s and commutation 0 s. For
a nonstandard O, first a row stabilization 0 is done, where the rightmost X is placed
into the lower new row by itself, the new column is placed to the left and the new X
and O are added. Next, the second from the right X is moved by commutation 0 so that
it is in the rightmost position. A stabilization 0 move is done in the same way. Then
commutation 0 moves are done on the rows, moving the newest row directly below the
flock, below the rows created in the stabilization 0 s that happened before. Finally, the X
in the flock is moved back to the original place in the flock via commutation 0 . Follow
the same procedure for all of the X’s in the row.

Theorem 3.6 If g and g0 are two graph grid diagrams representing the same transverse
spatial graph, then g and g0 are related by a finite sequence of graph grid moves.

Proof First, using Section 3.5 we move both g and g0 to preferred graph grid diagrams.
We know that the diagrams of two isotopic transverse spatial graphs are related by a
finite sequence of the graph Reidemeister moves, RI–RIV and RV, shown in Figure 4,
together with planar isotopy. So we need only show that preferred graph grid diagrams
that result from embeddings that differ by a single Reidemeister move (or planar
isotopy) can be related by a finite sequence of graph grid moves.

Due to the work of Cromwell [2] and Dynnikov [3], it is known that any two grid
diagrams of the same link are related by a finite sequence of grid moves, cyclic
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Figure 24: An example of a row vertex stabilization

Figure 25: Examples of the two planar isotopies that can occur which contain
vertices: two vertices are moved parallel to each other (left), and an arc and a
vertex move parallel to each other (right)

permutation, commutation, and stabilization/destabilization. The Reidemeister moves
are local moves. In the grid diagram there is a set of columns and or rows that will be
moved to accomplish any one of RI–RIII. Because the first three Reidemeister moves do
not involve vertices and we are working with preferred diagrams, the rows and columns
that are moved will not contain an O� . It could however contain rows or columns that
contain X’s that are in a flock with an O� . In this case, first a vertex stabilization is
done, so that the flock is not disrupted and the graph grid stays in preferred formation.
Thus we need only show that any two preferred graph grid diagrams that come from the
same embedding and differ as a result of a single Reidemeister move or planar isotopy
which involves vertices can be related by a finite sequence of graph grid moves.

There are two moves and three planar isotopies with vertices to be considered: RIV, RV,
a planar isotopy in which a valence two-vertex is moved along the arc of the edges,
a planar isotopy in which two vertices are moved parallel to each other, and a planar
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Figure 26: An example of a vertex stabilization move followed by three
commutation 0 moves, resulting in a RIV move in the associated graph

isotopy in which an arc and a vertex move parallel to each other, shown in Figure 25.
For the figures of the graph grid diagrams in this proof we will only place � on an O
if it is not obvious from the grid that it is an O� .

RIV move The move RIV moves an arc from one side of a vertex to the other, either
over or under the vertex. Up to planar isotopy we can assume that the edge is next to
the vertex that it will pass over (or under). An example of RIV is shown in Figure 26,
here a row vertex stabilization is done followed by three column commutation 0 moves.
In general, RIV can be obtained via the following: first a vertex stabilization move, if
needed, then a number of commutation 0 moves between the v–columns (resp. v–rows)
and other column (resp. row) that is associated with an appropriate arc.

RV move The RV move corresponds to switching the order of the edges in the
projection next to the vertex, which introduces a crossing between these edges. See the
leftmost move in Figure 12 for reference. Since we are working with transverse spatial
graphs, such a move can only occur between pairs of incoming edges and outgoing
edges. We will look at the graph grid moves needed for an RV move between two
outgoing edges. The proof is similar for two incoming edges.

In general, a commutation 0 move between columns or rows that contain X’s in the
same flock will result in a RV move between the two associated edges involved. In
order to be able to iterate such moves, we present the follow processes. In an RV move,
two edges are switched next to a vertex. Let’s call one of them the left edge and one
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Figure 27: A row vertex stabilization move, followed by a commutation 0

move in the grids, producing a RV move in the associated spatial graph

the right edge. There are two possibilities with a RV move: the right edge either goes
under or over the left edge.

In Figure 27, we show an example of RV where the right edge goes under the left
between the two leftmost outgoing edges. In general, to have the right edge go under
the left edge between two outgoing edges, first a row vertex stabilization move is done,
followed by a commutation 0 move between the columns containing the X’s associated
with the edges involved.

In Figure 28, we show an example of RV where the right edge goes over the left
between the two leftmost outgoing edges. Let X1 and X2 , from left to right, be the X’s
in the flock that are associated with the edges that will be interchanged next to the
vertex. In general to have the right edge go over the left edge, a row vertex stabilization
move is done, if needed. Next a row stabilization 0 move is done on the row that contains
the standard O that is in the same column as X2 . Call this O Oi . The column that
is added in the stabilization 0 is placed immediately to the right of the flock. Then a
commutation 0 move is done to move the row containing Oi below the row containing
the standard O that is in the same column as X1 . Finally a commutation 0 move is
done between the columns containing X1 and X2 . To do RV for the incoming edges,
one needs only switch the role of the row and column.

Movement of a valence-two vertex The movement of a valence-two vertex is equiv-
alent to moving an O� with a single X in both its row and column to the position of a
standard O that is on one of the incident edges. This could be thought of as choosing
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Figure 28: A row vertex stabilization move, followed by a row
stabilization 0 move, a row commutation 0 move and a column commutation 0

move in the grids, producing a RV move in the associated spatial graph

a different O on the edge to be special, and was first addressed for grid diagrams in
[12, Lemma 2.12]. A proof of the independence of which O is special is given in [21,
Lemma 4.1]. Since this is a local change, the same diagrammatic proof works in the
graph case. We outline the proof here.

We will describe in words the moves needed to do this. However, the reader may just
choose to look at the moves done in Figure 29. To move a valence-two vertex along
an edge, we move the associated O� to the position of a standard O on an adjacent
edge. First a row stabilization 0 is done at one of the neighboring X’s, between the X
and the O� . The new column containing the new X and O are moved by commutation 0

next to O� , shown in the second image in Figure 29. Then the row containing O�

can be moved by commutation 0 moves to the X in the column with the O� . Then
the column containing O� can be moved by commutation 0 to the O in the column
with the X that is next to O� . Now O� is left and the O and X can be moved in their
row by commutation 0 to the X that is in the O’s column. These X and O can then be
removed by a column destabilization 0 .

Two vertices pass each other The planar isotopy where one vertex v passes another
vertex w can be obtained via first vertex stabilization moves if needed, and then a
number of commutation 0 moves between the v–columns and the w–columns. In
Figure 30, we show an example where only a single stabilization 0 move is needed
before the commutation 0 moves, switching the order of the v–columns and the w–
columns. To have the vertices move passed each other vertically rather than horizontally,
the roles of the rows and columns are interchanged.
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Figure 29: The graph grid moves needed to move a standard O� to the
position of an O

A vertex and arc pass each other The planar isotopy where an arc and a vertex move
passed each other can be obtained via first vertex stabilization moves if needed and
then commutation 0 moves between a set of v–columns (resp. v–rows) and another
column (resp. row) that is associated with an appropriate arc; see Figure 31.

This shows that even though there are numerous different graph grid diagrams that will
represent the same transverse spatial graph, all such grids are related by a sequence of
the graph grid moves.

4 Graph Floer homology

In this section, we will define the main invariant of this paper, which we call the graph
Floer homology of a spatial graph. This will take the form of the homology of a
bigraded chain complex that is a module over a polynomial ring (or more generally, the
quasi-isomorphism type of the chain complex). One of the gradings is the homological
grading (also called the Maslov grading) and the other grading is called the Alexander
grading, and will take values in the first homology of the exterior of the transverse
spatial graph. Our definitions will generalize those given in [11] and [12] except that
we only get a (relatively) bigraded object instead of a filtered object. In particular, when
the spatial graph is a knot or link, we recover the associated graded objects from [12]
(but with a relative Alexander grading). In this section and throughout the rest of the
paper, we assume that the reader is familiar with the material of [12, Sections 1–3].
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Figure 30: An example illustrating the two steps to construct a planar isotopy
in which one vertex passes another vertex in the diagram of the associated
transverse spatial graph. First a stabilization 0 move was done then a number
of the commutation 0 moves were done.
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Figure 31: An example illustrating the two steps to construct a planar isotopy
where a vertex passes an arc in the diagram of the associated transverse spatial
graph. First a row vertex stabilization move was done then a number of the
commutation 0 moves were done.
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4.1 Algebraic terminology

We start with some algebraic preliminaries. The reader can skip this section upon first
reading and refer back to it as needed. Many of these definitions are similar to those of
[12, Section 2.1].

Let C be a vector space over F , where F is the field with 2 elements and let G , G1

and G2 be abelian groups. Recall that a G–grading on C (also called an absolute
G–grading) is a decomposition C D

L
g2G Cg , where Cg � C is a vector subspace

of C for each g . In this case we say that C is graded over G or is graded. A linear
map �W C ! C 0 between two graded vector spaces is a graded map of degree h if
�.Cg/�C 0gCh for all g 2G . A relative G–grading on C is a G–grading that is well
defined up to a shift in G . That is, C D

L
g2G Cg and C D

L
g2G C 0g give the same

relative G–gradings if there exists an a2G such that Cg DC 0gCa for all g 2G . Thus
if C D

L
g2G Cg has a well-defined relative grading and x 2 Cg1

and y 2 Cg2
, then

the difference between their gradings g1�g2 is well-defined and independent of the
choice of direct sum decomposition. In this case, we say that C is relatively graded
over G or is relatively graded. A linear map �W C !C 0 between two relatively graded
vector spaces is a graded map if there exists an h 2G such that �.Cg/� C 0gCh for
all g 2G . Note that it does not make sense to talk about the degree of this map since
we can shift the subgroups and get a different value for h. In this paper, we will be
interested in relatively bigraded vector spaces over H1.E.f // and Z, where E.f / is
the complement of a transverse spatial graph in S3 .

Definition 4.1 A .G1;G2/–bigrading on C is a G1˚G2 –grading on C . In this case
we say that C is bigraded over G1 and G2 , or is graded. We may also refer to a
bigrading as an absolute bigrading when convenient. A linear map �W C!C 0 between
two bigraded vector spaces is a bigraded map of degree .h1; h2/ if �.C.g1;g2// �

C 0.g1Ch1;g2Ch2/
for all .g1;g2/2G1˚G2 . A relative bigrading on C over G1 and G2

is a relative G1˚G2 –grading on C . In this case we say that C is relatively bigraded
over G1 and G2 or is relatively graded. A linear map �W C ! C 0 between two
relatively graded vector spaces is a bigraded map if there exists an .h1; h2/ 2G1˚G2

such that �.C.g1;g2//� C 0.g1Ch1;g2Ch2/
for all .g1;g2/ 2G1˚G2 .

Note that a (relative) bigrading of C over G1 and G2 gives a well-defined (relative)
grading over Gi for i D 1; 2 in the obvious way:

C D
M

g12G1

C.g1;g2/

� M
g22G2

C.g1;g2/

�
and C D

M
g22G2

C.g1;g2/

� M
g12G1

C.g1;g2/

�
:
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Our main invariant will turn out to be graded over two groups, one of which will
be relatively graded and one of which will be (absolutely) graded. In the following
definition, RA stands for relative absolute or relatively absolutely.

Definition 4.2 Let G1 and G2 be abelian groups and C be a vector space. An RA
.G1;G2/–bigrading on C is a G1 ˚G2 –grading that is well defined up to a shift
in G1˚f0g. That is, C D

L
g2G Cg and C D

L
g2G C 0g give the same RA .G1;G2/–

bigradings if there exists some .g1; 0/2G such that Cg DC 0gC.g1;0/
for all g 2G . In

this case, we say that C is RA bigraded over G1 and G2 , or, simply, is RA bigraded.
A linear map �W C !C 0 between two RA bigraded vector spaces is a bigraded map of
degree .�; h2/ if there exists an h1 2G1 such that �.C.g1;g2//� C 0.g1Ch1;g2Ch2/

for
all .g1;g2/ 2G1˚G2 . A linear map �W C ! C 0 between two RA bigraded vector
spaces is a bigraded map if it is a bigraded map of some degree.

Note that an RA .G1;G2/–bigrading of C gives a well-defined relative grading over G1

and a well-defined (absolute) grading over G2 . We will also need to define bigraded
chain complexes and their equivalences.

Definition 4.3 A .G;Z/–bigraded chain complex is a .G;Z/–bigraded vector space C

and bigraded map @W C!C of degree .0;�1/ such that @2D 0. For g 2G and i 2Z,
a linear map �W C ! C 0 between G˚Z–bigraded chain complexes is a bigraded
chain map of degree .g; i/ if it is a chain map, ie @ ı� D � ı @, and it a bigraded map
of degree .g; i/. We say that � is a bigraded chain map if it is a bigraded chain map
of some degree.

Note that if C D
L

g2G Cg has a relative G–grading then it makes sense to talk about
a graded map �W C !C of degree h as one that satisfies �.Cg/�CgCh for all g 2G .
For, suppose a 2 G and C D

L
g2G C 0g are such that for all g 2 G , Cg D C 0gCa .

Then �.C 0g/D �.Cg�a/� Cg�aCh D C 0gCh for all g 2G . Similarly, we can define a
bigraded map of degree .g1;g2/ between a relatively (or RA) bigraded vector space
and itself. We say a linear map (between absolutely, relatively or RA bigraded vector
spaces) is a bigraded map if it is a bigraded map of some degree.

Definition 4.4 A relative (respectively RA) .G;Z/–bigraded chain complex is a rela-
tive (respectively RA) .G;Z/–bigraded vector space C and bigraded map @W C ! C

of degree .0;�1/ such that @2 D 0. A linear map �W C ! C 0 between relative
(respectively RA) G˚Z–bigraded chain complexes is a bigraded chain map if it is a
chain map, ie @ ı� D � ı @, and it is a bigraded map.

Similarly, we can define .G;Z2/–bigraded, relatively bigraded, and RA bigraded chain
complexes. This will be used in the last section of the paper when we compare our
invariant to sutured Floer homology.
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The primary invariant will be a chain complex that also takes the form of a module
over a multivariable polynomial ring. Recall that a G–graded ring is a commutative
ring R with a direct sum decomposition as abelian groups R D

L
g2G Rg , where

Rg is a subgroup of R and Rg1
Rg2
�Rg1Cg2

for all gi 2G . If R is a G–graded
ring, a G–graded (left) R–module is a (left) R–module with a direct sum decom-
position as abelian groups M D

L
g2G Mg , where Mg is a subgroup of M and

Rg1
Mg2

�Mg1Cg2
for all gi 2G . A graded R–module homomorphism of degree h

is a graded map �W C ! C 0 (of degree h) between G–graded R–modules that is also
an R–module homomorphism. We can similarly define relatively graded, bigraded,
relatively bigraded, and relatively absolutely bigraded R–modules and graded module
homomorphisms in these cases.

Definition 4.5 A .G;Z/–bigraded (left) R–module chain complex is a .G;Z/–
bigraded (left) R–module C and bigraded R–module homomorphism @W C ! C of
degree .0;�1/ such that @2D 0. For g 2G and i 2Z, an R–module homomorphism
�W C ! C 0 between G ˚ Z–bigraded R–module chain complexes is a bigraded
R–module chain map of degree .g; i/ if @ ı � D � ı @ and it is a bigraded map
of degree .g; i/. We say that �W C ! C 0 is a bigraded R–module chain map if it
is a bigraded R–module map of some degree. We can similarly define a relative
(respectively RA) .G;Z/–bigraded R–module chain complex and a relative bigraded
R–module chain map.

We remark that if C is a .G;Z/–bigraded chain complex of (left) R–modules then
it is not necessarily the case that any of C.g;m/ ,

L
h2G C.g;m/ or

L
m2Z C.g;m/ is an

R–module.

The primary invariant of this paper associates to each graph grid diagram a bigraded R–
module chain complex. However, choosing different graph grid diagrams representing
the same transverse spatial graph will lead to different chain complexes. We will show
that they are all quasi-isomorphic.

Definition 4.6 A chain map �W C ! C 0 of chain complexes is a quasi-isomorphism
if it induces an isomorphism on homology. We say that two chain complexes C

and D are quasi-isomorphic if there is a sequence of chain complexes C0; : : : ;Cr and
quasi-isomorphisms

C0 C2 Cr�2 Cr

� � �

C1

�

� 2
�
1

-

C3

�
3

-

Cr�3

�
� r�

2

Cr�1

�

� r
�
r�

1
-
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such that C0DC , Cr DD . Suppose C and D are .G;Z/–bigraded R–module chain
complexes. We say that �W C!C 0 is a bigraded R–module quasi-isomorphism if � is
a quasi-isomorphism and a bigraded R–module homomorphism. We say that C and D

are quasi-isomorphic (as .G;Z/–bigraded R–module chain complexes) if they are
quasi-isomorphic and all the quasi-isomorphisms are bigraded R–module chain maps.
We can similarly define quasi-isomorphism for two relative (or RA) .G;Z/–bigraded
R–module chain complexes.

Remark 4.7 In the definition of quasi-isomorphism, it suffices to consider sequences
of length r D 2. To see that these are equivalent, see [16, Proposition A.3.11].

4.2 The chain complex

For technical reasons, we need to restrict our definition to graphs that are both sinkless
and sourceless. The graph grid diagrams representing these transverse spatial graphs
have at least one X per column and row. We will need this condition to ensure
that @2 D 0.

Definition 4.8 A graph grid diagram is saturated if there is at least one X in each
row and each column. A transverse spatial graph f W G! S3 is called sinkless and
sourceless if its underlying graph G is sinkless and sourceless (ie has no vertices with
only incoming edges or only outgoing edges).

Remark 4.9 (1) Suppose that g is a graph grid diagram representing the transverse
spatial graph f . Then g is saturated if and only if f is sinkless and sourceless. (2) If
one performs a graph grid move on a saturated graph grid diagram, then the resulting
graph grid diagram is saturated.

Convention For the rest of this paper, unless otherwise mentioned, we will assume
that all transverse spatial graphs are sinkless and sourceless and all graph grid diagrams
are saturated.

Let f W G! S3 be a sinkless and sourceless transverse spatial graph, define E.f /D

S3 nN.f .G//, where N.f .G// is a regular neighborhood of f .G/ in S3 , let g be
an n� n saturated graph grid diagram representing f , and T be its corresponding
toroidal diagram. Now, let

S D ffxig
n
iD1 j xi D ˛i \ˇ�.i/; � 2 Sng;

where Sn is the symmetric group on n elements, and define C�.g/ to be the free (left)
Rn –module generated by S , where

Rn D F ŒU1; : : : ;Un�
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and F DZ=2Z denotes the field with two elements. When working with generators on
a planar grid diagram, we use the convention that places the intersection point on the
bottom leftmost grid line (as opposed to the top rightmost grid line). When we want to
specify the grid, we may write S .g/ instead of S .

Using the toroidal grid diagram, we can view the torus T as a two-dimensional
CW complex with n2 0–cells (intersections of ˛i and ǰ ), 2n2 1–cells (consisting
of line segments on ˛i and ǰ ), and n2 2–cells (squares cut out by ˛i and ǰ ). Note
that a generator x 2 S can be viewed as a 0–chain. Let U˛ be the 1–dimensional
subcomplex of T consisting of the union of the horizontal circles. We define paths,
domains, and rectangles in the same way as [12]. Given two generators x and y

in S , a path from x to y is a 1–cycle  such that the boundary of the 1–chain
obtained by intersecting  with U˛ is y�x . A domain D from x to y is an 2–chain
in T whose boundary @D is a path from x to y . The support of D is the union of
the closures of the 2–cells appearing in D (with nonzero multiplicity). We denote
the set of domains from x to y by �.x;y/ and note that there is a composition of
domains �W �.x;y/��.y ; z/!�.x; z/. A domain from x to y that is an embedded
rectangle r is called a rectangle that connects x to y . Let Rect.x;y/ be the set of
rectangles that connect x to y . Notice if x and y agree in all but two intersection
points then there are exactly two rectangles in Rect.x;y/, otherwise Rect.x;y/D∅.
A rectangle r 2 Rect.x;y/ is empty if Int.r/\x D∅ where Int.r/ is the interior of
the rectangle in T . Let Recto.x;y/ be the set of empty rectangles that connect x to y .

We now make C�.g/ into a chain complex .C�.g/; @�/ in the usual way: by counting
empty rectangles. Note that in [11; 12], the authors consider rectangles that contain
both X’s and O’s. However, because there is no natural filtration of H1.E.f //, we
must restrict to rectangles without any X’s and thus we get a graded object instead of a
filtered object. Let X and O be the set of X’s and O’s in the grid. Put an ordering on
each of these sets, ODfOig

n
iD1

and XDfXig
m
iD1

so that O1; : : : ;OV are associated to
the V vertices of the graph. For a domain D2�.x;y/, let Oi.D/ (respectively Xi.D/)
denote the multiplicity with which Oi (respectively Xi ) appear in D . More precisely, D

is a domain so DD
P

aj rj , where rj is a rectangle in T . Thus Oi.D/D
P

aj Oi.rj /,
where Oi.rj / is 1 if Oi 2 rj and 0 otherwise (similarly for Xi.D/). We note that if r

is a rectangle then Oi.r/� 0. Define @�W C�.g/!C�.g/ as follows. For x 2S , let

@�.x/D
X
y2S

X
r2Recto.x;y/
Int.r/\XD∅

U
O1.r/
1

� � �U On.r/
n �y :

Extend @� to all of C�.g/ so that it is an Rn –module homomorphism. When we
want to specify the grid, we will write @�g instead of @� .

Algebraic & Geometric Topology, Volume 17 (2017)



Heegaard Floer homology of spatial graphs 1477

Proposition 4.10 If g is a saturated graph grid diagram then @�g ı @
�
g D 0.

Proof This proof follows that of [12, Proposition 2.10, page 2349] almost verbatim.
The only change is that we only consider regions that do not contain any X’s. Briefly,
let x 2 S . Then

@� ı @�.x/D
X
z2S

X
D2�.x;z/

N.D/ �U
O1.D/
1

� � �U On.D/
n � z;

where N.D/ is the number of ways one can decompose D as D D r1 � r2 , where
r1 2 Recto.x;y/, r2 2 Recto.y ; z/ and Int.ri/\XD∅. When x ¤ z there are three
general cases. The rectangles are either disjoint, overlapping or share a common edge.
In each of these cases there are two ways that the region can be decomposed as empty
rectangles. Thus the resulting z occurs in the sum twice. The case where x D z is
the result of domains D 2 �.x;x/, which are width-one annuli. Such domains do
not occur in the image of @� ı @�.x/ because @� only counts rectangles that do not
contain X’s, and we have assumed that our graph grid diagram is saturated. Thus we
see that @� ı @�.x/ vanishes.

4.3 Gradings

We put two gradings on the .C�.g/; @�/. The first is the homological grading, also
called the Maslov grading. This will be defined exactly the same as in [12]. We quickly
review the definition for completeness.

Given two finite sets of points A and B in the plane and a point q D .q1; q2/ in the
plane, define I.q;B/ D #f.b1; b2/ 2 B j b1 > q1; b2 > q2g. That is, I.q;B/ is the
number of points in B above and to the right of q . Let I.A;B/ D

P
q2A I.q;B/

and J .A;B/D .I.A;B/C I.B;A//=2. It will be useful to note that an equivalent
definition of I.A; q/ is the number of points in the set fa 2 A j q1 > a1; q2 > a2g,
ie the number of points in A below and to the left q . So J .q;A/ counts with weight
one half all the points in A above and to the right of q and down and to the left of q .
Slightly abusing notation, we view O as a set of points in the grid with half-integer
coordinates (the points where the O’s occur). Similarly, we view X as a set of points
in the grid with half-integer coordinates. We extend J bilinearly over formal sums
and differences of subsets in the plane and define the Maslov grading of x 2 S to be

M.x/D J .x�O;x�O/C 1:

This is consistent with the definition given in [12], and only depends on the set O .
Since, like in [12], we have exactly one O per column and row, [12, Lemmas 2.4
and 2.5] also hold for grid diagrams of transverse spatial graphs. Thus, it follows that
M is a well-defined function on the toroidal grid diagram [12, Lemma 2.4]. In addition,
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w.e/

e

Figure 32: The weight w.e/ assigned to an edge e 2E.G/

for x;y 2S , we can define the relative Maslov grading by M.x;y/ WDM.x/�M.y/.
By [12, Lemma 2.5],

(1) M.x;y/DM.x/�M.y/D 1� 2nO.r/;

for any empty1 rectangle r connecting x to y , where nO.r/ is the number of O’s
in r .

Before defining the Alexander grading we first need to establish a weight system
on the edges of G . Let E.G/ be the set of edges of the graph G . We define
wW E.G/!H1.E.f // by sending each edge to the meridian of the edge, with orien-
tation given by the right-hand rule, seen as an element of H1.E.f //; see Figure 32.
We say that w.e/ is the weight of the edge e . We will denote the weight of X by w.X/
and the weight of O by w.O/, and define them based on the weight of the associated
edge. If X or O appear on the interior of an edge e 2E.G/ in the associated transverse
spatial graph, then w.X/ WD w.e/ and w.O/ WD w.e/. If the O is associated to the
vertex v in the associated transverse spatial graph, then

w.O/ WD
X

e2In.v/

w.e/D
X

e2Out.v/

w.e/;

where In.v/ and Out.v/ are the sets of incoming and outgoing edges of v , respectively.

Remark 4.11 Recall that an edge of a graph G is called a cut edge if the number of
connected components of G n e is greater than the number of connected components
of G . Observe that w.e/D 0 if and only if e is a cut edge. This will be useful in the
proof of Theorem 6.6.

Let the function �W O[X! f1;�1g be defined by

�.p/D

�
1 if p 2X,
�1 if p 2O.

For a point q in the grid, define

Ag.q/D
X

p2O[X

J .q;p/w.p/�.p/:

1If the rectangle r contains m points of x in its interior, then M.x/DM.y/C 1C 2.m� nO.r// .
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We define the Alexander grading of x with respect to the grid g to be

Ag.x/D
X

p2O[X

J .x;p/w.p/�.p/D
X

xi2x

Ag.xi/:

This value a priori lives in 1
2
H1.E.f //; however, by Lemma 4.16, Ag.x/2H1.E.f //.

Note that this definition depends on the choice of planar grid g , and is not a well-
defined function on the toroidal grid.2 However, the relative Alexander grading is a
well-defined function on the toroidal grid diagram.

Definition 4.12 For x;y 2 S , let Arel.x;y/ WD Ag.x/ � Ag.y/ be the relative
Alexander grading of x and y .

When it is clear, we may drop the “rel” or “g” on A. By the following lemma,
Arel does not depend on how you cut open the toroidal diagram T to give a planar
grid diagram g . We first need to define some notation. For a rectangle r , we define
wO.r/D

P
q2O\r w.q/ and, similarly, wX.r/D

P
q2X\r w.q/. If D is a domain

then D D
P

aiDi , where Di is a rectangle. We extend wO and wX linearly to
domains, so that wO.D/D

P
aiwO.Di/ and wX.D/D

P
aiwX.Di/.

Note that a path from x to y , on the toroidal grid, gives a 1–cycle in E.f /. To see
this, recall that the transverse spatial graph associated to the graph grid diagram is
constructed from vertical arcs going from an X to an O outside the torus (above the
plane) and horizontal arcs going from O to X inside the torus (below the plane). Thus,
the intersection of the transverse spatial graph and the torus is X[O . Since a path is
a 1–cycle on the torus missing X[O , we get an element of H1.E.f //. Since the ˛i

and ˇi bound disks in E.f /, this is a well-defined element of H1.E.f //, independent
of the choice of path.

Lemma 4.13 Let x;y 2 S . If D 2 �.x;y/ is a domain connecting x to y then

(2) Ag.x/�Ag.y/D wX.D/�wO.D/:

If  is a path connecting x to y then

(3) Ag.x/�Ag.y/D Œ �;

where Œ � 2H1.E.f // is the homology class of  .

We note that the domain (or rectangle) in this lemma does not have to be empty.

2One can slightly change this definition to make it well-defined on the toroidal grid diagram. Our
invariant will still only be relatively graded in the end however.
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r

x1

x2

y1

y2

Figure 33: The rectangle r with the intersections labeled

r

x1

x2

r

y1

y2

Figure 34: The lightly shaded regions are those that will be counted with weight
one half in J .x1;�/ and J .x2;�/ (left), or in J .y1;�/ and J .y2;�/ (right).

Proof Let r be a rectangle connecting x to y . We will first show that (2) holds for r .
Consider

Ag.x/�Ag.y/D
X

q2O[X

J .x; q/w.q/�.q/�
X

q2O[X

J .y ; q/w.q/�.q/:

Let x1;x2;y1 , and y2 be the intersection points at the corners of r , as shown in
Figure 33. Since the intersection points of x and y only differ at the corners of the
rectangle r this difference reduces toX

q2O[X

�
J .x1; q/CJ .x2; q/�J .y1; q/�J .y2; q/

�
w.q/�.q/:

By definition, J .x1;O[X/ counts with weight one half all those X’s and O’s above
and to the right of x1 and below and to the left of x1 . In Figure 34 (left), we show which
regions will have points counted in J .x1;�/ and J .x2;�/. The shading indicates if
it will be counted with a weight of a half or one, this depends on whether it is counted
in one or both of J .x1;�/ and J .x2;�/. Similarly, in Figure 34 (right) we show
which regions will have points counted in J .y1;�/ and J .y2;�/. These counts differ
by the points in r counted with weight one.
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So we see that this difference is exactlyX
q2r\ŒO[X�

w.q/�.q/D
X

q2X\r

w.q/�
X

q2O\r

w.q/:

Thus, (2) holds for rectangles.

Now we show that (3) holds. Let  be a path connecting x to y . Using the fact
that Sn is generated by transposition, it follows that x;y 2 S are related by a finite
sequence of rectangles in T . That is, there is a sequence xD x1; : : : ;xl Dy of points
in S and rectangles rj connecting xj to xjC1 for 1� j � l � 1. Thus,

Ag.x/�Ag.y/D
X

j

.Ag.xj /�Ag.xjC1//

D

X
j

.wX.rj /�wO.rj //D
X

j

Œ@rj �D

�X
j

@rj

�
:

Since
P

j @rj is also a path connecting x to y ,
�P

j @rj
�
D Œ �. Thus, we have

proved (3).

Finally, we prove (2) for a general domain. Suppose D is a domain connecting x

to y . Then D D
P

aiDi for some rectangles Di , and @D is a path connecting x

to y . Thus Ag.x/�Ag.y/ D Œ@D� D
P

i ai Œ@Di � D
P

i ai.wX.Di/�wO.Di// D

wX.D/�wO.D/.

Corollary 4.14 The relative grading ArelW S � S ! H1.E.f // is a well-defined
function on the toroidal graph grid diagram.

Proof Any two x;y 2 S are related by a sequence of rectangles and hence there is
always a path  connecting x to y . Since the homology class of the path is independent
of the choice of path and Arel.x;y/D Œ �, we see that Arel is independent of how you
cut open the toroidal graph grid diagram to get a planar graph grid diagram.

We now provide an easy way to compute Ag for a planar graph grid diagram g . Let L
be the lattice points in the grid, that is, the n2 intersections between the horizontal
and vertical grid lines (ie the set of points that on the torus become ˛i \ ǰ ). Define
hW L!H1.E.f //, the generalized winding number, of a point q 2L as follows. Place
the planar graph grid diagram g on the Euclidean plane with the lower left corner at
the origin (and the upper right corner at the point .n; n/). Now consider the following
projection of the associated transverse spatial graph pr.f /. Like in the last section, this
is obtained by connecting the X’s to O’s by arcs in the columns and O’s to the X’s
in the rows. However, we now require that the arcs do not leave the n � n planar
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Cw.e/ �w.e/

e e

c.q/c.q/

Figure 35: �.bi/D˙w.e/ , where the sign is given by the sign of e � c.q/

grid (they cannot go around the torus). We also project this to the plane and ignore
crossings. For q 2 L, let c be any path along the horizontal and vertical grid lines
starting at the origin and ending at q . We also require that c meets pr.g/ transversely.
Then c intersects pr.g/ in a finite number of points b1; : : : ; bk , where bi lives on the
interior of some edge of the spatial graph. Suppose bi lies on edge e . Define �.bi/ to
be ˙w.e/, where the sign is given by the sign of the intersection of e with c.q/, with
the usual orientation of the plane; see Figure 35. Using this, we set

h.q/D

kX
iD1

�.bi/:

When it is useful, we may also write hg to specify that we are computing h in the
graph grid diagram g .

Lemma 4.15 The map h is well defined.

Proof Consider the transverse spatial graph associated to g whose projection is pr.g/
but which is pushed slightly above the plane. Fix a base point at infinity in S3 . It is
easy to see that h.q/ is the homology of a loop made up of the path from infinity to
the origin, then a path in the plane, from the origin to q , and finally the path from q

to the point at infinity. This is independent of the choice of path from the origin to q .
Therefore h is well defined.

Lemma 4.16 For any point q on the lattice

(4) Ag.q/D�h.q/:

Proof Let g be a graph grid diagram. First we see that h.q/D 0 for any point on the
boundary of g by definition. Notice that we haveX

p2coli

w.p/�.p/D 0

for each i , where coli is the set of O’s and X’s in the i th column. Similarly,X
p2rowi

w.p/�.p/D 0
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qi qiC1

A

B

qi qiC1

A

B

Figure 36: Here we shade the regions that will be counted with weight one
half in J .qi ;�/ (left), or J .qiC1;�/ (right).

for each i , where rowi is the set of O’s and X’s in the i th row. Given these observations,
it is immediate that Ag.q/D

P
p2O[X J .q;p/w.p/�.p/ is also zero for any point

on the boundary of g .

We will proceed by induction on the vertical grid line on which our lattice point occurs.
Suppose the equality in (4) holds for qi a lattice point on the i th vertical arc, and
consider qiC1 the point immediately to the right of qi on the grid. Let

RHS WD
X

p2O[X

J .qiC1;p/w.p/�.p/�
X

p2O[X

J .qi ;p/w.p/�.p/;

and
LHS WD �h.qiC1/� .�h.qi//:

Figure 36 shows the regions in which the points of O[X will be counted with weight
one half in J .qi ;O[X/ and J .qiC1;O[X/. These differ only in what is counted
in the i th column. So we see that

RHSD 1

2

� X
p2B\.O[X/

w.p/�.p/�
X

p2A\.O[X/

w.p/�.p/

�
:

Using the fact
P

p2coli w.p/�.p/D 0 again, we can simplify this to,

RHSD�
X

p2A\.O[X/

w.p/�.p/D
X

p2B\.O[X/

w.p/�.p/:

We now consider LHS D �h.qi/� Œ�h.qiC1/� D h.qiC1/� h.qi/. Suppose the O
in the i th column is in A. Then all the vertical arcs of pr.g/ in the i th column that
intersect the arc from qi to qiC1 are oriented upwards. Thus LHSD

P
p2X\B w.p/DP

p2B\.O[X/w.p/�.p/. If the O in the i th column is in B , the all the vertical arcs
of pr.g/ in the i th column that intersect the arc from qi to qiC1 are oriented downwards.
So LHSD

P
p2X\A�w.p/D�

P
p2A\.O[X/w.p/�.p/.
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Corollary 4.17 For all x 2 S .g/,

Ag.x/D�
X

xi2x

h.xi/ 2H1.E.f //:

For a given saturated graph grid diagram g , the functions Ag and M make C�.g/

into a well-defined .H1.E.f //;Z/–bigraded Rn –module chain complex once we say
how the grading changes when we multiply a generator by Ui . We set

(5) Ag.Ui/D�w.Oi/; M.Ui/D�2

and define

Ag.U
a1

1
� � �U an

n x/DAg.x/C

nX
iD1

aiA
g.Ui/

and

M.U
a1

1
� � �U an

n x/DM.x/C

nX
iD1

aiM.Ui/:

We remark that since g is saturated, Ag.Ui/¤ 0.

For each a2H1.E.f // and m2Z, let C�.g/.a;m/ be the (vector) subspace of C�.g/

with basis fU a1

1
� � �U

an
n x j Ag.U

a1

1
� � �U

an
n x/ D a; M.U

a1

1
� � �U

an
n x/ D mg. This

gives a bigrading on C�.g/D
P
.a;m/ C�.g/.a;m/ .

Proposition 4.18 The differential @� drops the Maslov grading by one and respects the
Alexander grading. That is, @�W C�.g/.a;m/! C�.g/.a;m�1/ for all a 2H1.E.f //

and m 2 Z.

Proof Consider U O1.r/
1

� � �U Om.r/
m �y appearing in the boundary of x . Since x and y

are connected by an empty rectangle r , we see that M.x/DM.y/C1�2nO.r/ by (1).
Since each Ui drops the Maslov grading by two, M.x/DM.U O1.r/

1
� � �U Om.r/

m �y/C1.
Thus the differential @� drops the Maslov grading by one.

Next Ag.x/DAg.y/C
P

X\r w.X/�
P

O\r w.O/, but by definition of the differential
X\ r D ∅. So Ag.x/D Ag.y/�

P
O\r w.O/D Ag.U O1.r/

1
� � �U Om.r/

m �y/. Thus
the differential @� respects the Alexander grading.

We are interested in viewing .C�.g/; @�/ as a module instead of just a vector space.
Using the definition in (5), F ŒU1; : : : ;Un� becomes an .H1.E.f //;Z/–bigraded ring
(ie H1.E.f //˚Z–graded), and with this grading, .C�.g/; @�/ is a .H1.E.f //;Z/–
bigraded Rn –module chain complex. We would like to define an invariant of the graph
grid diagram that is unchanged under any graph grid moves, giving an invariant of the
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e

Figure 37: A singular edge e

transverse spatial graph. Since F ŒU1; : : : ;Un� depends on the size of the grid, we need
to view C�.g/ as a module over a smaller ring. One choice would be to view C�.g/

as a module over F ŒU1; : : : ;UVCE �, where U1; : : : ;UV correspond to the vertices of
the graph and UVC1; : : :UVCE each correspond to a choice of O on a distinct edge
of the graph. However, by Proposition 4.21, multiplication by a Ui corresponding to
an edge is chain homotopic either to 0 or to multiplication by a Uj corresponding to
a vertex, where 1 � j � V . Thus it makes sense to view C�.g/ as a module over
F ŒU1; : : : ;UV � (recall that we ordered O such that O1; : : : ;OV are vertex O’s).

Let I W F ŒU1; : : : ;UV �! F ŒU1; : : : ;Un� be the natural inclusion of rings defined by
setting I.Ui/DUi for 1� i � V . Using I , any module over F ŒU1; : : : ;Un� naturally
becomes an F ŒU1; : : : ;UV �–module. Thus, we will view C�.g/ as an RV –module,
where RV DF ŒU1; : : : ;UV �. Note that @� preserves the homology, hence the homology
of .C�.g/; @�/ inherits the structure of a .H1.E.f //;Z/–bigraded RV –module.

Definition 4.19 Let g be a saturated graph grid diagram representing the trans-
verse spatial graph f W G ! S3 . The graph Floer chain complex of g is the RA
.H1.E.f //;Z/–bigraded RV –module chain complex .C�.g/; @�/. The graph Floer
homology of g , denoted HFG�.g/, is the homology of .C�.g/; @�/ viewed as an RA
.H1.E.f //;Z/–bigraded RV –module.

Before stating Proposition 4.21, we need some terminology.

Definition 4.20 We say an edge of a graph is singular if at each of its endpoints it is
the only outgoing edge or the only incoming edge. See Figure 37 for an example.

We note that if a component of the graph is a simple closed curve, then every edge in
that component is singular.

Proposition 4.21 .1/ If Oi and Oj are on the interior of the same edge, then multi-
plication by Ui is chain homotopic to multiplication by Uj . .2/ If Oi is associated
to a vertex with a single outgoing or incoming edge e and Oj is on the interior of e ,
then multiplication by Ui is chain homotopic to multiplication by Uj . .3/ If Oi is on
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the interior of an edge that is not singular, then multiplication by Ui is null homotopic.
Moreover, each of the chain homotopies is a bigraded Rn –module homomorphism of
degree .�w.Oi/;�1/.

Note that this implies that the chain homotopies are also bigraded RV –module homo-
morphisms.

Proof Let Xk 2 X. We define Hk W C
�.g/! C�.g/ by counting rectangles that

contain Xk but do not contain any other Xs . Specifically,

Hk.x/ WD
X
y2S

X
r2Recto.x;y/;Xk2r
Xs 62r 8Xs2XnfXkg

U
O1.r/
1

� � �U On.r/
n �y :

Note that Hk W C
�.g/.a;m/ ! C�.g/.a�w.Oi /;m�1/ . Suppose that Xk shares a row

with Oi and shares a column with Oj . There are three cases we need to consider:

(i) If Xk is the only element of X in its row and column then, like in the proof of [12,
Lemma 2.8], we have that

@� ıHk CHk ı @
�
D Ui CUj :

(ii) If Xk is the only element of X in its row but it shares its column with other
elements of X, then

@� ıHk CHk ı @
�
D Ui :

The difference here is that the vertical annulus containing Xk also includes another Xs

for s ¤ k . Thus it does not contribute to @� ıHk CHk ı @
� .

(iii) Similarly, if Xk is the only element of X in its column but it shares its row with
other elements of X, then

@� ıHk CHk ı @
�
D Uj :

Note that we need not consider the case where Xk shares both its row and column
with other elements of X. We use the fact that w.Oi/D w.Oj / in parts (1) and (2)
and the fact that you can add two chain homotopies to get another chain homotopy to
complete the proof.

In Section 5, we show that .C�.g/; @�/, viewed as an RA .H1.E.f //;Z/–bigraded
RV –module chain complex, changes by a quasi-isomorphism under graph grid moves.
Thus, its homology is an invariant of the spatial graph and not just the grid representative.
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Theorem 4.22 If g1 and g2 are saturated graph grid diagrams representing the
same transverse spatial graph f W G! S3 then .C�.g1/; @

�/ is quasi-isomorphic to
.C�.g2/;@

�/ as RA .H1.E.f //;Z/–bigraded RV –modules. In particular, HFG�.g1/

is isomorphic to HFG�.g2/ as RA .H1.E.f //;Z/–bigraded RV –modules.

Proof Suppose g1 and g2 are saturated graph grid diagrams that are related by a cyclic
permutation move. Then they have the same toroidal grid T . Note that there is a natural
identification of S for both graph grid diagrams so that C.g1/D C.g2/ as abelian
groups. Let x;y 2 S . By Corollary 4.14, Ag1.x/�Ag1.y/ D Ag2.x/�Ag2.y/.
Hence Ag1.x/ � Ag2.x/ D Ag1.y/ � Ag2.y/ is a constant a that is independent
of element of S . By [12, Lemma 2.4], M.x/ gives the same value for both g1

and g2 . Thus the identity map idW C�.g1/!C�.g2/ is an .H1.E.f //;Z/–bigraded
RV –module chain map of degree .a; 0/. Thus .C�.g1/; @

�/ is quasi-isomorphic
to .C�.g1/; @

�/ as RA .H1.E.f //;Z/–bigraded RV –modules. If g1 and g2 are
saturated graph grid diagrams that are related by a commutation 0 or stabilization 0 moves
then by Propositions 5.1 and 5.5, .C�.g1/; @

�/ is quasi-isomorphic to .C�.g1/; @
�/

as RA .H1.E.f //;Z/–bigraded RV –modules. By Theorem 3.6, g1 and g2 are
related by a finite sequence of graph grid moves, which completes the proof.

By Theorem 4.22, the following definitions of QI�.f / and HFG�.f / are well defined
and independent of choice of grid diagram.

Definition 4.23 Let f W G! S3 be a sinkless and sourceless transverse spatial graph.
We define QI�.f / to be the quasi-isomorphism class of the RA .H1.E.f //;Z/–
bigraded RV –module chain complex .C�.g/; @�/, for any saturated graph grid dia-
gram g representing f . The graph Floer homology of f , denoted HFG�.f /, is the
homology of .C�.g/; @�/ viewed as an RA .H1.E.f //;Z/–bigraded RV –module,
for any saturated graph grid diagram g representing f .

We note that C�.g/ is a finitely generated Rn –module. However, as an RV –module,
it is not finitely generated, but, using Proposition 4.21, we can show that HFG�.f / is.

Proposition 4.24 HFG�.f / is a finitely generated RV –module for any sinkless and
sourceless transverse spatial graph f W G! S3 .

Proof The proof is similar to [12, Lemma 2.13]. Let g be a saturated graph grid
diagram representing f . We first note that C�.g/ is a finitely generated Rn –module, so
H�.C

�.g// is finitely generated as an Rn –module. Let Œz1�; : : : ; Œzr � be the generators
of H�.C

�.g// as a finitely generated Rn –module. Let Œc� 2H�.C
�.g//. Then we

can write Œc�D
P

pi Œzi � for some pi 2Rn . Let V C 1� j � n and Œb� 2 HFG�.f /.
Then by Proposition 4.21, Uj Œb� is either 0 or equal to Ui Œb� for some 1 � i � V .
Using this repeatedly, it follows that pi Œzi �D qi Œzi � for some qi 2RV .
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4.4 Tilde and hat variants

For a saturated graph grid diagram g , we can define two other variants of .C�.g/; @�/.
First we define the hat theory. Let UV be the F –vector subspace of C�.g/ spanned
by U1C�.g/[ � � � [UV C�.g/. Define yC .g/ to be the quotient C�.g/=UV . Since
@�.UV /� UV , it follows that @� descends to an RV –module homomorphism

y@W yC .g/! yC .g/:

Since C�.g/ has a basis of homogeneous elements fbigi2I as an F –vector space,
with respect to the .H1.E.f //;Z/–grading on C�.g/, and UV has a basis that is
a subbasis of fbigi2I , the .H1.E.f //;Z/–bigrading on C�.g/ descends to a well-
defined .H1.E.f //;Z/–bigrading on yC .g/.

Definition 4.25 Let g be saturated graph grid diagram representing the sinkless
and sourceless transverse spatial graph f W G ! S3 . The graph Floer hat chain
complex of g is the .H1.E.f //;Z/–bigraded chain complex . yC .g/; y@/. The graph
Floer hat homology of g , denoted bHFG.g/, is the homology of . yC .g/; y@/ viewed as
an .H1.E.f //;Z/–bigraded vector space over F .

For a given sinkless and sourceless transverse spatial graph f , we can use Theorem 4.22
to show that the quasi-isomorphism class (and hence homology) of . yC .g/; y@/ does not
depend on the choice of graph grid diagram representing f . The following lemma is
well-known but we include it for completeness.

Lemma 4.26 Let C and D be F ŒU1; : : : ;UV �–module chain complexes and let
�W C !D be an F ŒU1; : : : ;UV �–module quasi-isomorphism. Then � descends to
a quasi-isomorphism y�W yC ! yD of F –vector spaces, where yC D C=UV and yD D
D=UV .

Proof We prove this by induction on V . Suppose V D 1. Then � is an F ŒU1�–
module homomorphism, and � descends to a well-defined chain map y�W yC ! yD . The
following diagram commutes and the horizontal sequences are exact:

0 - C
U1- C

q- yC - 0

0 - D

�
? U1- D

�
? q- yD

y�
?

- 0

Here U1 indicates the map that is multiplication by U1 and q is the quotient map.
Thus on homology, we get the following commutative diagram with horizontal long
exact sequences:
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H�.C /
.U1/�- H�.C /

q�- H�. yC / - H�.C /
.U1/�- H�.C /

H�.D/

��
?

.U1/�- H�.D/

��
? q�- H�. yD/

y��
?

- H�.D/

��
?

.U1/�- H�.D/

��
?

Since �� is an isomorphism, by the five lemma, so is y�� .

Now suppose the lemma is true for V and let C and D be F ŒU1; : : : ;UVC1�–module
chain complexes and �W C !D be an F ŒU1; : : : ;UVC1�–module quasi-isomorphism.
Consider C and D as F ŒU1; : : : ;UV �–modules. Then by the inductive hypothesis,
�0W C=UV !D=UV is a quasi-isomorphism, where �0 is induced from � (which we
called y� before). Moreover, note that �0 is an F ŒUVC1�–module homomorphism. Let
C 0 D C=UV and D0 DD=UV . Using the proof from the case when V D 1, we can
show that the induced map y� 0W C 0=UVC1C 0!D0=UVC1D0 is a quasi-isomorphism.
It is straightforward to show that the natural map C=UVC1! C 0=UVC1C 0 is a chain
isomorphism (similarly for D ), which completes the proof.

Corollary 4.27 If g1 and g2 are saturated graph grid diagrams that represent the
same transverse spatial graph f W G! S3 , then . yC .g1/;y@/ and . yC .g2/;y@/ are quasi-
isomorphic as RA .H1.E.f //;Z/–bigraded vector spaces. In particular, bHFG.g1/ is
isomorphic to bHFG.g2/ as RA .H1.E.f //;Z/–bigraded vector spaces.

As a result, the following definitions of bQI.f / and bHFG.f / are well-defined and
independent of choice of graph grid diagram.

Definition 4.28 Let f W G! S3 be a sinkless and sourceless transverse spatial graph.
We define bQI.f / to be the quasi-isomorphism class of the RA .H1.E.f //;Z/–
bigraded chain complex . yC .g/; y@/, for any saturated graph grid diagram g repre-
senting f . The graph Floer hat homology of f , denoted bHFG.f /, is the homology
of . yC .g/; y@/ viewed as an RA .H1.E.f //;Z/–bigraded vector space over F , for any
saturated graph grid diagram g representing f .

Note that . yC .g/; y@/ is an infinitely generated vector space, but in the same way as
Proposition 4.24 one can show that its homology is finitely generated.

Proposition 4.29 bHFG.f / is a finitely generated vector space over F for any sinkless
and sourceless transverse spatial graph f W G! S3 .

Proof Choose a saturated graph grid diagram g representing f . Let j be such that
VC1�j �n. Then by Proposition 4.21, there is a chain homotopy H WC�.g/!C�.g/
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(H is Hk for some k ) that is an RV –module homomorphism and satisfies one of the
following conditions: (i) @� ıH CH ı@� DUj or (ii) there exists an 1� i � V such
that @� ıH CH ı @� D Ui CUj . Since H is an RV –module homomorphism, H

descends to a well-defined yH W yC .g/! yC .g/ satisfying

y@ ı yH C yH ı y@D Uj :

Therefore Uj Œb�D 0 for all Œb� 2 bHFG.g/. The rest of the proof is similar to the proof
of Proposition 4.24.

We now define the tilde theory. The tilde theory will be the easiest theory to compute.
However, it narrowly fails to be an invariant of the spatial graph since it will depend
on the grid size. On the other hand, one can recover the hat theory from it, which
makes it quite useful. It will also be easier to compute the bigraded Euler characteristic
(Alexander polynomial) of the hat theory using tilde theory; for more details, see
Section 6.

Let Un be the F –vector subspace of C�.g/ spanned by U1C�.g/[ � � � [UnC�.g/.
Define zC .g/ to be the quotient C�.g/=Un . Since @�.Un/ � Un , it follows that @�

descends to a linear map
z@W zC .g/! zC .g/

of vector spaces over F . Since C�.g/ has a basis of homogeneous elements fbigi2I

as an F –vector space, with respect to the .H1.E.f //;Z/ grading on C�.g/, and
Un has a basis that is a subbasis of fbigi2I , the .H1.E.f //;Z/–bigrading on C�.g/

descends to a well-defined .H1.E.f //;Z/–bigrading on zC .g/. Thus . zC .g/; z@/ is a
.H1.E.f //;Z/–bigraded chain complex.

Definition 4.30 Let g be a saturated graph grid diagram representing the sinkless
and sourceless transverse spatial graph f W G ! S3 . The graph Floer tilde chain
complex of g is the .H1.E.f //;Z/–bigraded chain complex . zC .g/; z@/. The graph
Floer tilde homology of g , denoted eHFG.g/, is the homology of . zC .g/; z@/ viewed
as an .H1.E.f //;Z/–bigraded vector space over F .

We will relate eHFG.g/ and bHFG.g/ for a given graph grid diagram g . First, we
recall the (bigraded) mapping cone which we will use in the next lemma.

Let .A; @A/ and .B; @B/ be .G;Z/–bigraded chain complexes and let �W A! B

be a bigraded chain map of degree .g;m/ for some g 2 G and m 2 Z. Define the
(bigraded) mapping cone complex of � , denoted .cone.�/; @/, as follows:

cone.�/D
M

.h;n/2G˚Z

cone.�/.h;n/;
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where
cone.�/.h;n/ DA.h�g;n�m�1/˚B.h;n/

and the boundary map is defined as

@.a; b/D .�@A.a/;��.a/C @B.b//

for all a 2 A and b 2 B . Checking the definitions, we see that @ is a bigraded map
of degree .0;�1/. We also note that if A and B are .G;Z/–bigraded R–module
chain complexes and � is a bigraded R–module chain map then .cone.�/; @/ is an
.G;Z/–bigraded R–module chain complex.

The following lemma is similar to [12, Lemma 2.14] except now we have bigraded
chain complexes instead of filtered graded chain complexes. For g 2G and m 2 Z,
let W .�g;�mC 1/ be the two dimensional .G;Z/–bigraded vector space over F
spanned by one generator in degree .0; 0/ and the other in degree .�g;�mC 1/.
If .C; @/ is any bigraded .G;Z/–chain complex over F , then C ˝W .�g;�mC 1/

becomes a bigraded chain complex with boundary @˝ id in the usual way. That is,

.C ˝W .�g;�mC 1//.h;l/ D
M

.h;l/D.h1Ch2;l1Cl2/

C.h1;l1/˝W .�g;�mC 1/.h2;l2/
:

Lemma 4.31 Let .C; @/ be a .G;Z/–bigraded F ŒU1; : : : ;Us �–module chain complex
and g 2G and m 2 Z be fixed group elements. Suppose that for each i � 2, multipli-
cation by Ui (which we denote by Ui ) is a bigraded F ŒU1; : : : ;Us �–module chain map
of degree .�g;�m/ and that

(1) Ui is chain homotopic to U1 or

(2) Ui is null-homotopic (where the chain homotopy is an F ŒU1; : : : ;Us �–module
homomorphism).

Then .C=Us; @/ is quasi-isomorphic to .C=U1˝W .�g;�mC 1/˝s�1; @˝ id/ and
hence

H�.C=Us/ŠH�.C=U1/˝W .�g;�mC 1/˝s�1:

Note that by H�.C=U1/ (respectively H�.C=Us/), we mean the homology of the
chain complex whose chain group is C=U1 (respectively C=Us ) and whose boundary
map is induced by @.

Proof Let D D C=U1 D C=U1C and @D W D ! D be induced by @. Consider
multiplication by U2 on D , yU2W D ! D . Since U1 and U2 commute, this is a
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well-defined bigraded map. There is a long exact sequence

0!D
yU2
�!D

pr
�!D= yU2D! 0;

where pr is the natural projection to the quotient. Let F W cone. yU2/!D= yU2D be de-
fined by F.c1; c2/D pr.c2/. By [23, Section 1.5.8], the map F is a quasi-isomorphism.
Moreover, F is a bigraded map of degree .0; 0/.

If U2 is chain homotopic to U1 via a chain homotopy H that is an F ŒU1; : : : ;Us �–
module homomorphism, then H induces a well-defined map yH W D!D such that

@D
ı yH C yH ı @D

D yU2:

This also holds if U2 is null-homotopic. Since yU2 is null-homotopic, there is a
bigraded chain isomorphism from cone. yU2/ to cone.0W D ! D/ of degree .0; 0/.
Hence cone. yU2/ is isomorphic to D˚DŒg;m�1� as bigraded chain complexes, where
DŒg;m� 1� is the bigraded vector space defined by DŒg;m� 1�.h;n/ DDhCg;nCm�1

and the boundary map on D˚DŒg;m�1� is @D˚@D . Moreover, this is isomorphic, as
bigraded chain complexes, to D˝W .�g;�mC 1/. The proof for nD 2 is complete
after noting that the obvious map C=U2 to D= yU2D is a bigraded chain isomorphism.
To complete this proof, continue this type of argument, one by one for each Ui .

We can use this to relate the tilde and hat chain complexes.

Proposition 4.32 Let g be a saturated graph grid diagram representing the sinkless
and sourceless transverse spatial graph f W G! S3 . Then

eHFG.g/Š bHFG.g/˝
O

e2E.G/

W .�w.e/;�1/˝ne

as .H1.E.f //;Z/–bigraded F –vector spaces, where ne is the number of O’s in g

associated to the interior of e (not including the vertices).

Proof We note that if Oi is on the interior of edge e then multiplication by Ui is
a graded map of degree .�w.e/;�2/. In addition, Ui is either null homotopic or
homotopic to some Uj with j � V , where Oj is a vertex. Use Lemma 4.31 repeatedly
to complete the proof.

5 Invariance of HFG�.f /

In this section we will complete the necessary steps to prove that HFG�.f / is an
invariant of a sinkless and sourceless transverse spatial graph; see Theorem 4.22 and its
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proof for more details. That is, we will show that HFG�.g/ is invariant under each of
the graph grid moves: commutation 0 and stabilization 0 . The proofs will be similar to
the proofs found in [12]. There are two major differences though. The first is that we
are working with more general commutation and stabilization moves, commutation 0

and stabilization 0 . The second difference is the Alexander grading.

5.1 Commutation 0 invariance

Proposition 5.1 Suppose g and Ng are saturated graph grid diagrams that differ by a
commutation 0 move. Let f W G! S3 be the transverse graph associated to g and Ng ,
and V be the number of vertices of G . Then there is an .H1.E.f //;Z/–bigraded
RV –module quasi-isomorphism .C.g/; @�g /! .C. Ng/; @�

Ng / of degree .ı.g; Ng/; 0/ for
some ı.g; Ng/ 2H1.E.f //.

We remark that the quasi-isomorphism above will be a bigraded map for some degree
(that depends on g and Ng ), but will not necessarily be of degree .0; 0/.

The proof of Proposition 5.1 will take up the rest of this subsection. We will prove the
case when Ng is obtained from g by a commutation 0 move of columns. The case where
you exchange rows is similar.

As in [12], we draw both graph grid diagrams on a single n � n grid (respectively
torus when the sides are identified), which we will call the combined grid diagram,
as follows. Let the vertical line segment (respectively circle) between the columns
that are exchanged be labeled ˇ in g and  in Ng and call the other vertical circles
ˇ1; : : : ; ˇn�1 , where n is the size of the grid for g . Let  be a simple closed curve
on the graph grid diagram g such that the following conditions are held: (1)  is
homotopic to ˇ , (2)  hits each of the horizontal curves, ˛i , precisely once, (3) 
does not intersect ˇi for i � n� 1, (4) after removing the ˇ curve, one obtains Ng ,
(5)  and ˇ intersect transversely exactly twice, and (6) the intersections of  and ˇ
do not lie on the horizontal curves. It is easy to use the line segments LS1 and LS2 in
the definition of commutation 0 to see that such a curve exists. First, note that we can
assume the endpoints of the line segments do not lie on ˛ curves by slightly changing
them. Now, take pushoffs of the line segments LS1 and LS2 to the left or right as
needed, and connect them up so that they satisfy the requirements above. Let a and b

be the intersections of ˇ and  . See Figures 38 and 39 for examples. We still let T be
the torus of the combined grid diagram obtained by gluing the top/bottom and sides.

We will define a chain map ˆˇ W C�.g/!C�. Ng/ and show that it is a chain homotopy
equivalence. This will show that ˆˇ is a quasi-isomorphism. For x 2 S .g/ and
y 2 S . Ng/, we let Pentˇ .x;y/ be the set of embedded pentagons with the following
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D

Figure 38: Commutation 0 move between g and Ng (top), and the correspond-
ing combined grid diagram, where we show the line segments in the definition
of commutation 0 on the left (bottom)
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Figure 39: Another example of a commutation 0 move, in which the X’s
appear in the same row; from left to right we have g , Ng and the combined
grid diagram

properties. If x and y do not coincide at n� 2 points, then we let Pentˇ .x;y/D∅.
Suppose that x and y coincide at n� 2 points (say x3 D y3; : : : ;xn D yn ). Without
loss of generality, let x2D x\ˇ and y2D y\ . An element p 2 Pentˇ .x;y/ is an
embedded disk in T , whose boundary consists of five arcs, each of which are contained
in the circles ˇi , ˛i , ˇ or  and satisfies the following conditions. The intersections
of the arcs lie on the points x1;x2;y1;y2 and a. The point a is in ˇ\  and locally
looks like the top intersection in Figure 40 (b is the one that locally looks the bottom
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Figure 40: Examples of pentagons in Pentoˇ .x;y/

intersection point in ˇ \  ). Moreover, start at the point in x2 and transverse the
boundary of p , using the orientation given by p . The condition to be in Pentˇ .x;y/
is that you will first travel along a horizontal circle, meet y1 , proceed along a vertical
circle ˇi , meet x1 , continue along another horizontal circle, meet y2 , proceed though
an arc in  until you meet a, and finally traverse an arc in ˇ until arriving back at x2 .
Finally, all angles are required to be less than straight.

The set of empty pentagons, Pento
ˇ
.x;y/, are those pentagons p 2 Pentˇ .x;y/

such that x \ Int.p/ D ∅. The map ˆˇ WC�.g/! C�. Ng/ is defined by counting
empty pentagons, that do not contain X’s in the combined grid diagram as follows. For
x 2 S .g/, define

ˆˇ .x/D
X

y2S . Ng/

X
p2Pento

ˇ
.x;y/

Int.p/\XD∅

U
O1.p/
1

� � �U On.p/
n �y 2 C�. Ng/:

Extend ˆˇ to C�.g/ so that it is an Rn –module homomorphism. In particular, it is
also an RV –module homomorphism.

Lemma 5.2 ˆˇ is an .H1.E.f //;Z/–bigraded RV –module chain map of some
degree.

Proof Since ˆˇ is an RV –module homomorphism, the proof is broken into three
parts: checking that each grading is preserved, and showing that

@� ıˆˇ Dˆˇ ı @
�:

The map ˆˇ preserves the Maslov grading Since the definition of the Maslov
grading only depends on the set O , and we consider a subset of the pentagons considered
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A B C D

E p

F

G
H

I J

K
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y1

x1

x2

y2

Figure 41: The combined grid diagram, with regions A; : : : ;M labeled and
the pentagon p shaded

in the proof of commutation in [12, Section 3.1], this technically follows from [12,
Lemma 3.1]. However, since they do not include a proof that the Maslov grading is
preserved (this is left to the reader), we will include a sketch of the proof here.

We will go though the details of this computation for the case pictured in Figure 41,
other cases follow similarly. Consider a U O1.p/

1
� � �U On.p/

n �y in the sum of ˆˇ .x/.
Recall that

M.x/D J .x;x/� 2J .x;O/CJ .O;O/C 1:

To compare the Maslov grading we interpret each of these terms for x in the grid g

in relation to y in the grid Ng . Let the intersection points of x be x1; : : : ;xn and the
intersection points of y be y1; : : : ;yn , with the same subscript where they coincide.
Label the intersection points where x and y differ as x1 , x2 , y1 and y2 and break
the combined grid diagram into 14 regions labeled A; : : : ;M, and p , as shown in
Figure 41.

Notice that the count for xi is the same as yi for i ¤ 1; 2. The number of points
in O up and to the right, and down and to the left are not changed, since this could
only be changed for an intersection between the commuted edges (ie x2 or y2 ). So
J .xi ;O/DJ .yi ;O/. The number of points in x and y up and to the right and down
and to the left are the same, this can be checked region by region. If an intersection
point is in region E then x2 will be counted in the points up and to the right; this is
replaced by the point y1 which is also up and to the right. Similarly, for all of the
regions, since xi D yi 2 fA;B; : : : ;Mg, we have J .xi ;x/D J .yi ;y/ for all i ¤ 1; 2.

Now for the points where x and y differ, Figure 42 (left) shows the regions that are
counted for x1 and x2 , and Figure 42 (right) shows the regions that are counted for
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p
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F

G

K

L

p

C
F

G

K

L

Figure 42: The lightly shaded regions are those that will be counted with weight
one half in J .x1;�/ and J .x2;�/ (left), or in J .y1;�/ and J .y2;�/ (right).

y1 and y2 . So we see that the regions C, F, G and K are counted with weight 1
2

more
for x1 and x2 , and the region p is counted with weight 1 more for x1 and x2 and,
lastly, region L is counted with weight 1

2
less for x1 and x2 . So,

J .x;x/D J .y ;y/C 1;

because x1 will count x2 with weight 1
2

and vice versa, but y1 and y2 do not count
each other. Next, x will count all of the points in O that y will count and, additionally,
will count those O’s in the region p with weight 1, those O’s in the regions C, F, G,
and K with weight 1

2
and those O’s in the region L with weight �1

2
. Notice that the

region made up of G and K must contain exactly one O. Thus,

J .x;O/D J .y ;O/CO1.p/C � � �COn.p/C
1
2
.O.C /CO.F /C 1/� 1

2
O.L/;

where O.C /, O.F /, and O.L/ are the number of O’s in the respective regions.

Lastly, if we look at what happens for the different diagrams with the sets of O , the
only difference is for the O’s in the columns that are changed. Again we know that
there is exactly one O in the regions G and K . So we have

J .O;O/g D J .O;O/ NgCO.C /CO.F /�O.L/:

Putting this all together, we have

M.x/D ŒJ .y ;y/C 1�

� 2ŒJ .y ;O/CO1.p/C � � �COn.p/C
1
2
.O.C /CO.F /C 1/� 1

2
O.L/�

C ŒJ .O;O/ NgCO.C /CO.F /�O.L/�C 1

D J .y ;y/� 2J .y ;O/CJ .O;O/ Ng � 2ŒO1.p/C � � �COn.p/�C 1

D J .y �O;y �O/C 1� 2ŒO1.p/C � � �COn.p/�:
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Thus we see that the Maslov grading is unchanged.

The map ˆˇ preserves the Alexander grading up to a shift Now, consider the
H1.E.f //–grading on C�.g/, C�.g/D

L
a2H1.E.f //

C�.g/a (similarly for C�. Ng/).
We will show that there is an element ı.g; Ng/ that only depends on g and Ng (not on x )
such that ˆˇ .C�.g/a/� C�. Ng/aCı.g; Ng/ . We will work with the second definition
of the Alexander grading, Ag.x/D

P
xi2x Œ�hg.xi/� to prove this.

Let x 2 S .g/ and p 2 Pento
ˇ
.x;y/ such that p \X D ∅ and Pento

ˇ
.x;y/ ¤ ∅.

Then U O1.p/
1

� � �U On.p/
n �y is a term in ˆˇ .x/. We use the convention as before that

xi D yi for i � 3, x2 2 ˇ , and y2 2  . We note that hg.xi/D h Ng.yi/ for i � 3. So
we need to show that

(6) hg.x1/C hg.x2/� h Ng.y1/� h Ng.y2/�

nX
iD1

w.Oi/Oi.p/D ı.g; Ng/

for some fixed ı.g; Ng/ 2H1.E.f //.

We will prove the case when a is the topmost intersection of ˇ and  and p is a
pentagon lying to the left of a. See two examples of these pentagons in Figure 43.
Note that the boundary of the pentagon can contain b , and p can contain an O that
lies between ˇ and  . The other three cases are similar. Let ˇn�1 be the vertical line
segment/circle in g directly to the left of ˇ , and ˇ1 be the vertical line segment/circle
in g directly to the right of ˇ . We will label the ˛i in the usual way so that ˛i is
height i � 1. Let ˛l be the horizontal line segment/circle directly below b , ˛lC1 be
the horizontal line segment/circle directly above b , ˛k be the horizontal circle directly
below a, and ˛kC1 be the horizontal line segment/circle directly above a. Finally,
let u1 be the point on ˇn�1 that is at the same height as x1 and let u2 be the point
on ˇn�1 that is at the same height as x2 . See Figures 43 and 44 for our conventions.

We will say that the pentagon p is narrow if y1 2 ˇn�1 . If p is not narrow, then there
is a rectangle in g that is contained in p . Let r be the largest such rectangle. Then p

decomposes into r and a narrow pentagon p0 . Note that r 2 Recto.fx1;u2g; fu1;y1g/

and p0 2Pento.fx2;u1g; fy2;u2g/. Moreover, r\XDp\XD∅. Since the boundary
map on C�.g/ preserves the Alexander grading, we see that

hg.x1/C hg.u2/D

nX
iD1

w.Oi/Oi.r/C hg.y1/C hg.u1/:

We consider hg.x2/� hg.u2/ and h Ng.y2/� h Ng.u1/D h Ng.y2/� hg.u1/.

In order to compute hg or h Ng , draw the transverse spatial graph for g and g0 so that
the horizontal and vertical arcs connecting the X’s and O’s are inside the grid, and

Algebraic & Geometric Topology, Volume 17 (2017)



Heegaard Floer homology of spatial graphs 1499

o

x

o

x

x

x

ˇn�1ˇ  ˇ1

y1 x2u2

x1 u1 y2

r p0
a

b

o

x

o

x

x

x

ˇn�1ˇ  ˇ1

y1 x2u2

x1 u1 y2

r p0
a

b

Figure 43: Decomposing p into a narrow pentagon p0 and a rectangle r

ˇn�1 ˇ ˇ1

˛kC1

˛k

˛lC1

˛l

A

B

ˇn�1  ˇ1

˛kC1

˛k

˛lC1

˛l

˛1 ˛1

A

B

g Ng

Figure 44: A commutation 0 move; regions A and B contain X’s and O’s

consider their projections pr.g/ and pr.g0/. We will think of column n� 1 as the
column with ˇn�1 on the left and column n as the column with ˇ or  on the left.
Assume that LS1 lies inside column n� 1 and LS2 lies in column n. Let A be the
union of rectangles containing LS1 and B be the union of rectangles containing LS2

(recall, we are assuming the ends of LSi do not lie on an ˛ curve). Then the X’s
and O’s in columns n� 1 and n are contained in A[B and projections of A and B

intersect in the two rows that contain a and b . Since there are no X’s or O’s in colnnB ,
the vertical arcs in pr.g/\ .colnnB/ form a collection of parallel arcs starting and
stopping at ˛k and ˛kC1 which are all oriented in the same direction (all upwards or
all downwards). In addition, pr.g/\ .coln�1 nA/ is empty. See Figure 44.
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Let O0 be the O in column n�1 of g and let O00 be the O in column n�1 of Ng . Note
that p0 either contains O0 or O00 or both or is empty (in particular, it never contains
an element of X). We first consider hg.x2/� hg.u2/. There are three cases. First
suppose x2 2 ˛i for i � kC 1 or i � l . Then hg.x2/� hg.u2/D 0 since the region
above and below A in g contains no vertical arcs in pr.g/. In addition, we see that p0

cannot contain O0 so that hg.x2/�hg.u2/D 0D O0.p0/w.O0/ where by O0.p0/, we
mean the number of O0 s in p0 . Now suppose x2 2 ˛i for lC1� i � k . If p0 does not
contain O0 then hg.x2/� hg.u2/D 0D O0.p0/w.O0/. If p0 contains O0 then the arc
going from u2 to x2 crosses all the vertical strands emanating from this O, all oriented
downwards, since p0 does not contain any X’s. Thus, hg.x2/�hg.u2/DO0.p0/w.O0/.
Thus, in all cases, we see that hg.x2/� hg.u2/D O0.p0/w.O0/.

Now consider h Ng.y2/� h Ng.u1/. We again have three cases to consider. First suppose
that y2 2 j̨ for l C 1� j � k . Then the arc from u1 to y2 crosses m vertical arcs,
all oriented in the same direction so h Ng.y2/�h Ng.u1/D � for some � 2H1.E.f //. In
addition, O00.p/D 0 so that h Ng.y2/� h Ng.u1/D ��O00.p0/w.p0/. Now suppose that
x2 2 ˛i for i � k C 1 or i � l . If p0 does not contain O00 then h Ng.y2/� h Ng.12/D

�D ��O00.p0/w.p0/. If p0 contains O00 , h Ng.y2/�h Ng.u1/D ��w.O00/. Thus, in all
cases, h Ng.y2/� h Ng.u1/D ��O00.p0/w.p0/.

Putting this together and using that h Ng.y1/D hg.y1/ and h Ng.u1/D hg.u1/, we have

hg.x1/C hg.x2/� h Ng.y1/� h Ng.y2/

D .hg.x1/ C hg.u2//� .h
g.y1/C hg.u1//

C .hg.x2/� hg.u2//� .h
Ng.y2/� h Ng.u1//

D

nX
iD1

w.Oi/Oi.r/CO0.p0/w.O0/� .��O00.p0/w.p0//

D

nX
iD1

w.Oi/Oi.p/� �:

Thus, (6) holds with ı.g; Ng/D �� which completes the proof that ˆˇ is a graded
map (with respect to the Alexander grading).

ˆˇ is a chain map The remaining portion of the proof that ˆˇ is a chain map
follows almost immediately from the proof of [12, Lemma 3.1]. However, our pentagons
and rectangles cannot count X’s so we need to be a little more careful.

For x 2 S .g/, there is a unique element c.x/ of S . Ng/, called the canonical closest
generator of x , defined as follows. Let t be such that x \ ˇ 2 ˛t and let x0 be the
point in ˛t \  . Define

c.x/ WD fxi 2 x j xi 62 ˇg[ fx
0
g 2 S . Ng/:
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Figure 45: An example of two domains connecting x to c.x/ . The generators
x and c.x/ are both in black circles; they only disagree on one row.

Suppose D is a domain of the form p � r representing a term in @� ıˆˇ; .x/ and D

connects x to y with y ¤ c.x/. By this, we mean to consider the juxtaposition of the
pentagon p connecting x to z and the rectangle r connecting z to y , in the combined
grid diagram. Note that the domain does not contain any element of X. Then there
is exactly one other empty rectangle r 0 (in g or Ng ) and empty pentagon p0 such that
r 0 �p0 or p0 � r 0 gives a decomposition of D . Note that most of the time the other
decomposition is of the form r 0 �p0 . To see this, one just needs to draw every possible
domain of the form p � r and r �p , where r is an empty rectangle (in g or Ng ) and p

is an empty pentagon. In addition since p0 and r 0 will be contained in D , they will not
contain any element of X so r 0 �p0 or p0 � r 0 will represent an element of ˆˇ; ı @�

or @�ıˆˇ; . The same statement is true if you start with a domain D of the form r �p

representing a term in @� ıˆˇ; .x/ as long as D connects x to y with y ¤ c.x/.

Suppose D is a domain of the form p � r representing a term in @� ı ˆˇ; .x/

and D connects x to c.x/. Then D consists of two regions C and E , where C

is the region that lies to the left of both  and ˇ and to the right of ˇn�1 , and
E is a subset of the region that lies to the right of ˇ and to the left of  . Note
that the C \O D C \ X D E \ X D ∅. There is exactly one other domain D0

connecting x to c.x/ of the form p0 � r 0 or r 0 �p0 . See Figure 45 for an example.
This domain consists of a region C 0 and E , where C 0 is the region that lies to the
right of both  and ˇ and to the left of ˇ1 . Note that C 0\XD C 0\XD∅ and so
Oi.D/D Oi.D

0/ and D0\XD∅. Thus D0 represents an element of ˆˇ; ı @�.x/
or @� ıˆˇ; .x/. A similar statement holds for domain of the form p � r representing
a term in @� ıˆˇ; .x/ and connecting x to c.x/. Thus, every term is canceled by
another. So @� ıˆˇ .x/Dˆˇ ı @�.x/.

In order to prove that ˆˇ is a chain homotopy equivalence we define a similar
map Hˇˇ which counts hexagons in the combined grid diagram. These hexagons
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are just like the ones in [12] except they don’t contain elements of X. We recall the
definition. For x;y 2S .g/, let Hexˇˇ.x;y/ be the set of embedded hexagons defined
as follows. If x and y don’t coincide at n� 2 points then Hexˇˇ.x;y/ is the empty
set. Suppose that x and y coincide at n�2 points (say x3Dy3; � � � ;xnDyn ). Without
loss of generality, let x2 D x\ˇ and y2 D y \  . An element H 2 Hexˇˇ.x;y/ is
an embedded disk in the combined grid diagram, whose boundary consists of six arcs,
each of which are contained in the circles ˇi , ˛i , ˇ or  and satisfies the following
conditions. The intersections of the arcs lie on the points of x1 , x2 , y1 , y2 , a and b .
Moreover, start at the point in x2 and transverse the boundary of H , using the orientation
given by H . The condition to be in Hexˇˇ.x;y/ is that you will first travel along
a horizontal circle, meet y1 , proceed along a vertical circle ˇi , meet x1 , continue
along another horizontal circle, meet y2 , proceed though an arc in ˇ until you meet b ,
then travel along an arc in  until you hit a and finally travel along an arc in ˇ

until arriving back at x2 . Finally, all angles are required to be less than straight. For
x;y 2 S . Ng/, there is a corresponding set of hexagons Hexˇ .x;y/. The set of
empty pentagons Hexo

ˇˇ
are those hexagons q 2Hexˇˇ.x;y/ where x\Int.q/D∅.

Define HˇˇWC
�.g/! C�.g/ by

Hˇˇ.x/D
X

y2S .g/

X
q2Hexo

ˇˇ
.x;y/

Int.q/\XD∅

U
O1.q/
1

� � �U On.q/
n �y :

Proposition 5.3 The map ˆˇ WC�.g/! C�. Ng/ is a chain homotopy equivalence.

Proof To prove this, we show that

IdCˆˇ ıˆˇ C @
�
ıHˇˇCHˇˇ ı @

�
D 0

and
IdCˆˇ ıˆˇC @

�
ıHˇ CHˇ ı @

�
D 0:

The proof is similar to the proof of [12, Proposition 3.2]. Let x 2 S.g/. Typically,
every domain that arises as the composition of two empty pentagons or an empty
hexagon and an empty rectangle representing terms from ˆˇ ıˆˇ .x/, @�ıHˇˇ.x/

or Hˇˇ ı @
�.x/ can be decomposed in exactly two ways representing terms from

ˆˇ ıˆˇ .x/, @� ıHˇˇ.x/ or Hˇˇ ı @
�.x/. The only case when this does not

happen is when the domain connects x to x . In this case, the domain consists of the
region that is either (1) to the left of both  and ˇ and to the right of ˇn�1 or (2) to
the right of both  and ˇ and to the left of ˇ1 . Such a domain can be decomposed
in three ways representing terms in ˆˇ ıˆˇ .x/, @� ıHˇˇ.x/ or Hˇˇ ı @

�.x/.
The other case follows similarly.
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Remark 5.4 Hˇˇ is a .H1.E.f //;Z/–bigraded RV –module homomorphism of
degree .0; 1/. Therefore .C.g/; @/ and .C. Ng/; @/ are chain homotopy equivalent as
bigraded RV –module chain complexes.

5.2 Stabilization 0 invariance

Proposition 5.5 Suppose g and Ng are saturated graph grid diagrams that differ by a
stabilization 0 move. Let f W G! S3 be the transverse graph associated to g and Ng
and V be the number of vertices of G . Then there is an .H1.E.f //;Z/–bigraded
RV –module quasi-isomorphism .C.g/; @�g /! .C. Ng/; @�

Ng / of degree .ı.g; Ng/; 0/ for
some ı.g; Ng/ 2H1.E.f //.

The proof of Proposition 5.5 will take up the rest of this section. The proof of
stabilization 0 is similar to the proof of stabilization in [12]. However, because of
the fact that we only have a graded theory instead of a filtered theory, the proof
becomes drastically simplified. We also fill in some of the details and clarify some of
the arguments in the proof of [12]. We will only prove the case for row stabilization 0 .
The proof of column stabilization 0 is similar.

Let g be a graph grid diagram and Ng be obtained from g by a row stabilization 0 move.
An example of a row stabilization 0 move is shown in Figure 46. To get Ng , we take
some row R in g with l X’s, delete it and replace it with two new rows and then
add a new column. We place Ok ;Xj2

; : : : ;Xjl
into one of the new rows (and in the

same columns as before) and Xj1
into the other new row (and in the same column as

before). We place decorations On and Xm into the new column so that On occupies
the same row as Xj1

, and Xm occupies the same row as Ok . By Remark 3.4, we may
assume that Xj1

, Xm and On share a corner, called ?, where Xj1
is directly to the

left of On , and On is directly above Xm ; see Figure 46. Let ˇn be the vertical grid
circle directly to the left of On and let ˇ1 be the vertical grid circle directly to the right
of On . Let ˛n be the horizontal grid circle to between On and Xm .

Let .B; @B/ D .C�.g/; @�g / and .C; @C / D .C�. Ng/; @�Ng /. Let .BŒUn�; @B/ be the
chain complex obtained as follows. BŒUn� is the free (left) Rn –module generated
by S .g/, and @B is the unique extension of @g to BŒUn� so that @B is an Rn –module
homomorphism. We note that .BŒUn�; @B/ is isomorphic to the chain complex whose
group is B ˝Rn�1

Rn and whose boundary map is @B ˝ id. .BŒUn�; @B/ becomes
an .H1.E.f //;Z/–bigraded Rn –module chain complex by setting the H1.E.f //–
grading of Un to be w.Xj1

/ and the Z–grading of Un to be �2.

Definition 5.6 Let

� D

�
UnCUk if l D 1;

Un if l � 2;
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R X1 X2 O�k X3 ˛n
X1

X2 On

Xm O�k X3

ˇn ˇ1

?

Figure 46: An example of stabilization 0

so that �W BŒUn�!BŒUn� is a bigraded Rn –module chain map of degree .�w.On/;�2/.
Let .C 0; @0/ be the mapping cone complex of � . Since .BŒUn�; @B/ is a .H1.E.f //;Z/–
bigraded Rn –module chain complexes, the .cone.�/; @0/ is a .H1.E.f //;Z/–bigraded
Rn –module chain complex. See page 1490 for the definition of the mapping cone and
its grading.

We will first show that C 0 is quasi-isomorphic to B and then we will show that C

is quasi-isomorphic to C 0 . The first step follows from basic facts from homological
algebra. Consider the cokernel of � , BŒUn�=im.�/. The .H1.E.f //;Z/–bigrading
on C�.g/ descends to a well-defined .H1.E.f //;Z/–bigrading on BŒUn�=im.�/ and
so .BŒUn�=im.�/; @B/ is an .H1.E.f //;Z/–bigraded Rn –module chain complex. In
addition, using the inclusion Rn�1 � Rn , it is also naturally an .H1.E.f //;Z/–
bigraded Rn�1 –module chain complex. Moreover the map

B
Š
�! BŒUn�=im.�/;

which sends b 2B to the equivalence class of itself, is a bigraded Rn�1 –module chain
isomorphism of degree .0; 0/. Thus, we just need to show that C 0 is quasi-isomorphic
to B=im.�/.

Lemma 5.7 Let prW BŒUn�!BŒUn�=im.�/ be the quotient map. The map from C 0 to
BŒUn�=im.�/ that sends .a; b/ to pr.b/ is a bigraded Rn –module quasi-isomorphism
of degree .0; 0/.

Proof There is a short exact sequence of chain complexes

0! BŒUn�
�
�! BŒUn�

pr
�! BŒUn�=im.�/! 0:
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Therefore, by [23, Section 1.5.8], the map cone.�/! BŒUn�=im.�/ sending .a; b/
to pr.b/ is a quasi-isomorphism. This map is bigraded of degree .0; 0/ and an Rn –
module homomorphism.

We now define a quasi-isomorphism F W C ! C 0 similar to the one in [12]. However,
since we are only considering a bigraded chain complex instead of a filtered chain
complex and we only need to consider one of the four stabilization 0 s, our map becomes
very simple. We first consider some notation.

Let I � S . Ng/ be the set of x 2 S . Ng/ that contain ?: the intersection of the new
grid lines/circles ˛n and ˇn . There is a natural one-to-one correspondence between I

and S .g/. For x 2 S .g/ let  .x/ be the point in I defined by x [ ?. Note that
if x 2 I then xDfx1;x2; : : : ;xn�1; ?g so  �1.x/Dfx1; : : : ;xn�1g is the generator
of B obtained by removing ?. The gradings of x 2 S .g/ and  .x/ are related as
follows:

M g.x/DM C 0.x; 0/C 1DM C 0.0;x/DM Ng. .x//C 1;(7)

Ag.x/DAC 0.x; 0/Cw.On/DAC 0.0;x/DA Ng. .x//�A Ng.?/:(8)

Define FLW C ! BŒUn� by

FL.x/D

�
0 if x 62 I

 �1.x/ if x 2 I

and extend it to C so that it is an Rn –module homomorphism. The reason for this
choice of map is that the trivial region is the only type-L region in [12] that doesn’t
contain Xj1

when Xj1
is directly to the left of On . For the definition of an type-L

region, see [12, Definition 3.4 and Figure 13].

There is one type-R region that does not contain Xj1
: the rectangle with ? in its

upper left corner. For x 2 S. Ng/ and y 2 S.g/, let �R.x;  .y// be the set of p 2

Recto.x;  .y// whose upper left corner is ?; see Figure 47. We will call such a
domain an R–domain. Define FRW C ! BŒUn� by

FR.x/D
X

y2S.g/

X
p2�R.x; .y//
.XnXm/\Int.p/D∅

U
O1.p/
1

� � �U
On�1.p/
n�1

y :

Note that we are counting domains in Ng that cannot contain X1; : : : ;Xm�1 but can
contain Xm . Also, there is no factor of Un in the terms of FR.x/. Using these, we
define F W C ! C 0 by

F.x/D .FL.x/;FR.x//:
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X On

Xm
?

Figure 47: A domain in �R.x;  .y//; the points of x are in black, the
points of y are in white, the domain is shaded

Lemma 5.8 F W C ! C 0 is a .H1.E.f //;Z/–bigraded Rn –module chain map of
degree .�w.Xm/�A Ng.?/; 0/.

Proof F is an Rn –module homomorphism by definition. It follows from [12,
Lemma 3.5] that the Maslov grading is preserved.

F is an H1.E.f //–graded map of degree �A Ng.?/�w.On/ Let x 2 S . Ng/. We
first consider the grading of .FL.x/; 0/. FL.x/ is either 0 or is  �1.x/. Suppose
FL.x/¤ 0. Then FL.x/D  

�1.x/, so by (8),

AC 0.FL.x/; 0/DAg. �1.x//�w.On/DA Ng.x/�A Ng.?/�w.On/:

We now consider the grading of .0;FR.x//. Let U
O1.p/
1

� � �U
On�1.p/
n�1

y be a term
in FR.x/. Then p is a rectangle connecting x to  .y/ that doesn’t contain any
elements of X except Xm . Moreover, p does not contain On and contains Xm exactly
once. So by Lemma 4.13,

A Ng.x/�A Ng. .y//D wX.p/�wO.p/D w.Xm/�

n�1X
iD1

Oi.p/w.Oi/:

Therefore, by (8), we have

AC 0.0;U
O1.p/
1

� � �U
On�1.p/
n�1

y/DAC 0.0;y/�

n�1X
iD1

Oi.p/w.Oi/

DA Ng. .y//�A Ng.?/�

n�1X
iD1

Oi.p/w.Oi/

DA Ng.x/�w.Xm/�A Ng.?/

DA Ng.x/�w.On/�A Ng.?/:

F is a chain map Let x 2 S . Ng/. Recall that

@0.F.x//D .@B.FL.x//; 0/C .0; �.x//C .0; @B.FR.x//
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and
F.@C .x//D .FL.@C .x//; 0/C .0;FR.@C .x//:

The proof that F is a chain map is similar to the proof that the commutation 0 map ˆˇ;
is a chain map.

For this proof, whenever we have an empty rectangle r in g (contributing to a term
in @B ), we will view it as living in Ng in the obvious way. Note that such a rectangle
cannot have a boundary on ˛n or ˇn and hence cannot have ? on its boundary. Usually
(in a filtered theory), such a rectangle could contain the point ? in its interior. However,
since r cannot contain Xj1

, it also cannot contain ? in its interior.

We first show that @B.FL.x//DFL.@C .x//. Suppose D is a domain of the form p�r

representing a nontrivial term in @B ıFL.x/. Then p is a trivial domain connecting a
point in I to itself and r is an empty rectangle in g . We will think of p as a point
at ?. Since ? cannot be on the corner of r or in its interior, r and p must be disjoint.
Suppose D is a domain of the form r 0 �p0 representing a term in FL ı @C .x/. Then
p0 is a trivial domain connecting a point in I to itself and r is an empty rectangle in Ng .
Since r 0 is empty, ? is not in the interior of p0 . Since r 0 cannot contain Xm or Xj1

, it
cannot have ? as one of its corners. Thus r 0 and p0 are disjoint. Therefore the terms
in .@B.FL.x//; 0/ and .FL.@C .x//; 0/ cancel each other out.

We now wish to show that @B.FR.x//C �.x/D FR.@C .x/. Suppose D is a domain
of the form p � r representing a nontrivial term in @B ıFR.x/. Then p is an empty
rectangle in Ng with ? on its upper left corner and r is an empty rectangle in g . If p

and r share zero corners or share one corner then there is exactly one empty rectangle r 0

in Ng and R–domain p such that r 0 �p0 gives a decomposition of D (p0 and r 0 will
also share zero corners or share one corner). These represent terms in FR ı @C .x/.
Note that p and r cannot share two or three corners. Conversely, suppose D is a
domain of the form p0 � r 0 representing a nontrivial term in FR ı @C .x/. Then p0 is
an empty rectangle in Ng with ? on its upper left corner and r 0 is an empty rectangle
in Ng . If p0 and r 0 share no corners or share one corner then there is exactly one other
empty rectangle r 00 (in g or Ng ) and R–domain p00 such that r 00�p00 or p00�r 00 gives a
decomposition of D . Here p00 and r 00 will also share zero corners or share one corner.
These will represent terms in @B ıFR.x/ or FR ı @C .x/. Note that p0 and r 0 cannot
share two or three corners. Thus, these terms cancel one another out.

First note that if D is a domain of the form p � r representing a nontrivial term in
@B ıFR.x/, then p and r cannot share more than one corner (hence cannot share four
corners). Suppose D is a domain of the form p0 � r 0 representing a nontrivial term
in FR ı @C .x/ where p0 and r 0 share four corners. Then D is either the width-one
horizontal annulus containing Xm or the width-one vertical annulus containing On .
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The width-one vertical annulus always contributes Unx . If there is more than one
element of X in row R (l � 2) then the width-one horizontal annulus contains an
element of X that is not Xm , so is not counted. If there is exactly one element of X in
row R (l D 1) then the width-one horizontal annulus containing Xm contributes Ukx .
Thus these terms cancel with �.x/.

To show that F is a quasi-isomorphism, we will first show that zF W zC ! zC 0 is a
quasi-isomorphism, where zC is the quotient C=Un defined in Section 4.4. To do this,
we introduce a filtration on zC and zC 0 so that zF is a filtered map, and show zF induces
a quasi-isomorphism on its associated graded object. The rest of the proof will follow
from the following well-known lemma.

Lemma 5.9 [14, Theorem 3.2] Suppose that F W C ! C 0 is a filtered chain map that
induces an isomorphism on the homology of the associated graded object. Then F is a
filtered quasi-isomorphism.

The definition of the filtration and the proof that zF induces a quasi-isomorphism on its
associated graded object is essentially the same as in [12]. However, there is a small
mistake in their definition of the filtration which we fix. We also give more details
which we believe clarifies their proof.

For any F ŒU1; : : : ;Un�–module chain complex .C; @/, one can define the chain complex
. zC ; z@/ like we did in Section 4.4. Let UV be the F –vector subspace of C spanned by
U1C [ � � � [UnC . Define zC to be the quotient C=Un . Since @�.Un/� Un , it follows
that @ descends to a linear map

z@W zC ! zC

of vector spaces over F .

Define the Q–filtration FQ

k
.C / on .C; @C /, where C DC�.g/, as follows. Let Q be

the collection of .n� 1/2 dots in Ng , with one dot placed in each square which does
not appear in the row or column containing On . For a domain p 2 �.x;y/, let O.p/
be the total number of O’s in p counted with sign. That is, O.p/ D

Pn
iD1 Oi.p/.

Similarly, we define Q.p/ to be the total number of dots in p counted with sign. Here,
we are viewing the points in O and Q as having positive orientation. Note with this
convention, if r is a rectangle connecting x to y , then Q.r/� 0 and O.r/� 0.

Lemma 5.10 Let p and p0 be domains in Ng connecting x to y such that

On.p/D On.p
0/D 0DO.p/DO.p0/:

Then Q.p/DQ.p0/.
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Proof For 1 � i � n, let Ri 2 �.x;x/ (respectively Ci ) be the domain that is
the positively oriented row (respectively column) contain Oi . Note that Ok.Ri/ D

Ok.Ci/D ıik . Suppose p;p0 2 �.x;y/ then p and p0 differ by a domain in �.x;x/
so that

(9) p0 D pC

nX
iD1

.aiRi C biCi/:

This follows from the fact that the space of domains on the torus of the form �.x;x/

is generated by Ri and Ci with the relation that
Pn

iD1.Ri �Ci/D 0.

Now, we note that Q.Ri/ D Q.Ci/ D n� 1 for i ¤ n and Q.Rn/ D Q.Cn/ D 0.
Thus

Q.p0/DQ.p/C .n� 1/

n�1X
iD1

.ai C bi/:

Since On.p/D On.p
0/D 0 by hypothesis, using (9) we get

0D On.p
0/D On.p/COn

� nX
iD1

.aiRi C biCi/

�
D anC bn:

Similarly since O.p/DO.p0/D 0,

0DO

� nX
iD1

.aiRi C biCi/

�
D

nX
iD1

.ai C bi/:

Using these three equalities, we have that Q.p/DQ.p0/.

Lemma 5.11 Let x;y 2 S . Ng/, then there is a domain p 2 �.x;y/ with On.p/ D

O.p/D 0.

Proof Let x;y 2 S . Ng/. First we note that there is domain connecting x to y . Since
Sn is generated by transpositions, there is a sequence of rectangles connecting x to y

(not necessarily empty). The sum of these rectangles is a domain p0 connecting x

to y .

Let m0 D On.p/, which is not necessarily zero. We replace each rectangle containing
On with the other rectangle connecting its corners as follows. Let

p1 D p0�m0

�
RnC

n�1X
iD1

Ci

�
:
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Then p1 connects x to y since Rn C
Pn�1

iD1 Ci is periodic. Moreover, we have
On.RnC

Pn�1
iD1 Ci/D 1 so that On.p1/D 0. (We could also let p1 D p0 �m0Rn

or p1 D p0�m0Cn .) Now let m1 DO.p1/ and define p2 D p1�m1R1 . Then p2

connects x to y and as On.R1/D 0 and O.R1/D 1, On.p2/DO.p2/D 0.

We use this to define a function F QW S . Ng/!Z by first defining F Q.x0/D 0, where
x0 is the lower left corner of the O’s. (It doesn’t really matter what value we choose.)
Then for x 2 S . Ng/, use Lemma 5.11 to pick a domain px connecting x to x0 with
On.px/DO.px/D 0. Define

F Q.x/D F Q.x0/CQ.px/DQ.px/:

This is well defined by Lemma 5.10.

Lemma 5.12 Suppose that x;y 2S . Ng/ and p is any domain connecting x to y with
On.p/DO.p/D 0. Then

F Q.x/�F Q.y/DQ.p/:

Proof Let px be a domain connecting x to x0 with On.px/DO.px/D0. Define py

similarly. Then px � py is a domain connecting x to y with On.px � py/ D

O.px � py/ D 0. So by Lemma 5.10, F Q.x/ � F Q.y/ D Q.px/ �Q.py/ D

Q.px �py/DQ.p/.

We now use F Q to define the Q–filtration on zC by

FQ
p .
zC /D

nX
b.x/x 2 zC

ˇ̌
F Q.x/� p whenever b.x/¤ 0

o
:

By Lemma 5.12, z@C W F
Q
p . zC /! FQ

p . zC / so that . zC ; z@C / becomes a Z–filtered chain
complex.

Note that we have already shown that F is a .H1.E.f //;Z/–bigraded Rn –module
chain map. Thus, the following proposition will complete the proof that two grids
that differ by a stabilization 0 move are quasi-isomorphic as .H1.E.f //;Z/–bigraded
Rn –module chain complexes.

Proposition 5.13 F W C ! C 0 is a quasi-isomorphism.

Proof Since C 0 is an Rn –module chain complex, we can consider the chain complex
. zC 0; z@0/ obtained by setting all the Ui equal to zero as explained above, zC 0DC 0=UnC 0 .
Since F is an Rn –module homomorphism and a chain map, it descends to a well-
defined chain map zF W zC ! zC 0 .
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Now we can define a Q–filtration on zC 0 using the Q–filtration on zC . Specifically, we
define F QW zB! Z by F Q.x/D F Q. .x// for all x 2 S .g/. From this we have

FQ
p .
zB/D

nX
b.x/x 2 zB

ˇ̌
F Q.x/� p whenever b.x/¤ 0

o
:

One can identify . zC 0; z@0/ with the mapping cone of z�W zB! zB (this is the direct sum
because z� is the zero map). Then we can define the Q–filtration on C 0 by FQ

p . zC
0/D

FQ
p . zB/˚FQ

p . zB/. It is easy to check that zF preserves this filtration.

Consider the map induced on their associated graded complexes

zFQW
zCQ!

zC 0Q:

The first chain complex zCQ is the F vector space generated by S . Ng/ whose boundary
map counts rectangles supported in the column and row through On that do not contain
On , Xm or Xj1

. Since the column and row through On look exactly the same as the
column and row through O1 in [12] (after renumbering), this chain complex is the same
as it is for links. In particular, [12, Lemma 3.7] holds in our case. Similarly, like in [12],
zC 0

Q
is the chain complex whose underlying group is zB˚ zB and whose boundary maps

are trivial. Moreover, the map zFQ is exactly the same as in [12]. Thus, their proof
holds in our case to show that zFQ is a quasi-isomorphism. Now by Lemma 5.9, zF is
a quasi-isomorphism.

We remark that one can define a filtration on C so that . zC ; z@C / is its associated graded
object. Define

FU
p .C /D

nX
b.x/U

a1.x/
1

� � �U an.x/
n x 2 C

ˇ̌X
ai.x/� p whenever b.x/¤ 0

o
:

The boundary preserves the filtration making .C; @C / into a filtered chain complex.
We can do the same with B , making .B; @B/ into a filtered chain complex. Since � is
a filtered map, we can define a filtration on the mapping cone as before: FU

p .C
0/D

FU
p .B/˚FU

p .B/. It is easy to see that F is a filtered map. Moreover, the map on
the associated graded objects of C and C 0 induced by F , FU W CU ! C 0

U
, can be

identified with zF W zC ! zC 0 . Since zF is a quasi-isomorphism, so is FU . Therefore, F

is a quasi-isomorphism by Lemma 5.9.

6 The Alexander polynomial and sutured Floer homology

In this section, we will define the Alexander polynomial of a transverse spatial graph
f W G ! S3 as a torsion invariant of a balanced sutured manifold associated to f
and show that it agrees with the graded Euler characteristic of bHFG.f / (when f is
sourceless and sinkless and G has no cut edges). In addition, we will relate the sutured
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s. .f //
6

� -

R�. .f //RC. .f //

Figure 48: The sutured manifold .E.f /;  .f //

Floer homology of this balanced sutured manifold to bHFG.f / (when f is sourceless
and sinkless and G has no cut edges).

6.1 The Alexander polynomial of a spatial graph

Let f W G ! S3 be a transverse spatial graph, and E.f / D S3 nN.f .G//, where
N.f .G// is a regular neighborhood of f .G/ in S3 . Then E.f / has the structure
of a (strongly) balanced sutured manifold .E.f /;  .f // which is defined as follows.
There will be one suture per edge and one suture per vertex. The suture associated to a
vertex is the boundary of the transverse disk at that vertex and the suture associated
to an edge is the boundary of a disk transverse to that edge of f . The sutures,
denoted by s. .f //, are oriented as shown in Figure 48. This  .f / is a collection
of annuli that are small neighborhoods of the sutures in @E.f /. Recall that R. /D

@E.f / n int. / is the oriented surface where the orientation of R. / is such that the
induced orientation on each component of @R. / agrees with the orientation of the
corresponding suture. Then RC. / (respectively R�. /) is the set of components of
R. / whose normal vectors point out of (respectively into) E.f /. Note that RC. / is
the set of components of @E.f / that have the same orientation as @E.f /. It is easy to
check that for each component † of @E.f /, �.†\R�. .f ///D �.†\RC. .f ///

so that .E.f /;  .f // is strongly balanced (in particular, it is balanced). In addition,
we note that  .f / contains no toroidal components. Note that we do not need f to
be sourceless and sinkless to define this. See [7, Sections 2–3] for the definition of a
balanced and strongly balanced sutured manifold.

In [4], S Friedl, A Juhász, and J Rasmussen assign to each balanced sutured manifold
.M;  /, a torsion invariant T .M;  / 2 ZŒH1.M /� that is well defined up to ˙h for
h 2 H1.M /. This invariant is essentially the maximal abelian torsion for the pair
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.M;R�. //. See [4, Sections 3–4] for details. Using their torsion invariant and the
sutured manifold associated to a transverse spatial graph defined above, we can define
our Alexander polynomial.

Definition 6.1 Let f W G! S3 be a transverse spatial graph. The (refined) Alexander
polynomial of f , denoted by �f , is defined to be T .E.f /;  .f // considered as an
element of ZŒH1.E.f //� modulo units.

Remark 6.2 Others have considered Alexander polynomials of spatial graphs in the
past.

(1) The first place this seems to appear is in a 1958 paper by Kinoshita [9]. In this
paper, Kinoshita defines the Alexander polynomial of a spatial graph as the Alexander
polynomial of its exterior. However, this can be computed using �1.S

3 n f .G// and
cannot differentiate between graphs with the same exterior. Our definition depends
on more than just the exterior, so it gives more information about the graph than the
polynomial defined by Kinoshita.

(2) In 1989, Litherland defined an Alexander polynomial for an embedding of a
generalized theta graph that is not determined by its exterior [10]; see also [13]. He
considers the Alexander polynomial associated to the torsion free abelian cover of
the pair .S3 n f .G/;R�/, where R� is half of the boundary obtained by cutting
open @.S3 n f .G// along the meridians of the edges and throwing away one of the
components. We note that, for theta graphs, Litherland’s definition and ours are very
similar; the main difference is how we decompose @.S3 n f .G//. In our case the
sutures depend on the orientation of the edges. We note that if all the edges are oriented
in the same direction, �f will be zero since R�. / will contain a disjoint disk.

(3) If G contains a vertex all of whose edges are incoming or outgoing, then for any
transverse spatial graph f W G! S3 , R�. / will contain a disjoint disk and hence
�f D 0.

(4) Like in Litherland’s paper, instead of just studying the Alexander polynomial of a
transverse spatial graph, one could study the entire Alexander module ZŒH1.E.f //�–
module H1.E.f /;R�. .f ///.

6.2 The sutured Floer homology of a spatial graph

In the preceding subsection, we defined a balanced sutured manifold .E.f /;  .f //,
associated to a transverse spatial graph f . Instead of just considering the torsion of this
sutured manifold, we can consider the sutured Floer homology of it. We will describe
this in more detail in this subsection. We will also show that this homology theory
coincides with our hat theory. We begin with more definitions and background.
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O

OX

X

Figure 49: A graph grid diagram g for the unknot

Associated to each n � n graph grid diagram g representing f , there is another
sutured manifold .E.f /;  .g// which is defined as follows. For each X and O on
the torus, remove an (open) disk. Then one obtains an oriented torus with nC r disks
removed, where n is the size of the grid and r is the number of X’s in the grid; call
this surface †.g/. Note that the orientation of the torus comes from the standard
counterclockwise orientation of the plane. Recall that the horizontal circles of g are
called ˛i , the vertical circles are called ǰ , ˛D f˛1; : : : ; ˛ng and ˇ D fˇ1; : : : ; ˇng.
Thus .†.g/;˛;ˇ/ gives a sutured Heegaard decomposition associated to g whose
underlying manifold is E.f /. Let .E.f /;  .g// be the sutured manifold associated
to .†.g/;˛;ˇ/. Recall that E.f / is obtained by from .†.g/;˛;ˇ/ by attaching
3–dimensional 2–handles to †.g/ � I along the curves ˛i � f0g and ǰ � f1g for
i; j 2 f1; : : : ; ng. The sutures are defined by taking s. .g// D @†.g/ �

˚
1
2

	
and

 .g/ D @†.g/� I . Here, we are using the outward normal first convention for the
induced orientation on the boundary and we are viewing I with the usual orientation
(oriented from 0 to 1). Thus, the induced orientation on the boundary would give
†.g/ � f1g the same orientation as †.g/, and †.g/ � f0g the opposite. Note that
.E.f /;  .g// is a strongly balanced sutured manifold with one suture for each X
and O. An example for the trivial knot is shown in Figures 49 and 50. Here, we are
viewing one of the O’s as being associated with a vertex. In Figure 50, one needs to
attach 2–handles to ˛i � f0g and ˇi � f1g to obtain E.f /.

The sutured manifold .E.f /;  .g// is similar to the sutured manifold .E.f /;  .f //
except that there are an extra 2ne sutures per edge (all parallel and alternating in
orientation), where ne is the number of O’s associated to the edge e (this does not count
the O’s associated to the vertices at the boundary of the edge). Since .E.f /;  .f //
and .E.f /;  .g// are balanced sutured manifolds, we can consider their sutured Floer
homologies

SFH.E.f /;  .f // and SFH.E.f /;  .g//;

respectively. See [6] for the definition of sutured Floer homology. We note that the
former group is an invariant of the spatial graph while the latter group SFH.E.f /;  .g//
depends on the grid g . Each of these groups has two (relative) gradings, an H1.M /

(or equivalently Spinc ) and a homological grading, which we discuss below.
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RC. /

Figure 50: The sutured manifold .E.f /;  .g// corresponding to the graph
grid diagram g in Figure 49

Let .M;  / be a balanced sutured manifold. We first discuss the homological grading
on SFH.M;  /. Let .†;˛;ˇ/ be a balanced and admissible diagram for .M;  /,
where ˛ and ˇ each contain d disjointly embedded curves. Admissible means that
every nontrivial periodic domain has both positive and negative coefficients. Recall
that SFH.M;  / is defined as the homology of a chain complex CFH.†;˛;ˇ/ which
is an F –vector space and is roughly defined as follows. Consider T˛ D ˛1 � � � � �˛d

and Tˇ D ˇ1 � � � � �ˇd , the d –dimensional tori in Symd .†/. The set of generators
of CFH.†;˛;ˇ/ is x 2 T˛ \ Tˇ and the differential is defined by counting rigid
holomorphic disks in Symd .†/ connecting two points in T˛\Tˇ . Choose orientations
on T˛ , Tˇ and Symd .†/, and define m.x/ to be the intersection sign of T˛ and Tˇ in
Symd .†/. This depends on the choice of orientations but the difference m.x/m.y/�1

between m.x/ and m.y/ is independent of the choice of orientations. So m gives a
well-defined relative f˙1g–grading on CFH.†;˛;ˇ/. Let Z2 D f0; 1g be the group
with 2 elements and let expW Z2!f˙1g be the isomorphism sending l to .�1/l . Using
em WD exp�1 ım (instead of just m), we get a relative Z2 –grading on CFH.†;˛;ˇ/.
Since the parity of the Maslov index of a holomorphic disk connecting x to y is equal to
exp�1.m.x/m.y/�1/, the differential reduces the homological grading by 1 .mod 2/.

We now briefly review the Spinc –grading. See [7, Section 3] for details. Recall that
for any balanced sutured manifold .M;  /, one can define Spinc.M;  /, the set of
Spinc structures of .M;  /, as the set of homology classes of nowhere-zero vector
fields on M that restrict to a special vector field �0 on @M . The vector field �0

depends on the sutures. One can use obstruction theory to see that Spinc.M;  /
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forms an affine space over H 2.M; @M / which we will identify with H1.M / via the
Poincaré duality isomorphism (PDW H 2.M; @M /!H1.M /). Thus, once we pick a
fixed s0 2 Spinc.M;  /, there is a unique bijective correspondence �s0

W H1.M /!

Spinc.M;  /, v 7! vC s0 , making Spinc.M;  / into an abelian group. Moreover, for
any s; t 2 Spinc.M;  /, there is a well-defined difference, denoted s� t 2 H1.M /,
that is defined as the unique element in H1.M / such that .s� t/C tD s. Note that
the difference does not depend on any choices. Indeed, it is easy to see that for any
s0 2 Spinc.M;  / and v;w 2H1.M /, .vC s0/� .wC s0/D v�w .

To each x 2 T˛ \ Tˇ , one can assign an element of Spinc.M;  /, denoted s.x/,
making CFH.†;˛;ˇ/ into a graded vector space over Spinc.M;  /. The differential
on CFH.†;˛;ˇ/ preserves the Spinc.M;  /–grading, giving a Spinc.M;  /–grading
to SFH.M;  /. Using the bijection �s0

W H1.M /! Spinc.M;  / as described above,
SFH.M;  / becomes a relatively graded vector space over H1.M /. We can easily
compute the relative grading as follows. Let x;y 2 T˛ \ Tˇ and choose paths
aW I ! T˛ and bW I ! Tˇ with @aD @b D y �x . Then a� b can be viewed as a
1–cycle in †. Using the inclusion map of † into M , we can view this as a cycle in M .
Let ".y ;x/2H1.M / be the homology class of a�b . By [6, Lemma 4.7], ".y ;x/ is the
relative grading in H1.M / associated to the Spinc.M /–grading on .M;  /. That is,

(10) s.y/� s.x/D ".y ;x/:

Note that [6] actually says that PD.s.y/ � s.x// D ".y ;x/, but we have already
identified s.y/�s.x/ with an element of H1.M / using Poincaré duality. Using the map
.��1

s0
ıs/˚mW T˛\Tˇ!H1.M /˚Z2 , we see that CFH.†;˛;ˇ/ is a well-defined

relatively .H1.M /;Z2/–bigraded chain complex and SFH.M;  / is a well-defined
relatively .H1.M /;Z2/–bigraded F –vector space. Even though CFH.†;˛;ˇ/ de-
pends on the choice of Heegaard diagram for .M;  /, by [6], the isomorphism class
of SFH.M;  / as a relatively .H1.M /;Z2/–bigraded vector space only depends on
the sutured manifold.

Definition 6.3 For a transverse spatial graph f W G! S3 , the sutured graph Floer
homology is SFH.E.f /;  .f // considered as a relatively .H1.E.f //;Z2/–bigraded
F –vector space.

Unless otherwise stated, when we refer to SFH.E.f /;  .f // and SFH.E.f /;  .g//,
we will be considering them as relatively bigraded vector spaces.

6.3 Relating AHFG.f / and SFH.E.f /; .f //

The main result of this section is that the graph Floer homology of a sinkless and
sourceless transverse spatial graph is isomorphic to its sutured Floer homology (after a
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slight change of the Alexander grading). To prove this, we first notice that the sutured
Floer homology of a grid is the same as eHFG.g/. First we need to discuss how the
grading is changed.

Let G be an abelian group and C be a .G;Z2/–bigraded chain complex or F –
vector space with bigrading C D

L
.g;m/2G˚Z2

C.g;m/ . Let .rC /.g;m/ D C.�g;m/

for each g 2 G and m 2 Z2 . Then C has a .G;Z2/–bigrading given by C DL
.g;m/2G˚Z2

.rC /.g;m/ , which we call the reverse bigrading on C . We denote by rC
the underlying vector space C with its reverse bigrading. If C is a chain complex,
then @W .rC /.g;m/ ! .rC /.g;m�1/ . So @ is a degree .0;�1/ map on rC and rC is
a .G;Z2/–bigraded chain complex. If C has a relative .G;Z2/–bigrading then rC
has a well-defined relative .G;Z2/–bigrading. Note that we are only “reversing” the
G–grading.

We note that using the natural projection of Z to Z2 , bHFG.f /, eHFG.f /, bHFG.g/
and eHFG.g/ become relatively .H1.E.f //;Z2/–bigraded F –vector spaces (similarly
for the chain complexes defining them).

Lemma 6.4 Let f W G ! S3 be a sinkless and sourceless transverse spatial graph
and g be a graph grid diagram representing f . Then

eHFG.g/Š rSHF.E.f /;  .g//

as relatively .H1.E.f //;Z2/–bigraded F –vector spaces.

Proof Let .†.g/;˛;ˇ/ be the specific Heegaard decomposition for E.f / associated
to the graph grid g as defined beforehand. Both CFH.†.g/;˛;ˇ/ and zC .g/ are
F –vector spaces with the same generating set. One can check that the boundary maps
are the same, giving an identification of the two chain complexes. Thus, we just need
to compare their (relative) gradings.

Let x and y be generators (in either chain complex). If there is a rectangle connecting x

and y , then by (1), M.x/�M.y/D1 .mod 2/. Moreover, using the definition of m as
described in the previous subsection, it is straightforward to check that m.x/m.y/�1D

�1 2 f˙1g. Now, for any x and y , there is a sequence of rectangles r1; : : : ; rk

connecting x and y . Thus, M.x/�M.y/Dk .mod 2/ and m.x/m.y/�1D .�1/k 2

f˙1g. Hence
.�1/M.x/�M.y/

Dm.x/m.y/�1:

By Lemma 4.13 and Equation (10), we see that

A.x/�A.y/D ".y ;x/D�.s.x/� s.y//:
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Using [7, Proposition 5.4], we can relate SFH.E.f /;  .f // and SFH.E.f /;  .g//.
For g2G and m2Z2 , let W .�g;�1/ (which equals W .�g; 1/) be the 2–dimensional
.G;Z2/–bigraded vector space over F spanned by one generator in degree .0; 0/ and
the other in degree .�g;�1/. (Note that we are slightly abusing notation since, in
Section 4, we defined W .�g;�1/ to be the .G;Z/–bigraded vector space over F
spanned by one generator in degree .0; 0/ and the other in degree .�g;�1/.) If .C; @/
is a relatively bigraded .G;Z2/–chain complex over F , then C˝W .�g;�1/ becomes
a relatively bigraded .G;Z2/ chain complex with boundary @˝ id in the usual way.

Proposition 6.5 Let f W G! S3 be a sinkless and sourceless transverse spatial graph
and let g be a graph grid diagram representing f . Then

SFH.E.f /;  .g//Š SFH.E.f /;  .f //˝
O

e2E.G/

W .w.e/; 1/˝ne

as relatively .H1.E.f //;Z2/–bigraded F –vector spaces, where ne is the number
of O’s in g associated to the interior of e (not including the vertices).

Proof Recall that .E.f /;  .g// is a sutured manifold with 2neC1 sutures associated
to each edge e (ne sutures are associated to O’s on the interior of e and the other
neC 1 sutures are associated to X’s on the interior of e ). Pick an edge e . If ne D 0,
leave the sutures on that edge alone. If ne � 1, then there are at least three sutures
associated to the edge that are parallel and have alternating orientations. Let S be the
properly embedded surface in E.f / as pictured in Figure 51 with either orientation.
In this figure, the inner annulus is part of the boundary of the neighborhood of the edge
of the graph. It contains the three parallel sutures with alternating orientations. Since
G is sinkless and sourceless, no component of @S will bound a disk in R. /. Thus,
one can verify that S is a decomposing surface and hence it defines a sutured manifold
decomposition

.E.f /;  .g//
S .E.f /0;  .g/0/:

See [7, Definition 2.5] for the definition of a decomposing surface and a sutured manifold
decomposition. The resulting manifold E.f /0 is defined as E.f / n int.N.S//, where
N.S/ is a neighborhood of S in E.f / and hence is homeomorphic to the disjoint
union of E.f / and S1 �D2 . To get the sutures on E.f /�E.f /0 , we remove two
of the three aforementioned sutures associated to e with opposite orientations. There
are four sutures on S1 �D2 �E.f /0 ; they are all parallel to S1 � fpg for p 2 @D2

and have alternating orientations. Let .M1; 1/ be the component of .E.f /0;  .g/0/
with M1 homeomorphic to E.f / and .M2; 2/ be the component of .E.f /0;  .g/0/
with M2 homeomorphic to S1 �D2 .
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S

R�. / RC. /

E.f /

Figure 51: The decomposing surface S (shaded) properly embedded in E.f /

Since S is a nice decomposing surface (see [7, Definition 3.22] for the definition of nice),
we can use [7, Proposition 5.4] to compute SFH.E.f /0;  .g/0/. First we need some no-
tation. Let i W E.f /0!E.f / be the inclusion map and i� W H1.E.f /

0/!H1.E.f //

be the induced map on H1.�/. For s2Spinc.E.f /;  .g//, CFH.†;˛;ˇ; s/ is defined
as the chain complex generated by x 2 T˛\Tˇ with s.x/D s, where .†;˛;ˇ/ is a
balanced admissible diagram for .E.f /;  .g//. SFH.E.f /;  .g/; s/ is the homology
of CFH.†;˛;ˇ; s/ (similarly for .E.f /0;  .g/0/). By [7, Proposition 5.4], there is an
affine map

fS W Spinc.E.f /0;  .g/0/! Spinc.E.f /;  .g//

satisfying the following two conditions:

(1) There is an isomorphism

ypW SFH.E.f /0;  .g/0/
Š
�!

M
s2=.fS /

SFH.E.f /;  .g/; s/

such that for every s0 2 Spinc.E.f /0;  .g/0/ we have

yp.SFH.E.f /0;  .g/0; s0//� SFH.E.f /;  .g/; fS .s
0//:

(2) If s0
1
; s0

2
2 Spinc.E.f /0;  .g/0/, then

i�.s
0
1� s02/D fS .s

0
1/�fS .s

0
2/ 2H1.E.f //:

Note that in [6], Juhász identifies Spinc.E.f /;  .g// with H 2.E.f /; @E.f //, so the
statement looks slightly different. Since ijM1

W M1!E.f / is a homotopy equivalence,
i�W H1.E.f /

0/ ! H1.Ef / is surjective. Fix an s0
0
2 Spinc.E.f /0;  .g/0/ and let

s0 WD fS .s
0
0
/. Use s0 to identify H1.E.f // and Spinc.E.f /;  .g//. This identifies

v 2H1.E.f // with vCs0 2 Spinc.E.f /;  .g//. Let s2 Spinc.E.f /; @E.f //. Then
sD vC s0 for some v 2H1.E.f //. Since i� is surjective, there is a v0 2H1.E.f /

0/

with i�.v
0/D v . The second statement above implies that

i�.v
0/D i�..v

0
C s00/� s00/D fS .v

0
C s00/�fS .s

0
0/D fS .v

0
C s00/� s0:

Algebraic & Geometric Topology, Volume 17 (2017)



1520 Shelly Harvey and Danielle O’Donnol

Therefore, sD vC s0 D i�.v
0/C s0 D fS .v

0C s0
0
/, so fS is surjective.

Choose an orientation on †, ˛i and ǰ for all i; j . Then we have an absolute Z2 –
grading on SFH.E.f /;  .g// given by emD exp�1 ım. It can be shown that, as a
relative grading, it agrees with gr .mod 2/. For a definition of gr see [6, Definition 8.1].
However, gr is only defined for two generators that have the same Spinc class. Thus,
we will need to consider the proof [7, Proposition 5.4], in order to show that em

is preserved under yp . In this proof, he considers a balanced diagram .†;˛;ˇ;P /

adapted to the surface S in .E.f /;  .g//. Here .†;˛;ˇ/ is a Heegaard diagram for
.E.f /;  .g// and P �† is a quasipolygon. Using P , he then constructs a Heegaard
diagram .†0;˛0;ˇ 0/ for .E.f /0;  .g/0/ and a map

pW †0!†

such that p sends ˛0i to ˛i and ˇ0j to ǰ and

pj†0np�1.P/W †
0
np�1.P /!† nP

is a diffeomorphism. Moreover, since fS is onto in our case, it follows that all the
intersections of ˛i and ǰ lie in † nP and all the intersections of ˛0i and ˇ0j lie in
†0np�1.P /. The map p induces a bijection ypW T˛0\Tˇ 0!T˛\Tˇ . This gives the
isomorphism ypW SFH.E.f /0;  .g/0/! SFH.E.f /;  .g//. Choose the orientations
of †0 , ˛0i and ˇ0j coming from †, ˛i and ǰ so that p preserves all the orientations.
It then follows that if x0 2 T˛0 \Tˇ 0 then

(11) m. yp.x0//Dm.x0/:

Using fS and using the above identification of H1.E.f // and Spinc.E.f /;  .g//,
SFH.E.f /0;  .g/0/ inherits an H1.E.f //–grading. This makes SFH.E.f /;  .g//
and SFH.E.f /0;  .g/0/ into .H1.E.f //;Z2/–bigraded F –vector spaces. We can
now show that ypW SFH.E.f /0;  .g/0/! SFH.E.f /;  .g// is an .H1.E.f //;Z2/–
bigraded map. Let x0 2 SFH.E.f /0;  .g/0/.v;i/ , where .v; i/ 2 H1.E.f // ˚ Z2 .
Since

fS .v
0
C s00/D i�.v

0/C s0;

x0 is in SFH.E.f /0;  .g/0; v0C s0
0
/ for some v0 2 H1.E.f /

0/ with i�.v
0/ D v . So

by [7, Proposition 5.4(1)],

yp.SFH.E.f /0;  .g/0; v0C s00//� SFH.E.f /;  .g/; vC s0/:

Using this and (11), it follows that yp.x0/ 2 SFH.E.f /;  .g//.v;i/ .

We show that

SFH.E.f /0;  .g/0/Š SFH.M1; 1/˝W .w.e/; 1/:
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To see this, note that .E.f /0;  .g0// is the disjoint union of .M1; 1/ and .M2; 2/.
Moreover, it is easy to see that

SFH.M2; 2/ŠW .e.g/; 1/

as a relatively .H1.E.f //;Z2/–bigraded F –vector space. To complete the proof, we
keep removing pairs of sutures on each edge until we are left with .E.f /;  .f //.

We can use this to complete the relationship between bHFG.f / and rSHF.E.f /;  .f //.

Theorem 6.6 Let f W G! S3 be a sinkless and sourceless transverse spatial graph
where G has no cut edges. Then

bHFG.f /Š rSHF.E.f /;  .f //

as relatively .H1.E.f //;Z2/–bigraded F –vector spaces.

Proof Let g be a graph grid diagram representing f . By Proposition 4.32, Lemma 6.4,
and Proposition 6.5, we have that

bHFG.f /˝
O

e2E.G/

W .�w.e/;�1/˝neŠ eHFG.g/

Š rSHF.E.f /;  .g//

Š r
�

SFH.E.f /; .f //˝
O

e2E.G/

W .w.e/;1/˝ne

�
Š rSHF.E.f /; .f //˝

O
e2E.G/

W .�w.e/;�1/˝ne

as relatively .H1.E.f //;Z2/–bigraded F –vector spaces.

The result follows from a slight generalization of [22, Lemma 3.18] (replace Z2

with H1.E.f //˚Z2 Š Zl ˚Z2 in the proof) that bHFG.f /Š rSHF.E.f /;  .f //
as relatively .H1.E.f //;Z2/–bigraded F –vector spaces. We will sketch of proof
of this. Let V D

N
e2E.G/W .�w.e/;�1/˝ne . After shifting by an element of

H1.E.f //˚ Z2 , we can assume that rSHF.E.f /;  .f // is (absolutely) bigraded
and that bHFG.f /˝ V Š rSHF.E.f /;  .f //˝ V as .H1.E.f //;Z2/ (absolutely)
bigraded F –vector spaces. Since G has no cut edges, w.e/¤ 0 for all e 2E.G/.

Suppose V1 ˝W .a;m/ Š V2 ˝W .a;m/ as .H1.E.f //;Z2/–bigraded F –vector
spaces, where .a;m/ 2 H1.E.f //˚ Z2 , a ¤ 0 and Vi is a finitely generated F –
vector space. Vi can be represented as a function fi W H1.E.f //˚Z2!Z�0 , where
fi.h; n/DdimF .Vi/.h;n/ . Since Vi is finitely generated, fi.h; n/D0 for all but finitely
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many pairs .h; n/ 2H1.E.f //˚Z2 . Then Vi ˝W .h;�1/ can be represented by the
function gi W H1.E.f //˚Z2! Z�0 where

gi.h; n/D fi.h; n/Cfi.h� a; n�m/:

Since V1 ˝W .a;m/ Š V2 ˝W .a;m/, we have that g1 D g2 . We now note that
since fi.h; n/D 0 for all but finitely many pairs .h; n/ that gi.h; n/D 0 for all but
finitely many pairs. In addition, since a¤ 0 and H1.E.f //ŠZl , .h�ja; n�j m/¤

.h�j 0a; n�j 0m/ whenever j ¤ j 0 . Hence
P1

jD0 gi.h�ja; n�j m/ is a well-defined
function and

fi.h; n/D

1X
jD0

gi.h� ja; n� j m/

for all .h; n/ 2H1.E.f //˚Z2 . Since g1 D g2 , it follows that f1 D f2 and hence
V1 Š V2 as .H1.E.f //;Z2/–bigraded F –vector spaces.

As a result we see that the decategorification of bHFG.f / is essentially the torsion
invariant T .E.f /;  .f // associated to sutured manifold .E.f /;  .f //.

Definition 6.7 Let f W G! S3 be a sinkless and sourceless transverse spatial graph.
Define

�. bHFG.f //D
X

.h;i/2.H1.E.f //;Z/

.�1/i rankF bHFG.f /.h;i/h

considered as an element of ZŒH1.E.f /� modulo positive units; ie as an element
of H1.E.f //.

If r 2 ZŒH1.E.f //� then r D
P

i aihi , where ai 2 Z and hi 2 H1.E.f //. Define
Nr WD

P
i aih

�1
i , where here we are viewing H1.E.f // as a multiplicative group.

Corollary 6.8 If f W G ! S3 is a sinkless and sourceless transverse spatial graph
where G has no cut edges then

�. bHFG.f // :D�f :

That is, they are the same up to multiplication by units in ZŒH1.E.f //�.

Proof Choose an s0 2 Spinc.E.f /;  .f //. By [4, Theorem 1.1], we have that
�.SFH.E.f /;  .g/// :D�f , where

�.SFH.E.f /;  .g///D
X

x2T˛\Tˇ

m.x/��1
s0
.s.x//
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Figure 52: Transverse spatial graph to balanced bipartite graph with balanced orientation

for any admissible balanced Heegaard diagram .†;˛;ˇ/ for .E.f /;  .f //. By a
standard argument,X

x2T˛\Tˇ

m.x/��1
s0
.s.x//D

X
.h;i/2.H1.E.f //;Z/

.�1/i rankF bSFH.E.f /;  .g//.h;i/h:

Hence, the result follows from Theorem 6.6.

We now relate Bao’s theory for balanced bipartite spatial graph with balanced orienta-
tions to ours. Given a transverse spatial graph, one can get a balanced bipartite spatial
graph with balanced orientation by replacing each vertex with an edge; see Figure 52.

Conversely, suppose one has a balanced bipartite spatial graph F W GV1;V2
! S3 with

balanced orientation. This means that V1[V2 is the set of vertices, jV1j D jV2j and
each edge connects a vertex in V1 with one in V2 . Moreover, since this has a balanced
orientation, there are precisely jV1j edges that are oriented from V1 to V2 , and these
edges give a bijection between V1 and V2 ; see [1] for the precise definitions. Thus, we
can isotope F so that all of these edges are very short straight arcs like on the right-
hand side of Figure 52. We can collapse this edge to obtain a transverse spatial graph.
Moreover, Bao constructs a sutured manifold which is the same as .E.f /;  .f // for a
transverse spatial graph f , and points out in [1, Proposition 4.11] that her hat version is
the same as the sutured Floer homology of her sutured manifold. Thus, by Theorem 6.6
and Corollary 6.8, our hat theory (and decategorification) is the same as her hat theory
(and decategorification), up to reversing the bigrading, as long as the underlying graph
for the transverse graph has no sinks, sources or cut edges.
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