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Abstract

We define an infinite sequence of new invariattspf a groupG that measure the size of the successive quotients
of the derived series d@. In the case thab is the fundamental group of a 3-manifold, we obtain new 3-manifold
invariants. These invariants are closely related to the topology of the 3-manifold. They give lower bounds for the
Thurston norm which provide better estimates than the bound established by McMullen using the Alexander norm.
We also show that thé, give obstructions to a 3-manifold fibering ovét and to a 3-manifold being Seifert
fibered. Moreover, we show that thg give computable algebraic obstructions to a 4-manifold of the f&rm St
admitting a symplectic structure even when the obstructions given by the Seiberg—Witten invariants fail. There are
also applications to the minimal ropelength and genera of knots and lir#& in
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1. Introduction
1.1. Summary of results

In this paper, we define new 3-manifold invariants and show that they give new information about the
topology of the 3-manifold. Given a 3-dimensional manifélénd a cohomology class € H(X:; 7)
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we define a sequence of invariatfsy) which arise as degrees of “higher-order Alexander polynomials”.

These integers measure the “size” of the successive quoﬁéﬁfé)/Gﬁ”+2), ofthe terms of the (rational)

derived series off = =1 (X). Loosely speaking), () is the degree of a polynomial that kills the elements

of the first homology of the regula{F/Gﬁ”“)—cover ofX. The precise definitions are given in Section 5.

In the case of knot exteriors and zero surgery on knots, these covering spaces were studied by Cochrar
[3] and Cochran et aJ4]. They defined similar generalized Alexander modules and were able to obtain
important new results on knot concordance.

Although these invariants are defined algebraically, they have many exciting topological applications.
We show that the degre® of each of our family of polynomials gives a lower bound for the Thurston
norm of a class it (X, 0X; Z) ~ HY(X; Z) of a 3-dimensional manifold. We show that these invariants
can give much more precise estimates of the Thurston norm than previously known computable invariants.
We also show that th&, give obstructions to a 3-manifold fibering over a circle and to a 3-manifold being
Seifert fibered. Moreover, we show that thegive computable algebraic obstructions to a 4-manifold of
the formX x S admitting a symplectic structure even when the obstructions given by the Seiberg—Witten
inva;iants fail. Some other applications are to the minimal ropelength and genera of knots and links
in S°.

Note thatG" ™ /G is a module ovez[G/G"™ 1. Whenn = 0, GP/G? is the classical
Alexander module. SincG/Gﬁl) is the (torsion-free) abelianization G, Gﬁl)/Gﬁz) is @ module over
the commutative polynomial ring in several variablé[s?/Gﬁl)]. These modules have been studied
thoroughly and with much success. For genardlowever, these “higher-order Alexander modules” are
modules over non-commutative rings. Very little was previously known in this case due to the difficulty
of classifying such modules.

Let X be a compact, connected, orientable 3-manifold ang let H1(X; 7). There is a Poincaré

duality isomorphismH1(X; 7)~ Ho(X, 0X; 7). If an oriented surfac€ in X represents a clag#’] €
H>(X, 0X; 7) that corresponds tg under this isomorphism, we say tHais dual toyy and vice versa.
We measure the complexity &fvia the Thurston norm which is defined [i83] as follows. IfF is any
compact connected surface, JgX) be its Euler characteristic and lgt(F) = |x(F)| if »(F)<0 and
equal 0 otherwise. For a surfaéde= L1 F; with multiple components, let (F) = 2y _(F;). Note that
—7(F)<y_(F) in all cases. Th&hurston nornof y € HY(X; 2) is

W ll7 = inf{y_(F)|F is a properly embedded oriented surface duaijto

This norm extends continuously to all &1(X; R). This norm is difficult to compute except for in the
simplest of examples because it is a minimum over an unknown set.

Thurston showed that the unit ball of the norm is a finite sided polyhedron and that the set of classes
of Ho(X, 0X; R) representable by a fiber of a fibration ov&rcorresponds to lattice points lying in the
cone of the union of some open faces of this polyhe@8h This norm has been useful in the resolution
of many open questions in 3-manifolds. Gabai used the Thurston norm to show the existence of taut,
finite-depth codimension one foliations 3-manifolds (fEB-13). In particular, he shows that X is
a compact, connected, irreducible and oriented 3-manifoldraisdany norm minimizing surface then
there is a taut foliation of finite depth containifgas a compact leaf. Corollaries of Gabai’s existence
theorems are that the Property R and Poenaru conjectures are true.

In arecent paper, McMullen defined the Alexander norm of a cohomology class of a 3-manifold via the
Alexander polynomial and proved thatitis alower bound for the Thurston [REmT his theorem has also
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been recently proved by Vidud&5] using Seiberg—Witten theory and the work of Kronheif22,23],
Kronheimer and Mrowk#24] and Meng and Taubd&7]. We prove in Section 10 that the (unrefined)
higher-order degree}, also give lower bounds for the Thurston norm. Whea 0, do(y) = |||l 4 hence
this gives another proof of McMullen’s theorem.

Theorem 10.1. Let X be a compagbrientable3-manifold (whose boundary if any is a union of tjri
Forall y € HY(X; z) andn>0

Sn () <IWllr

except for the case whgh(X) =1,n =0, X5 x §2, and X5 x D?. In this casedo() < |1 +
1 + p3(X) whenevern) is a generator ofHY(X; 7)~7. Moreover equality holds in all cases when
Y : 11(X)—Z can be represented by a fibratidh — S1.

This theorem generalizes the classical result that for a knot complement, the degree of the Alexander
polynomial is less than or equal to twice the genus of the knot. It also generalizes McMullen’s theorem.
We remark thab,, = o,, except for some cases whetg= 0. In fact, for most of the cases that we are
interested in, thé, in Theorem 10.1 can be replaced with

Not only do thej,, give lower bounds for the Thurston norm, but we construct 3-manifolds for which
give much sharper bounds for the Thurston norm than bounds given by the Alexander norm. In Theorem
11.2, we start with a 3-manifold and subtly alter it to obtain a new 3-manifald. The resultingX’
cannot be distinguished frousing the th-order Alexander modules for< n but thenth-order degrees
of X’ are strictly greater than those ¥f We alter a fibered 3-manifold in this manner to obtain the
following result.

Theorem 11.1. For eachm >1 and > 2 there exists &-manifold X withf;(X) = u such that

Wlla=d0()) <01(¥) <--- <dmW)<IVIT

for all y € HY(X;Z). Moreover X can be chosen so that it is closédeducible and has the same
classical Alexander module as3amanifold that fibers oves?.

An interesting application of Theorem 10.1 is to show thatthgive new obstructions to a 3-manifold
fibering overs?. The previously known algebraic obstructions to a 3-manifold fibering S¥ere that
the Alexander module is finitely generated and (wife(X) = 1) the Alexander polynomial is monic.
Fori, j,n>0 letd;; = &; — &; and letr,(X) be thenth-order rank of the module" ™ /G"*? (see
Section 5).

Theorem 12.1. Let X be a compagctonnectedorientable3-manifold. If at least one of the following
conditions is satisfied then X does not fiber ag&r

(1) ra(X) # Ofor somen >0,

(2) p1(X)=2and there exists j >0 such that;; () # Ofor all y € HX(X; 2),

(3) p1(X) =1andd;; () # Ofor somei, j>1andy € HY(X; 7),

4) ﬂl(Xl) =1, X%Sllx $2, X281 x D? anddop; () # 1+ p3(X) for somej >1 wherey is a generator
of HY(X: 7).
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As a corollary, we see that the examples in Theorem 11.1 cannot fibelSéJart have the same
classical Alexander module and polynomial as a fibered 3-manifold.

Corollary 12.2. For eachu>1, Theoremll.1gives an infinite family of closed irreducibBemanifolds
X wherep, (X) = u, X does not fiber oves!, and X cannot be distinguished from a fibe@¢hanifold
using the classical Alexander module

A second application of Theorem 10.1 is to show thatdhgive obstructions to a 4-manifold of the
form X x S admitting a symplectic structure. Recently, Vidussi has extended the work of Kronheimer
to show that if a 4-manifold of the form¥ x ST (X irreducible) admits a symplectic structure then there
is a face of the Thurston norm ball ¥fthat is contained in a face of the Alexander norm balKo¥Ve
use his work to prove the following.

Theorem 12.5. Let X be a closed irreducibld-manifold. If at least one of the following conditions is
satisfied therX x S* does not admit a symplectic structure.

(1) p1(X)>2and there exists an> 1 such that, () > so(y) for all y € HY(X; Z).
(2) p1(X) =1,y is a generator off1(X; 7), and s, () > do(y) — 2 for somen >1.

Hence ifXis one of the examples in Theorem 11.1, ther S cannot admit a symplectic structure. We
note thafX has the same Alexander module as a fibered 3-manifold eéncg! cannot be distinguished
from a symplectic 4-manifold using the Seiberg—Witten invariants.

Corollary 12.6. For eachu>1, Theoreml1.1gives an infinite family ofi-manifoldsX x S where
B1(X) = u, X x S* does not admit a symplectic structuemd X cannot be distinguished from fibered
3-manifold using the classical Alexander module.

Another application of Theorem 10.1 is to give computable lower bounds faoedengthof knots
and links. The ropelength of a link is the quotient of its length by it's thicknesR]I€antarella et al.
show that the minimal ropeleng#xL;) of theith component of alinl. =] [ L; is bounded from below
by 27(1+ \/|ly;|IT). Herey; is the cohomology class that evaluates to 1 on the merididn ahd 0 on
the meridian of every other componentoin Example 8.3, we use Corollary 10.5 to estimate ropelength
for a specific link from2, Fig. 11, p. 278]

Corollary 10.5. LetX = $3 — L andy; be as defined above. For eagh0,

R(Li)22r(1+ /ou(Y;) — D).

Moreover if f1(X)>2o0r n>1 (or both) then

R(Lj)=21(1+ /6, (¥)).

Lastly, we remark that the higher-order degrees give obstructions to a 3-manifold admitting a Seifert
fibration.
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Proposition 8.5. Let X be a compagbrientable Seifert fibered manifold that does not fiber osferlf
p1(X)>2o0rn>1then

forall y € HY(X; 7).

1.2. Outline of paper

In Section 2, we review the classical Alexander module, the multivariable Alexander polynomial, and
the Alexander norm of a 3-manifold. In Section 3 we define the rational derived series of a group. This
series is a slight modification of the derived series so that successive quotients are torsion free. This series
will be used to define the higher-order covers of a 3-manifold, the first homology of which will be the
chief object of study in this paper.

In Section 4 we define certain skew Laurent polynomial rikgf *1] which containzr,, and depend
on a class in the first conomology of the 3-manifold. Hetgjs the group of deck translations of the
higher-order covers. These will be extremely important in our investigations. Of particular importance is
the fact that they are non-commutative (left and right) principal ideal domains. Similar rings were used
in the work of[4], where it was essential that the rings were PIDs.

In Section 5 we define the new higher-order invariant3 i§ any topological space, we define the
higher-order Alexander module and rankXfFinally, if y € H(X; Z) we define the higher-order
degrees, () ands, ().

Section 6 is devoted to the computation of these invariants using Fox’s Free Calculus. That is, the
higher-order invariants can be computed directly from a finite presentatioi{X§. The reader familiar
with Fox’s Free Calculus should be aware that the classical definitions must be slightly altered since we
are using right instead of left modules.

In Section 7, we give a finite presentation of the homologyafith coefficients inis,[r*1]. This
will be crucial to prove thab, is bounded above by the Thurston norm. In Section 8, we compute the
higher-order invariants of some well known 3-manifolds and give some topological properties of the
invariants. The most important computation in this section is the computation of the higher-order degrees
and ranks for 3-manifolds that fiber ovgt.

Section 9 contains the algebra concerning the rank of atorsion module over a skew (Laurent) polynomial
ring. Proposition 9.1 will be used in the proof of Theorem 10.1. In Section 10, we show that the higher-
degrees are lower bounds for the Thurston norm. We also prove a theorem relating higher-order degrees
of a cohomology clasg to the first Betti number of a surface duaktpand prove a result for links .

In Section 11 we prove the Realization Theorem and construct examples of 3-manifolds whose higher
degrees increase. We finish the paper by investigating the applications of Theorem 10.1 to 3-manifolds
that fiber overs® and symplectic 4-manifolds of the form x St in Section 12.

2. The Alexander polynomial

In this section, we define the Alexander polynomial, the Alexander module, and the Alexander norm of
a 3-manifold. For more information about the Alexander polynomial we refer the rea@et 821,29]
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Let G be a finitely presented group and ¥be a finite CW complex with1 (X, xg) isomorphic toG.
We can assume thathas one 0-cellyg. Let Xg be the universal torsion free abelian coveXaindxg
be the inverse image af in Xp. That is, X is the cover induced by the homomorphism fr@wonto
ab(G). Here, al§G) = (G /G, G])/{z-torsiorn} which is isomorphic taz* wherep = 1(X) is the first
Betti number ofX. (The reason for the “0” irKo will become apparent later in the paper.)

TheAlexander modulef X is defined to be

Ax = H1(Xo, Xo; Z)

considered asA[ab(G)]-module. After choosing a badis;, . . . , x,} for H1(X) theringZ[ab(G)] can be
identified with the ring of Laurent polynomials in several variablgs . . , x,, with integral coefficients.
The ringZ[ab(G)] has no zero divisors and is in fact a unique factorization domain. We notd fhist
finitely presented as

Zlab(G)]' L Z[ab(G)]" — Ax,

wherer is the number of relations aisis the number of generators of a presentatid®.dfhis presentation
is obtained by lifting each cell of to allG) cells of the torsion free abelian covefy.

Let 4 be a finitely generated free abelian group. For any finitely presentddtmodule M with
presentation

ZAT 5 2[4 > M

we define theth elementary ideak; (M) C Z[F]to be the ideal generated by tiye—i) x (s — i) minors
of the matrixP. This ideal is independent of the presentatioWoT heAlexander ideais I (X)=E1(Ax),
the first elementary ideal ofx. TheAlexander polynomiall y of Xis the greatest common divisor of the
elements of the Alexander ideal. Equivalently, we could have defiet be a generator of the smallest
principal ideal containind (X). Note that1y € Z[ab(G)] and is well-defined up to units iA[ab(G)].
We point out the necessity thafab(G)] be a UFD in the definition ofix.

Now lety € HY(X; 7). Let Ay = Y iaigi fora; € z\{0} andg; € ab(G). TheAlexander nornof
Y € HY(X; R) is defined to be

[Vlla=supy(gi —g)),
i
wherey is a homomorphism fron® to Z. In this paper, we view as the multiplicative group gener-
ated byt. Hence the Alexander norm is equal to the degree of the one-variable polynpifiialy(g;)
corresponding tg.
We note that the Alexander (as well as the Thurston) norm is actually semi-norms since it can be zero
on a non-zero vector df1(X; R).

3. Rational derived series

This paper investigates the homology of the covering spaces of a 3-manifold corresponding to the
rational derived series of a group. We begin by defining the rational derived se@Gemnaf proving some
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of the properties of the quotient/ Gﬁ””)‘. The most important for our purposes will be tkﬁa,tGﬁ”H)
is solvable and its successive quotieﬁ{é) / GS’H) areZ-torsion-free and abelian.

Definition 3.1. Let G® = G. Forn>1defineG" =[G Y, " V1p,_1 whereP,_1={g ¢ G" 7V |
gke [Gﬁ”_l), Gﬁ"_l)] for somek € Z — {0}} to be thenth term of the rational derived seriex G.

We denote by, the quotienG/Gﬁ”H) and byg¢,, the quotient mags—1I,,. By the following lemma,

I', is a group. Note that i6s is a finite group them?ﬁ”) = G hencerl’, = {1} for all n >0. Hence, in this
paper we will only be interested in groups with(G) > 1.

Lemma 3.2. G is a normal subgroup ofs!" for 0<i <n.

Proof. We show tha{G""~?, "Y1 and P,_; are both normal subgroups 6 SinceG'* ¢ G¥
foralli>0,[G" Y, ¢" V1c 6" P andp, 1 € G Vitfollows that[¢" Y, ¢" Y)andP,_;
are normal inGﬁ” for 0<i <n. ThereforeGﬁ”) is a normal subgroup oGﬁi) for 0<i<n. Let N be
a normal subgroup oB. Then[N, N1 is normal inG sinceg([][n1, n2))g~* = []lgn1g~ L, gnog 1.
Therefore[Gﬁ"_l), GS”_D] is normal inG by induction om. Now we show that, 1 is a closed under
multiplication. Letp1, p» € P,_1 then for someky, kp # O, p'f, p’gz e [G" 7Y, G D1, Now for any
two elementsvy, w2 € G, we havaniwa=wowic wheree=[w;?, wy ] € [GY Y, GV ].Hence
(plpz)klk2 = (p]il)kz(pgz)kl [ ci wherec; € [Gﬁn_l), Gg"_l)] S0 p1p2 € P,_1, which shows thaP,,_1
is a subgroup oB. Now if g € G then(gp,g~ 1 =gpitg~t e (G 6" Vysincelc" Y, 6"V
is normal inG. ThereforeP,_1 is a normal subgroup ¢6. 0O

Definition 3.3. A groupIis poly-torsion-free-abelian (PTFA) if it admits a normal sefiBs= Go<1G1<
---a1G, =T such that each of the factots 1/ G; is torsion-free abelian. (In the group theory literature
only a subnormal series is required.)

Remark 3.4. If A<G is torsion-free-abelian and /A is PTFA thenG is PTFA. Any PTFA group is
torsion-free and solvable (the converse is not true). Any subgroup of a PTFA group is a PTFA28pup
Lemma 2.4, p. 421]

We show that the successive quotients of the rational derived series are torsion-free abelian. In fact, the
following lemma implies that ilN is a normal subgroup aﬂﬁ’) with Gﬁ‘)/N torsion-free-abelian then

(i+1)
G; C N.

Lemma 3.5. Gﬁ”/GﬁiH) is isomorphic to(Gﬁi)/[Gﬁi), Gﬁ”])/{Z—torsion} forall i >0.

Proof. Since[GY, GP] c G, we can extend the natural projection GG /G to a
surjective magp : Gﬁi)/[Gﬁi), Gfi)]—»Gﬁi)/G§i+1). If [¢] is a torsion element in;ﬁi)/[Gﬁi), Gﬁ“] then
[s*=[g"1=1s0g € P; € G\ ™. Hence we can exteng to pz: (G\"/[G}", GI')/T~G\" /G
whereT is the torsion subgroup 6#5”/[65”, G We show thap is injective hence is an isomorphism.
Supposep2(g2) = 1 then p(g) = 1 for any g such thatgz(g1(g)) = g2. Henceg = fh where f €
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(G, GP1andhk € [GY), G for somek # 0. Therefora gz)* = (g2(q1(f)* = (g2(q1(f)q1(h))* =
(g2(q1(M)N* = g2(q1(h*)) = g2(1) = 1 which implies thagz = 1. O

If G = n1(X) this shows thaG™ /G ~Hy(Xr,_,)/{Z-torsion} whereX, , is the regulad,_1
cover ofX. Whenn = 0, note thaG/G® = G% /GP ~ Hy(X) /{z-torsiony = 7/,

Corollary 3.6. I', is a PTFA group.

Proof. Consider the subnormal series

G(n+l) G’gn) GSi) G,(fl) GSO)
g---< g---< <
G(n+l) G£n+1) G£n+1) G£n+1) G§n+l)

=T,.

G is a normal subgroup c(ﬁ(f) for 0<] <i henceG! /G is a normal subgroup @&\’ /G V.
From the lemma above £ ("+1))/(G("+1)) GGV isisomorphic taG /(G , GP)) /{z-torsion
hence is torsion free and abeliari]

We next show that if the successive quotients of the derived ser@arf torsion-free then the rational
derived series agrees with the derived series. In general we only know that Gﬁ” forall i >0.

Corollary 3.7. If G /G*D s z-torsion-free for all i thenG{"” = G for all i.

Proof. We prove this by induction onFirst, we know thaG® = G© = G. Now assume thag"’ = G®,
then by assumption

Ggi)/[Gﬁi)’ Ggi)] — G(i)/G(i+1)

is Z-torsion-free. Hence Lemma 3.5 gives@® / GV =69 /16, 6P hencec TV =GP, 6V 1=
G+, O

Strebel showed that (& is the fundamental group of a (classical) knot exterior then the quotients of
successive terms of the derived series are torsion-free ajg@pnHence for knot exteriors we have
G(’ G, This is also well known to be true for free groups. Since any non-compact surface has free
fundamental group, this also holds for all orientable surface groups.

4. Skew Laurent polynomial rings

In this section, we define some skew Laurent polynomial rifxg$: 1], which are obtained fromir,
by inverting elements of the ring that are “independentjya¢ H(G; 7). Very similar rings were used
in the work of Cochran et al4, Definition 3.1] Skew polynomial rings with coefficients in a (skew) field
are known to be left and right principal ideal domains as is discussed herein.

LetI"be a PTFA group as defined in the previous section. A crucial property ifthat is has a (skew)
quotient field. Recall that iR is a commutative integral domain th&embeds in its field of quotients.
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However, ifR is non-commutative domain then this is no longer always possible (and is certainly not as
trivial if it does exist). We discuss conditions which guarantee the existence of such a (skew) field.
Let Rbe aring andsbe a subset dR. Sis aright divisor setof Rif the following properties hold.

(1) 0¢S,1eS.
(2) Sis multiplicatively closed.
(3) Givenr € R, s € S there exist$1 € R, sy € S with rs1 = sr1.

It is known that if S € R is a right divisor set then theght quotient ring RS? exists (28, p. 146]or
[31, p. 52). By RS we mean a ring containing with the property that

(1) Every element o8has an inverse iRS 1.
(2) Every element oRS ! is of the formrs~t with r € R, s € S.

If Rhas no zero-divisors angl= R — {0} is a right divisor set theR is called anOre domainIf R
is an Ore domainRS ™! is a skew field, called thelassical right ring of quotientsf R (see[31]). It is
observed iff4, Proposition 2.5that the group ring of a PTFA group has a right ring of quotients.

Proposition 4.1(Passma28], pp. 591-592,611 If I'is PTFA thendI" is aright(and lef) Ore domain
i.e. QI embeds in its classical right ring of quotients, which is a skew field.

If " is the (right) ring of quotients of I', it is a . -bimodule and &I'-bimodule. Note that?” =
ZI(ZT — {0})~! as above. We list a some properties/of

Remark 4.2. If Ris an Ore domain an8is a right divisor set theRS 1 is flat as a lefR-module[31,
Proposition 11.3.5] In particular,.z is a flat leftZr-module, i.e-®zr.#" is exact.

Remark 4.3. Every module overs is a free modulg31, Proposistion 1.2.3hnd such modules have a
well defined rank rl- which is additive on short exact sequenfgs. 48]

If Mis arightR-module withRan Ore domain then thrank of Mis defined as randf =rk ., (M Qg .1").
Combining Remarks 4.2 and 4.3 we have the following

Remark 4.4. If ¢ is a non-negative finite chain complex of finitely generated free dghimodules then
the Euler characteristig%) = > i~ (—1)'rankC; is defined and is equal {0 ;- (—1)'rank H; (%).

The rest of this section will be devoted to the riﬂg}é[til]. Consider the group, = G/Gf””) for
n>0. Sincerl’,, is PTFA (Corollary 3.6),7I',, embeds in its right ring of quotients, which we denote
by #,. Lety € HY(G; 7) be primitive. SinceH(G; Z) ~ Homy(G, Z),  can be considered as an
epimorphism fronG to Z. In particulary) is trivial on Gﬁ”*l) so itinduces a well defined homomorphism
V: I',—Z.LetI, be the kernel of. Sincel”, is a subgroup of ,,, I, is PTFA by Remark 3.4. Therefore
ZI', is an Ore domain anl, = ZI", — {0} is a right divisor set o I', [28, p. 609] Let [, = (ZI",)S; * be
the right ring of quotients oI}, g, : ZI', — K, be the embedding &fr”, into I, andR,, = (ZI',)S; .
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We will show thatR,, is isomorphic to a certain skew Laurent polynomial rikigiz**] (defined below)
which is a non-commutative principal right and left ideal domain by Cfhr2.1.1. p. 49] That is,
K, [r*1] has no zero divisors and every right and left ideal is principal.

We recall the definition of a skew Laurent polynomial ringKlfs a skew fieldy is an automorphism
of K andt is an indeterminate, thekew (Laurent) polynomial ring in t over &ssociated with is the
ring consisting of all expressions of the form

1"y + -+t as fag+tag + -+ 1ay,

whereq; € K. The operations are coordinate-wise addition and multiplication defined by the usual
multiplication for polynomials and the rute = ra(a) [5, p. 54}
Consider the split short exact sequence

0— ker(E)—>F,,—¢>Z—>0.

Choose asplitting: Z — I',. Then¢induces an automorphism bf =ker(j) by g &) Lgé(r). This
induces a ring automorphism @f, and hence a field automorphisnof K, by a(rs™) = a(r)a(s) L.
This defines,, [t*1] as above.

Proposition 4.5. The embeddingy, : ZI', — [, extends to an isomorphisR), — I, [t*1].

Proof. Any element of", can be written uniquely agr)" a,, for somem € Z anda,, € ZI',. It follows
thatZr, is isomorphic to the skew (Laurent) polynomial ridg’ [x*1] by sending?(t)"a,, to x™ a,,.
The automorphism of I, is induced by conjugatiom, — xLax sincead(r) = E(t)(E@) Lac(r)).

Hence there is an obvious ring homomorphismzaf, — [, [t*1] extendingg,. Note that the
automorphisng — &(1)"1gé(r) defining K, [+*1] agrees with conjugation iR so this map is a ring
homomorphism. The non-zero elementZ®f, map to invertible elements ik, [#*1]. It is then easy to
show thatR, ~ K, [t*1]. O

We note tha(ZI",)S~1 depends on the (primitive) clagse H(G; 7). Moreover, the isomorphism
of (zI,)S~* with K, [r*1] depends on the splitting: Z — I',,. For anyy € H1(X; Z) we have

7, < K, [tT] = o).

One should note that the first and last rings only depend on the @aupile the middle ringk,, [r+1]
depends on the homomorphisin G — 7 and splittingé: Z — I',. Often we writek" [¢*1] to
emphasize the clagson which [K‘,/{[til] is dependent. From Remark 4.2 we have the following.

Remark 4.6. Kf[til] and.", are flat leftzr,-modules.

5. Definition of invariants

Suppos«is a connected CW-complex with C X andxg € A a basepoint. Lep: n1(X) — I'bea

homomorphism and 2 X denote the regular-cover ofX associated t@. That is, X is defined to
be the pullback of the universal cover &{(I", 1). We note that there is an induced coefficient system on
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A ¢oiy: m1(A) — I' wherei is the inclusion map oA into X. Thus, we have a regular covering map of
the pair(X, Ar) —p>(X, A). If ¢ is not surjective theiX 1 is the disjoint union of /Im (¢) copies of the
regular Im(¢)-cover corresponding t: m1(X)—Im(¢).

There is a natural homomorphism I' — G (X ) whereG (X ) is the group of deck transformations
of X (se€[14] or[25] for more details). We note thafs an isomorphism whegi is surjective. This map
is defined by sendingto the deck transformation that takescg to 7(1) wherey is the unique lift ofy
starting atxo. 7 gives us a leff” action onX by Xy = 7,(x). We make this into a right action by defining
¥y =7y"1%. Hencexy = T,-1(X).

The right action ofl” on Xr induces a right action on the grodh (X ) of smgularn -chains onXr,
by sending a singular-simplexs: 4" — X to the compositiom” — Xp -5 Xr. The action off" on
C,.(Xr) makesC,(Xr) arightZr-module.

Let.# be azr-bimodule The equivariant homology of and(X, A) are defined as follows.

Definition 5.1. GivenX, A, ¢, .# as above, let
H (X; M) = H (C(X1)®zr M)
and
H (X, A; M) = H(Co(Xr, Ar)®zr-H)
as rightzZr-modules.

These are well-known to be isomorphic to the homologyand (X, A) with coefficient system
induced byg [36, Theorem VI 3.4]

We now restrict to the case whéns PTFA. We state the following useful proposition. A proof of this
can be found i3, Section 3] We remark that the finiteness condition in Proposition 5.2 is necessary.

Proposition 5.2. Supposer; (X) is finitely generated and : =1(X) — I' is non-trivial. Then
rank Hy(X; ZI' < f1(X) — 1.

LetG =1 (X, xg). Define thenth-order covelX,, P X of Xto be the regular,-cover corresponding
to the coefficient system, : G—1I', wherel', = G/Gﬁ”*l) is as defined in Section 3. Recall thar,
has a (skew) field of quotientg’,. If Ris any ring withZI, € R C ', thenRis aZI',-bimodule.
Moreover,H,(X; R) can be considered as a rigRimodule. We will be interested in the cases wiken
is ZI',, #, andK, [rT1] wherek, [r*1] is as described in the Section 4NMifis a right (left)R-module
whereRis an Ore domain then we |1&; M be theR-torsion submodule d¥l. When there is no confusion
we suppress thR and just writeT M.

We define the higher-order modules. The integral invariants that we can extract from these modules
will be our chief interest for the rest of this paper.

Definition 5.3. Thenth-order Alexander module of a CW-compl&is

A n(X) = Tyr,Hi(X; ZT'y)
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considered as rightI',,-module. Similarly, we define
JZ/,,(X) = Hi1(X; ZI'y)
considered as rightI",,-module.

Let X andY be 3-manifolds withG = n1(X) and H = n1(Y). Suppose thak is isomorphic taH. We
would like for their higher-order Alexander modules to be “the same”. However, they are modules over
different (albeit isomorphic) rings. We remedy this dilemma with the following definition. It is easy to
verify that the following defines an equivalence relation.

Definition 5.4. Let M andN be right (left)R andS-modules, respectively, anfl: R — S be anisomor-
phism.N can be made into a right (lef§-module viaf. We say thaM is equivalent tdN providedN is
isomorphic toM as a right (left)R-module.

Let X be a topological space with = n1(X). The higher-order Alexander modules can be defined
group theoretically. Define arigitG/ GV 1-module structure 06" ™ /[GIY, G Dby [h][g]=
[g~thg] for h € G andg € G. We see that

) G+
oA (X)) =

[G£n+l), G£n+l)]

asa rightZ[LH)]—module. We also note that

G"
4, (X)/{Z-torsion} = G"+D /G2

by Proposition 3.5. Suppose thais homeomorphic tX, thenrz1(Y) is isomorphic toG. It is easy

to verify that the isomorphism of groups leads to an equivalence,afX) and.«Z,,(Y). Therefore the
equivalence classes of the higher-order Alexander modules are topological invariants. Similarly, one can
easily verify that the rest of the definitions in this section are invarianksasfa pair(X, /).

Definition 5.5. Thenth-order rank ofX is
(X)) =Ky, HL(X; A p).

In the literature, the classical Alexander module of a 3-manifold is often definét @S, xo; ZI'g)
(see Section 2) and(X) = rk H1(X, xo; ZI'p) is called the nullity ofX [18]. We will now show that
H1(X; ZI'y) andH1(X, xo; ZI',) are related by, (X)=rk -, H1(X, xo; # ) —landTzr, H1(X; ZI'y) =
Tzr, H1(X, xo; ZI'y). Hence, we could have defined, (X) andr, (X) using homology rel basepoint as
well.

Proposition 5.6. LetI" be PTFAand ¢ : =1(X, xo) — I' be non-trivial. Then

Ky Hi(X; A7) =Ky Hi(X, x0; A7) — 1 (5.1)
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and
TrH1(X; R) =TrH1(X, x0; R) (5.2)
for any ring R such thaZI" € R C ", where#" is the(skew field of quotients o I".

Proof. To prove (5.1), consider the long exact sequence the(Faitp),

0
0— Hi(X; #) 5 Hi(X, x0: #) — Ho(xo: #) — Ho(X; 7).

Since¢: n1(X) — I is non-trivial, Ho(X; #") = 0 by the following Lemma. The first result follows
sinceHo(xg; X)) = A .

Lemma5.7. Suppose X is a connected CW comple#.: 11 (X) — I'is a non-trivial coefficient system
andI is PTFA thenHy(X; ) = 0.

Proof. By [36, p. 275]and[1, p. 34} Ho(X; .¢') is isomorphic to the cofixed set'/.#'I wherel is the
augmentation ideal df[=1(X)] acting viaZ[r1(X)] — ZI' — . If ¢ is non-trivial then the composition
is non-trivial. Thud contains an element that is a unit hen¢d = 27", O

We show thatthe mgp: H1(X; R) — H1(X, xo; R) restricts to anisomorphism froffH; (X ; R) onto
TH1(X, xo; R). Certainlyp: TH1(X; R) — TH1(X, xo; R) is a monomorphism. Let € THy(X, xo; R)
with or = 0 wherer # 0. SinceHy(xo; R) = R is R-torsion-freep(s) = 0 so there existg € H1(X; R)
with p(0) = 0. We see thatl is R-torsion since (0r) = p(0)r = or =0 andp is a monomorphism. Therefore
p: TH1(X; R) — TH1(X, xo; R) is surjective. I

For any primitive clasg € H1(X; 7) and splittingé: Z — I', we consider the skew Laurent poly-
nomial ring ks, [1]. We note thafHy(X; K, [r*1]) is a finitely generated righ,,-module. Moreover,
any module ovels,, has a well defined rank which is additive on short exact sequences by Remark 4.3.

Definition 5.8. Let X be a finite CW-complex. For each primitivee H1(X; Z) andn >0 we define the
refinednth-orderAlexander module correspondingy to be;z/f(X) =T, =11 H1(X; K, [*1]) viewed
as a righti<,, [r*1]-module.

Since;zif(X) is a finitely generated module over the principal ideal domgjfr1],

m

v K15
Ay (X) =~ —_—
) ,@1 Pi (DK, [+

for some non-zerg; (1) € K,[t*1] [20, Theorem 16, p. 43We define the refinedth-order degree af
to be the degree of the polynomig] p; (). One can verify that this is equal to the rank@f(X) asa
[<,-module. Note that while the degree]df p; (¢) is well-defined and independentf the polynomial
[ pi(¢) is not well-defined.
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Definition 5.9. Let X be a finite CW-complex. For each primitivee H1(X; 7) andn >0 we define the
refinednth-order degree of to be

80 () = Tk, A (X).

We extend by linearity to defing, () for non-primitive classeg.
Similarly we define the unrefined higher-order Alexander modules and degrees.

Definition 5.10. Let X is a finite CW-complex. For each primitive € H1(X; 7) andn >0 we define

the unrefinednth-orderAlexander module corresponding itoto be;?ff(X) = Hi(X; K,[t*1]) viewed
as a righti<,, [r*1]-module. Theunrefinedsth-order degree of is

5 () = rig, 7Y (X)

if kg, ﬁ,‘f(X) is finite and 0 otherwise. We extend by linearity to defipg)) for non-primitive classes

V.

We note that

m

W K 1% 17, (X)
= (EB p,-(r)ﬂ«n[rﬂ]> S

i=1
Hence rlg,. (X) is finite if and only ifr, (X) = 0.
Remark 5.11. If r,(X) = 0 thens, () = 5, () otherwise 0= 6, (¥) <5, ().
We now show thado(y) is equal to the Alexander norm g¢fhencedso(y) is a convex function.
Proposition 5.12. 5o(y) = |||/ 4 for all y € HYX(X; Z).

Proof. Recall thatl'o = 7z/1X) hencezI'g is isomorphic to the polynomial ring in several variables. Let
v: ZI'o = Ko[t*1] be the embedding dtI'g into the principal ideal domaito[z*1] and4x = Y ngg

be the Alexander polynomial of. We begin by showing thaty||4 = degv(4x). For all j consider
the ponnomiaIA§( = Zl/,(g):ﬂ- ngg. Note that any such can be written (using the splitting ashgrf
wherey (t) = 1. We see that(4%) = vy ()i Mg8) = (O nghg)t! wherec; =Y nghgy € Z[Ker yg].
Sincev is @ monomorphism we havg # 0 unlessn, = 0 for all g with y(g) = t/. 1t follows that
degv(4x) =degv(}_ Aﬁ() =deg)_ Cjtj = |ly/|la. After choosing a group presentation &y Fox’s Free
Calculus (Section 6) gives us a presentation madrifor H1(X, xo; Z[I'g]) = Hl(}N(, X0) whereX is the
torsion-free abelian cover ot Moreover a presentation &f1(X, xo; Ko[*1]) is also given by, that

is we consider each entry in as an elemeritgifr*1]. I sis the number of generators in the presentation
of Gthendx =gcd(E1(H1(X, x0; ZI'0)))=gcd{d1, ..., dr} where{d, ..., d;} is the set of determinants
of the (s — 1) x (s — 1) minors ofM (Section 2). Note thafg is free abelian sd<g is a commutative
field and hence andrg andko[t*1] are unique factorization domains, since any principal ideal domain
is a unique factorization domain. We compute gl H1(X, xo; Ko[r*11))) = ged{v(dy), . . ., v(dy)).
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Sincevis an embedding, one can check thatthe degreggof{dy, . . ., d;}) andgcdv(dl), . .., v(dy)}
are equal. It follows that

[¥lla = degv(4x)
= degv(gcdidy, ..., dr})
= deg gcdv(dl), ..., v(dy)}
= deg gedE1(Ha (X, xo; Kolt*1)))

so to complete the proof it suffices to show that dgg{v(dy). . .., v(dk)}) = do(¥). Sinceko[r*1] is
a principal ideal domainH1(X, xo; Ko[r*1]) is isomorphic to a direct sum of cycli€o[z=1]-modules.
That is,M" is equivalent to a matrix of the form

pa(t)

ps—l(t)
o ... 0

wherep; () is zero for someifand only if g (X) > 0. We note that the last row of the matrix can be assumed
to be zero since ri, Hi(X, xo; #'0) = Kz H1(X; #0) + 1. Hence ifro(X) = 0, H1(X; Kol[t*1]) =
TH1(X; Ko[t*1]) = TH1(X, x0; ZI'0) S0do(}y) =deg(p1(t) - - - ps_1(1)). Otherwisep; (r) = 0 for somei

so we havedo(yy) = 0= deg(p1(r) - - - ps—1(1)). Using the latter presentation &f (X, xo; Ko[t*1]) we
compute gedE1(H1(X, xo; Kolt1])) = pa(t) - - ps—1(t) SO

Iylla = deg ged E1(Hi(X, xo; Kolt=11))
= deg(p1(t) - - - ps—1(1))
=d0(}). a

6. Computing é; and .#¥ via Fox's Free Calculus

We will describe a method of computing the higher-order invariants using Fox’s Free Calculus. We
remark that this is slightly different than the classically defined free derivatives because we are working
with right (instead of the usual left) modules. We refer the read¢®,td,7,17]for more on the Free
Calculus (for left modules).

Let G be any finitely presented group with presentation

P:<xl"~-axl|rls"'7rm>l

F=(x1, ..., x;) bethefree group drgenerators ang: F—G.Foreach; there isamappingﬁ—l_  F—>ZF
called theith free derivative. This map is determined by the two conditions
a)Cj
ox;
ouv)  du ov
o ox ! ax;

=0i,j
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From these, one can prove that

ou~l 0
u =—u_1—u

ox; ox;

The mapy: F—G extends by linearity to a magp: ZF—7G. The matrix

< ory ) ( ory, >
X —_— DY X —
<ar : )x - §X1 ?M
Oxi o\ (on,
‘ 0xy, x Ox,,
with entries inZG is called the Jacobian of the presentatfoWe note that this matrix is dependent on
the presentation.

SupposeX be a finite CW-complexG ~n1(X, xo) and¢: G — I'. We can assume that has one
0-cell, xo. Hence the chain complex ¢X r, Xp) is

3
o> 7371 >0,

wherel andm are the number of one and two cellsXfrespectively. We define an involution on the
group ringZ F by

Yo omifi=) mif?
and extendy: G—1I"to ¢: ZG—ZT by linearity. It is straightforward to verify that, = (%)1‘7’. Hence

Hy(X, xo; ZT) is finitely presented asg%)l‘/). We remark that the existence of the involution in the
presentation off1 is necessary since we chose to work with right rather than left modules. In the case
thatI" is abelian, the involution is not necessary.

Let:: ZI' — R be aring homomorphism. Thdhis aZI'-R-bimodule and we can consider the right
R-moduleH; (X, xo; R). The chain complex fo€X, xg; R) is

3,id
oo > ZI"®7rR = " ZI"M®@7rR — 0.

SincezZI'*®7rR ~ R¥, it follows that H1(X, xo; R) is finitely presented as

B 1P
<§) . (6.1)

Now let¢ = ¢, : G—I',, be as defined in Section 3 ad G—Z. Choose a splitting: Z — I',, and
let R = K,[t™1]. We can use (6.1) to show thaf; (X, xo; K, [¢1]) is finitely presented asgzxflf)m’i
wherei:: ZI', = K,[t*1] is the embedding of I', into [, [+*1].

Moreover, we compute th&, () as follows. Sincek, [r*1] is a principal ideal domair(,glel:)mn’f is
equivalent to a diagonal presentation matrix of the fopm(z), ..., p;(¢), O¢. )} [20, Theorem 16, p. 43]
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and Q,, is ar x s size matrix of zeros. Proposition 5.6 implies thatX) = rkx, H1(X, xo; K,) — 1
hence

m(X)=r—1.

The above presentation implies tiiat; (X, xo; K,[t*1]) has a diagonal presentation matrix of the form
{p1(0), ..., pi(t)}. Moreover, Proposition 5.6 giveH: (X; K, [t*1]) @ TH1(X, xo; K, [rF1]). Thus we
have used Fox’s Free Calculus to derive a presentation matrb(foand we have shown that

s(p)=deg [] pio.

1<i<i

7. A presentation ofts?iﬁ in terms of a surface dual toy

In the previous section, we used Fox’s Free Calculus to find a presentation matrix of the higher-order

Alexander module;?/,‘f(X). WhenX s a 3-manifold, we will show that the localized moduliﬁ%(X) are

finitely presented and that the presentation matrix has topological significance. The matrix will depend on

the surface dual to a cohomology class. The presentation will be the higher-order analog of the presentation

obtained from a Seifert matrix for knot complements. The presentation obtained will be the main tool

that we use in Section 10 to prove that the higher-order degrees give lower bounds for the Thurston norm.
Let X3 be a compact, orientable 3-manifold (possibly with bounda6y)= 71(X, xo) andy €

HY(X;7).Let$: G — I be anon-trivial coefficient system aig: £ X bethe regular cover ofX. For
anyy as above, there exists a properly embedded suFaeeX such that the clad¥'] € Ho(X, 0X; 7)
is Poincare dual tg. We say thaF is dual toy.

Let F be a surface dual tp, Y = X — (F x (0, 1)), Fy = F x {1} (seeFig. 1for an example), and
xobeapointoff =F x {0} CY.LetRbe aringand: ZI' — R be a ring homomorphism defining
R as azr-bimodule. We will exhibit a presentation &1 (X; R) in terms of H1(F; R) and H1(Y; R).
First we remark that it makes sense to speak of the homolo@yvath coefficients inR. By this, we

mean the homology corresponding to the coefficient systgif, xo) = n1(X, x0) —¢> I'. Similarly, we

have coefficient systems fai (Y, xg) and the other terms that are involved in Proposition 7.1 below.
Before we state Proposition 7.1, we need the following notationc beta path iry with initial point

¢(0) = (x0, 1) and endpoint (1) = (xg, 0). Letc, (s) = (xo, s) and« be the closed curve, - ¢ based at

Fig. 1. The Whitehead manifold cut open aldhg
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xo. Letiy: F — YincludeFintoYbyi_(f)=(f,0) andi,(f)=(f,1). Finallyletj: Y — X be the
inclusion ofY into X.

Proposition 7.1. Suppose=¢(«) is anon-zero element dfand either some element of the augmentation
ideal of Z[rn1(F)] is invertible(underz o ¢ o i,) in R orz1(F) = 1. Then the sequence

Hi(F; R) > Hy(Y; R) E Hi(X; R) — Ho(FUF,_Uc; R)
is exactwherg = (i), — (i_),y.
Proof. For convenience, we will omit thR in H1(—; R) in this proof. LetU = (F x I) U « where

I=[0,1]. ThenX=UUY andU NY = F U F; Uc. Consider the homology Mayer—Vietoris sequence
for (U, Y) with coefficients inR [36],

Hi(FUF_Uc) > Hi((F x I) Us) ® Hi(Y) = H1(X) - Ho(FU F. Uc) — . (7.1)

We examine thd{; terms involvingF in (7.1). We will compute the homology of these term using the
Mayer—Vietoris sequences foF, Fy U ¢),

0— Hi(F)® H1(F+ Uc) > H1(FU Fy Uc) - Ho(xo) = Ho(F) ® Ho(Fy Uc) (7.2)
and(F x I, a),
0— Hi(F x1I)® Hi(0) > H1(F x I Uwx) — Ho(xg) = Ho(F x I) @ Hop(a). (7.3)

The ideas behind the rest of the proof in both of the cases (stated in the hypothesis) are similar however
the proof when (F) # 1is more technical. Hence we will first consider the special case wiié) =1.
Sincery(F) is trivial, both Hy(xg) — Ho(F) & Ho(Fy U ¢) and Hyo(xg) — Ho(F x I) @ Ho(x) are
injective. Hence H1(F U F U ¢; M)~ Hy(F; ) & H1(F Uc; #) andHy((F x I) U o)~ Hy((F x
1)) ® Hi(w).

Sincey is non-trivial inI", the curvex does not lift to tha™-cover ofX. ThereforeH; («) = 0 and hence
H1((F x I Ua))~H1(F x I). Moreover,H1((F x I))=~ H1(F) where the isomorphism is induced by
the map which sendgf, s) to (f, 0).

We analyze the first term in the sequence. The isomorphistA, xo) — =1(F+ U ¢, xg) given by
[B] +— [c-ir(B) - clinduces an isomorphisg: H1(F) — Hi(Fy Uc). By ¢ we mean the curve defined
by é(s)=c(1—s). Note thafc-i(B)-¢l=a"[Bloin n1(F x I, x0). ThereforeHy(F U F, Uc) ~ H1(F)®
Hi(F). We note that the composition

Hi(F) - H(F+Uc) > Hi(F x I Ua) = Hi(F)

sendss to gy and the compositioll1 (F) — Hi(F x I Ua) — H1(F) is the identity.
Using the isomorphisms above, we rewrite (7.1) as

Hi(F) & Hi(F) " Hi(F) @ Hi(Y) — Hy(X) — Ho(F U Fy Uc) —

where fr (o1, 62) = 01 + a2y and fy (a1, 02) = —((i-),(01) + (i1).(c2)). It follows from Lemma 7.2
that the sequence

Hi(F) % Hy(V) 2 Hi(X) — Ho(F_ U Fy)
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is exact withn(o) = —((i-)4(07) + (i1).(—0)) = ((i+), — (i-)) (o). The proof of Lemma 7.2 is
straightforward hence omitted.
Lemma 7.2. Supposed & A m—”@ Ao BSC % D is an exact sequence of right R-modules with

fala1, a2) = a1 + aor wherer € R, thenA i> B ¢ Y D is an exact sequence of right R-modules with

f'(a) = fg(ar, —ar) andg’(b) = g(0, b).

Now we assume that some element of the augmentation idedk©fF)] is invertible inR. By [36,
p. 275]and[1, p. 34] Ho(F) is isomorphic to the cofixed s&/RJwhereJ is the augmentation ideal of
Z[r1(F)]. ThereforeHo(F) = Ho(F1 U ¢) = 0. We note thaHy(xo) is the freeR-module of rank one
generated byxg]. Choose a splitting; for short exact sequence in (7.2) to get

Hi(FUF_Uc)=M & H1(F) ® Hi(Fy Uc), (7.4)

whereM is the freeR-module of rank one generated &)([xo]). Let s be a curve ifF U F. Uc representing
¢1([xo).

Consider the sequence in (7.3). We note #gtx) = R/ (t(y) — 1). Sincey is non-trivial, IM(H1(F x
I Ua) — Hy(xo)) is the freeR-module of rank one generated I0%(y) — 1)[xo]. Moreover,[f] —
u(t(y) — 1[xo] whereu is a unit of R under the boundary homomorphism. We choose the splitting
2 u(z(y) — Dixol — [B] to get

Hy(F x TUo)=N @ Hi(F x 1) ® Hy(2), (7.5)

whereN is the freeR-module of rank one generated [3].
Using the isomorphisms in (7.4) and (7.5), we can rewrite (7.1) as

M ® Hi(F) ® Hi(Fy Uc) - N & Hi(F x I) © H1(«) ® H1(Y) - H1(X) —
Ho(FUF,Uc) — .

We use Lemma 7.3 to get an exact sequence withoutithadN terms as in the case whemn(F) = 1.
To complete the proof of the proposition, we use the same argument as in the casg(hea 1. O

Lemma7.3. LetM and N be free right R-modules of rank one generated by m,aagpectively. Suppose

Mo@A —f> NeBSC ﬁ> D is an exact sequence of right R-modules withm, a) = (rn, fo(rm, a))

for somefo: M ® A — B. Lety: 0&® B — B be the isomorphism defined 69, b) — b. Then

AL BE5 S Dis an exact sequence of right R-modules whgrand g’ are defined byf’(a) =

n(f(0,a)) andg’(b) = (g(0, b)).
Proof. The proof is straightforward hence omitted.

Now we consider the presentationf#f (X ; I, [t =1]) wherelk,, is the skew field of fractions ofI’, as
defined before. Laf andY be as defined above. Singg(F, xg) andn1(Y, xg) are contained in the kernel
of y, we can consider the homology BfandY with coefficients inZI"” andk,,. SinceF andY are finite
CW-complexesH1(F'; K,) and H1(Y; [<,,) are finitely generated free modules hence are isomorphic to
Kfl and K", respectively. Thus th&,-module homomorphisms. : H1(F; K,) — Hi(Y; K,) can be
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represented by x m matricesVy with coefficients ini<. We will show that the higher-order module
corresponding tg is presented by, — V_r.

Proposition 7.4. Im(}j,) is finitely presented a&, [r*1]/ Bk, [ 25 Im( ) whereP = Vi —V_t.
Moreover if ¥, ) is non-trivial for each componeri/ of F then@/f(X) is finitely presented as
I D G T P L5 6

Proof. Lety = ¢, () be as in Proposition 7.1. We note that) = r. Choose the splitting: t +— y.
Sincern1(F, xo) C I'), we have

Co(Fr,)®zr, Kn[t™ = (Co (Fr )®7r1 Kn) @, K [

Moreover, [, [r*1] is a direct sum of freés,-modules(k,[r*1]=~®* _ K,). Thereforek, [t*1] is a

flat left [<,,-module. Thus e

Hy(F; 1, [1F1) = Hi(F; K,) @i, 1, [
~ K @k, K [t11]
~ K, [t

Similarly, we haveH1(F; K,[tT1]) ~ K, [t=1]1™. The first result follows from Proposition 7.1.1,&1In1(Fj)
is non-trivial for allj then Ho(F U F4 U ¢; K,[t*1]) = 0 so Im(j,) = ,Q_/r(X). O

We use the following lemma to show that it suffices to use the presentation Watrix V_r when
computingﬂf(X).

Lemma 7.5. SupposeB £ ¢ pis an exact sequence of right R-modules where D is R-torsion free
and R is an Ore domain thefx C = Tg Im(g).

Proof. Since Im(g) C C, itis easy to verifyI' Im(g) € TC. Letc¢ € TC then there exists a non-zero
r € R such thatr = 0. This says that(c)r = h(cr) = 0 so thati(c) is R-torsion inD henceh(c) = 0.

By exactness dC we see that € Im(g) andcr =0s0TCC T Im(g). O

Proposition 7.6. JZ/,I/;(X) is isomorphic to the<, [t *1]-torsion submodule afok(V, — V_t).

Proof. Recall thatsz/,‘/{(X) ~ TKH[,ﬂ];?/f(X). The result follows immediately from Lemma 7.5 and Propo-
sition 7.4. O

8. Examples

In this section we will compute,, 5,,, ands,, for some well known 3-manifolds and relate their values
to those given by the Thurston norm. In each of the examples we denote the fundamental gkoup of
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Fig. 2. Each component afhas minimal ropelength at least@ + v/3).

by G. Of particular importance will be the 3-manifolds which fiber ogérand those which are Seifert
fibered. We start with the standard examples.

Example 8.1. 3-torus.

Let X = ST x ST x st thenGY = (1) hencer, (X) = 3, () = O for all  andn >0. Note that since
H>(X; 7) is generated by tori, the Thurston norm is zero forjat H1(X, ; 7). More generally, ifG is
any finitely generated abelian group (WgNG) >1) thenGﬁ”) = T whereT is the torsion subgroup of
G. Hencer,(X) = 9,,(y) =0.

m
Example 8.2. X = # 52 x SL.
i=1

LetX:#’l."ZlS2 x §1for m >1thenG = F,,, the free group omgenerators. SincH»(X; Z) is generated
by spheredy||r =0 for allyy. Moreover, every class iH2(X; Z) can be represented by a disjoint union of
embedded spheres. Hence there exists a suffdoal toy such thatH (F; K, [r*1]) =0. By Proposition
7.6 we haveszfn‘”(X) = T cok(0). Therefores, () = 0 for all y andn > 0.

Sincer, only depends on the group we can assume that is a wedge ofm circles. By Remark
4.4, 1—m=y(X) = Zilzo rky, Hi(X; #,). Sinceg,, is a non-trivial homomorphism, by Lemma 5.7,
Ho(X; 4,) =0. Therefore,(X) =m — 1.

There is a large class of 3-manifolds for whigf{X) > 1. Recall that dooundary linkis a link L in
$3 such that the components admit mutually disjoint Seifert surfaces. It is easy to see that each of these
surfaces lifts to the universal abelian coverf= S2 — L. By Proposition 10.659(X) >1. Hence the
Alexander norm foiX is always trivial. It is often true that the refined Alexander noég s non-trivial.
We compute an example below where this is the case.

LetL be the link pictured irFig. 2 LetF be a Seifert surface of one of the components a$ in figure
representing the minimal_andy be dual toF. We will show in Example 8.3 thaiy (i) = 4. Moreover,
each component bounds a once punctured genus two surface|lygince 3. Hence by Corollary 10.4,
we get

oo<|l¥llr + 1.
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We conclude thaty/||7 = 3. Hence, even fat = 0, §,, gives a sharper bound for the Thurston norm that
the Alexander norm. This also shows that the minimal ropelength of each of the componkrigsabf
least 2(1 + +/3). For more information on the ropelength of knots and links,[8ge

Example 8.3. LetL be the link inFig. 2andX = $% — L. We use the techniques of Section 6 to compute
do(¥). Using a Wirtinger presentation, we presént n1(X) as

(a,b,c.d,e, f,g h,i,j k lIbg~tic™ti~tg, cj a1}, fe~thg~th e,
ih=kj= %1, Ik ted e, date~1a, ebf 171,
gb th b, hei ™t jc ke, kal e Y.

Using Fox’s Free Calculus we obtain a presentation maédrier H1(Xo, Xo) (see below). Herex is the
abelianization of andy is the abelianization ad. Since we used a Wirtinger presentation®rx andy

represent the meridians bf

0 —y 0 0 0 1-y 0 0 0 0 y-1
y 0 0 0 0 0 y—1 1-—y 0 0 0
-y y 0 0 0 0 0 0O y—1 1-y 0
0 0 0 0 -y X 0 0 0 0 0
0 0 11—y 0 y—1 -1 1 0 0 0 0
0 0 y 0 0 0 —Xx 0 0 0 0
1—x 0 —y 0 0 0 0 X 0 0 0
0 0 y—1 1—y 0 0 0 -1 1 0 0
x—1 0 0 y 0 0 0 0 —Xx 0 0
0 1—x 0 —y 0 0 0 0 0 X 0
0 0 0 y—1 1-—y 0 0 0 0 -1 1
0 x—1 0 0 y 0 0 0 0 0 —Xx
This is equivalent (using the moves in Lemma 9.2) to the matrix
l—-x—-y 0 0 0
0 l-x—y 0 0
0 0 Xy—x—y 0
0 0 0 Xy—x—y
0 0 0 0
0 0 0 0

Hencerg(X) =1 and

Z[X:tl, y:I:l] Z[xil, y:I:l] Z[xil, y:I:l] Z[Xil, y:I:l]

(I-x—y) " (I—x—-y) ~Xy—x—y)  (Xy—x—y)

Lety be dual to a Seifert surface for one of the components @heny maps one of the generators of
Hy(X) totand the other to 1. The link is symmetric so either choice will suffice.xSay r andy — 1.

Choose the splitting — x. Each of the polynomials in the latter matrix has degree K4fr*1] since
l—-x—y—> (1A—y)+randxy—x — y — t(y — 1) — y. Thereforedg(yy) = 4 as desired. In fact, if

Ao(X) =
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mapsx — "™ andy — ¢" then

50(1#) — degIZn + t3m+n + t2m+2n + t2m+n + tm+2*n + tm—i—n + t2m + t3m + t3n + t4m
+ t4n + t3m+2n + t2m+3n + tm+3n + t4m+2n + t4m+n + t3m+3n + t4n+2m + t4n+m),

whereasio(y) = 0.

Although the invariants are defined algebraically, they respect much of the topology of the 3-manifold.
We begin by considering those 3-manifolds which fiber a%rin this case the higher-order invariants
behave in a very special manner.

Proposition 8.4. If X is a compact, orientabld-manifold that fibers oves?* then
ra(X)=0.

Lety be dual to a fibered surface.tf=0, ;(X) =1, XS x §? and X5 x D? thens, () = ||yl +
1+ B3(X). Otherwise

on(W) =¥l

Proof. ConsiderX — ST with fiber surfaceF andy be the element oH1(X; Z) which is dual toF.
The I',,-cover ofX factors through the infinite cyclic cover corresponding/twith total spacef’ x R.
HenceX,, is homeomorphic t&F, x R whereF, is a regular cover of. It follows that H.(X; I<,[t*1])
is isomorphic toH,(F; I<,) as ak,-module. In particularg, (y) = rki, H1(F; IK,). Moreover, since
Hi(F; K,) is a finitely generated,-module,r, (X) = 0 for all n. That is, H1(X; K, [t*1]) is a torsion
module for alln > 0.

We restrict to the case thai=0 andp; (X)=1. We note thafp=F andkKo=0Q so that rk, H1(F; Ko) =
B1(F). Thusdo(y) = p1(F) = —y(F) + 1+ p3(X). As long asXx2S* x §2 and XSt x D? the Euler
characteristic of is non-positive hencgy| 7 = —y(F). Thereforeso(y) = ||y||7 + 1 + B3(X).

Note that if the Euler characteristic Bfis ever positive ther1(F) = 1. Thus we havé{,(F; I,) =0
for all n >0. Therefore botls, () and|y| are zero and hence equal for alt 0.

Otherwise,F,, factors through a non-trivial free abelian coverrfofBy Lemma 5.7 Ho(F; K,) = 0.
SinceF), is non-compactHz(F; IK,) = 0. It follows thato, () = rki, H1(F; K,) = —x(F). Moreover,
F has non-positive Euler characteristics@(F) = ||y|r. O

As with the first two examples in this section, there is a large class of 3-manifolds which have vanishing
(unrefined) higher-order degrees. This is the class of Seifert fibered manifolds that do not fing.over
We remark that the condition th¥mot fiber overs? is necessary by the previous proposition. Some good
references on Seifert fibered manifolds |, Chapter 2, 16, Chapter 12, 19, Chapter. VI]

Proposition 8.5. Let X be a compagbrientable Seifert fibered manifold that does not fiber aser
If 1(X)>20rn>1then

Sn() =0
forall y € HY(X; 7).
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Proof. This is most easily proven using Theorem 10.1 and some well known results about Seifert fibered
3-manifolds. By Theorem VI.34 dfl9], we see that any two-sided incompressible surfacé must

be a disc, annulus, or a torus. Therefore the Thurston norKisftrivial. Theorem 10.1 implies that

0. (W) <|I¥l7 = 0 whenevep,(X) orn>1. O

We end this section by showing that under the connected sum of 3-manifolds, the degrees are additive
and the ranks plus 1 are additive. The following is not at all obvious because the fundamental groups of
the spaces involved are completely different!

Proposition 8.6. SupposeX = X1#X», f1(X;)>1andy € HY(X; 7). Then
(X)) =ra(X1) +ra(X2) +1

and
on() =0 (Y1) + 6, (Y2)

wherey = /1 @ ».

Proof. We begin by showing that,(X) =r,(X1) + r,(X>2) + 1. Consider the following Mayer—Vietoris
sequence oR-modules for any ringR with ZI,, € R C #",,. By I',, we mean the quotient @ = n1(X)
by the(n + 1)S term of the rational derived series Gf

v 0
0 — Hi(X1; R) ® Hi(X2; R) > Hi(X; R) = Ho(S% R) — (8.1)

We note thatHo(S?; R) =~ R sincesS? is simply connected. For=1, 2 leti; : G; — G be the inclusion
map, pr: G — G, be the projection onto thgth factor, and™), = (GJ-)/(GJ-)§”+1) whereG ; =n1(X ;).

. . . 1 pr; . . .
SinceG = G1* G, pr;oij=idg;. Hence the induced mapsg 4 I, — I') are also the identity making
Zj amonomorphism. Thus th& cover ofX;, X ;,, can be constructed as the regular cover corresponding
to the mapp, oi;: G;—Im(¢, oi;). We extend ;to a ring monomorphisny : ZI'y, — ZI',.

The mapG; — G/G"™Y is the zero map if and only /(G )" = 0. We assumefl; (X ;) > 0
henceG, /(G ;)Y £ 0. By Lemma 5.7 Ho(X j; #'») = 0. ReplacingR by ., in (8.1) we have

r(X) =Ky, H1(X1; A 'p) + 1Ky, Hi(X2; A ) + 1.
We will show that rky, H1(X1; #,) = rkfj Hi(X1; Ji/‘,];) hence
rn(X) =r,(X1) + rp(X2) + 1.

Let )?jn be the cover ok ; corresponding t@; ; — I',. ThenX}n is a disjoint union ofr,,/F,{ copies
of X j,. The extension gir; toa ring homomorphisrp_rj 2T, — ZF,J; givesZF,’; the structure asar,-

bimodule. Moreover, sincﬁrj o z_'j = idrj ,®, i (LT ®1r, Zrﬁ) acts trivially on any righrZF,’;-moduIe.



Shelly L. Harvey /Topology 44 (2005) 895-945 919

Therefore
Cu(X j) @21, 2T = (Co(X ju) @,y 1T)®71, 2T
~ Co(Xjn)®, 1 (21 ®zr, ZT7)
=~ Ci(Xjn)- (8.2)

zj ZF — ZI', is a monomorphism, hence we can extepnb the right ring of quotients oIF’ and
2Ty, zj f’ — A ,. Thereforex ', is a flat Ieft,%/] module by the following lemma.

Lemma 8.7. Suppose that R is a right and left principal ideal domaihas no zero divisorand
f: R = Sisaring monomorphism. Then S is a flat left R-module

Proof. Lets € S andr € R with s # 0. Suppose that (r)s = 0. Shas no zero-divisors hengé&r) =0
Moreover,fis a monomorphism so= 0. ThereforeSis R-torsion-free. Sinc& is a PID, every finitely
generated torsion-fré@ module is free hence flat. Every module is the direct limit of its finitely generated
submodules. Henc®is the direct limit of flat modules. Thus, §$1, Proposition 10.3]Sis flat. O

We apply—® j%n to (8.2) to get

C*(X]n)®ZF,l [n —C*(X]n)®zrj

SinceC*(Xj,,)®ZFj H oy = C*(Xjn)®ZFj %‘{l@)j.j A, and.x, is a flat Ieftf{;—module,
Ho(Co(X j) @21, H n) = Ho(Co (X j)® s A )@ s H

Thus rk Hl(Xl, ,,) =rk, H1(X1; #,) as desired.
Now We show that

TrH1(X; R)=TrH1(X1; R) ® TR H1(X2; R). (8.3)

First we note thaT' (H1(X1; R) @ H1(X2; R))=TH1(X1; R) ® TH1(X2; R). Consider the restriction of
vin (8.1) to the torsion submodule &f1(X1; R) & H1(X2; R),

v T(H1(X1; R) @ H1(X2; R)) — TH1(X; R).

We show that7 is anisomorphism. Itisimmediate thgtis a monomorphism singes a monomorphism.

To show thatr is surjective, letc € TH1(X; R) and 0# r € R with xr = 0. SinceHo(S%; R) is R-

torsion free,(x) = 0 hence there exists € H1(X1; R) @ H1(X2; R) such thatr(y) = x. Moreover,

vy (yr) =vy (y)r =xr =0. Sincevy is amonomorphismr =0. Hencey € T (H1(X1; R) ® H1(X2; R)).
Since HY(X; 7)~ H'(X1; 7) @ H'(X2; ), ¥ can be uniquely written ag; ® y, wherey; €

Hl(Xj; 7). Note that) ; need not be a primitive class Hi'(X). For each, letd; be the largest divisor of

¥ ;. Hence, there exis&’j primitive with djw/j = . Recall that ken//j =kery; ando, () = djén(lﬁ/j).
SubstituteR = ZI',(Z ker )t into (8.3). Then

Sn (W) = rkig, TH1(X 15 ZT, (Z ker ) ™Y @ rky, TH1(X2; ZT,(Z ker )™,
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wherelk, = Z ker y/(Z ker y — {0})~! is the right ring of quotients o ker y. Recall that ifSis a
right divisor set therRS™ exists and is the ring obtained by inverting all of the elementS ihet

Ry =ZI,(Z ker y — (O) ™Y, R! = 7I')(Z ker v — (0p~%, andk; = 7 ker V(7 ker y/; — {op~—*.To
complete the proof we must show that

ki, Tk, H1(X ji Rn) =Ky T HA(X 13 Ry).

Sincey = oij, ij(kery ;) C ker y, we can extend; to i : R} — R,.ByLemmaB8.7R, is aflat
left R}-module. Therefore

Ho(Co(X ju)®21, R) = Hu(Co(X jn)®, s RD® 1 R (8.4)

Let M = Hi(X: R}) thenM = (R})" & T, M sinceM s finitely generated ansl; is a principal ideal
domain. It is straightforward to show that

TR"(M®R,{R”);TR,{M®R,{R”'

MR o e R s it suffi Ri  _ gk . Ri )
Moreover,TRéM: @@y soit suffices to show that rk oy = djrkwl o) for any non-zero

re R,{. Note that this would imply

Ry R,
rKic, (T M® o Rn) = TKig, ( @...@_>

(i(r1)) (i;(re))

R R

=rky, —— 4 -+ 1k, ——t
i (r) o)

) J

Let T € I'; such that);(T) = 1%i. We can write any element iy, as7" « wherex € ker ;. Hence
r can be written as a non-constant (Laurent) polynomialwith coefficients ink ;. We can assume that
r=ao+Tayr+ -+ T9a, with ag # 0.

Sincey is surjective, there is afl € I',, such that)(S) = ¢. We can write any element if,, asS” f
where f € ker y. In particular, any element df, that maps“/ undery can be written a§;’f. Since

Y@ ;(T) =y(T) = t}i, ij(T)= S;’f for somef € ker I',,. Hence
ij(ry=ij(ao) +i;(T)ij(ar) + - +i;(T)i;(ay)
=ij(ao) + 89 fij(ar) + -+ (89 /)i (ag)
=ij(a0) + $g1ij(ar) + - - + U g (ay)

for someg; € ker I',,. We note thafj (a;) € ker I',, which gives us our desired result. This completes the
pI'OOf thawn (l//) = 0n (‘pl) + 0n (lpZ) 0
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Animmediate consequence is thatX ) > 1 whenever the hypotheses in Proposition 8.6 are satisfied. In
particular, we havé, (y)=0forally € H(X; Z). We note thatifi,(X1)=0thenH(X»; Z) ~ H}(X; Z)
is an isomorphisrrﬁ,)fz(np) = oX(y) andr, (X) = r,(X2) (similarly if f1(X2) = 0).

Corollary 8.8. Let X be a compacbrientable3-manifold withr; (X) = 0 for somek > 0. Suppose that
&)

G = r1(X) does not satisfy bot@% ~7 and % =0.Then there exists an irreducib®manifoldY with

H = n1(Y) such that ' '

G  H
G£n+1) Hr(n+l)

for all n>0.

Proof. We assume thai; (X) >1. We can factoKasX = X1#- - - #X; where eaclX; is prime[16]. Since
re(X) = 0, there is exactly onesuch that,(X;) # 0 by Proposition 8.6. Let be the aforementioned

factor andH = =1(Y). It is easy to verify thaGﬁH) = # Moreover, the hypothesis daguarantees

thatY # §2 x SL. ThereforeY is irreducible. O

9. Rank of torsion modules over skew polynomial rings

In this section we will show that the rank of a (torsion) module presented by ann matrix of the
form A 4 tB (where A, B have coefficients iri<) has rank at mogh as ak vector space. This is well
known wheniK is a commutative field. In this case the rankbbverK is the degree of the determinant
of A 4 tB which is a polynomial with degree less than or equahtdVe will use this result in the proof
that the higher-order degrees give lower bounds for the Thurston norm in the next section. For a first read,
the reader may wish to only read the statements in Proposition 9.1 and Lemma 9.2 before proceeding to
the next section.

Let M be a righti<[s*1]-module with presentation matrix of the form+ tB whereA andB arel x m
matrices with coefficients iix, | is the number of generators bfandik is a (skew) field. We denote by
TM the K[r*1]-torsion submodule dfl. Using the embeddingx — K[r*1] by k — k - 1 we consider
TM as a module oveK.

Proposition 9.1. If M is a right [ *1]-module with presentation matrix of the forn+ tB where A and
B arel x m matrices with coefficients ik and K is a division ring then

rkik TM< min{l, m}. (9.1)

We begin by stating when two presentation matrices of a finitely presentedRigidduleH are
equivalent.

Lemma 9.2. [37, pp. 11#12Q. Two presentation matrices of H are related by a finite sequence of the
following operations.

(1) Interchange two rows or two columns.
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(2) Multiply a row (on leff) or column(on right) by a unit of R

(3) Add to any row a R-linear combination of other rosultiplying a row by unit of R on Igfor to
any column a R-linear combination of other colunfmailtiplying a column by a unit of R on right

(4) P — (P %), wherex is a R-linear combination of columns of P

B) P— (g ’5) wherex is an arbitrary column.
We will find the following lemmas useful in the proof of Proposition 9.1.

Lemma 9.3. A presentation matrix of the forrflAlX;IS ﬁj)l where A; has entries inl< (a non-
xXm
commutative division ringis related (in the sense of Lemma&.2) to a matrix of the form

(Al/—;tl“ %2) for somer >0.
3 (I—=r)x(m—r)

Proof. SinceAy is a matrix overis [20, Corollary to Theorem 16, p. 48jere areC andD such that

0 0
cnn- (3 0)
Here,C andD are units in the rings df x / andm x m matrices with entries ifiX, respectively. Hence
we can get the new presentation matrix

I O A1+t A 0 I\ _[(Ai+ty AxD
0 C A3z Ag D 0] CAs CA4D

<A1+t|s Ao2D )
= 0O 0.
Che 0 I

Now we can make the lastows of the matrix of the form0 /,) by adding(column(m — (I —i)))- (—a;, ;)
to columnj for each non-zero entry; ; in the lastr rows of CAg. In general this will changé; + tl; to
A’ +tl; for someA] whose entries lie if<. Using operation 5, we delete the lasbws and columns to
obtain our desired result.0]

Lemma 9.4. If A3 # 0then the presentation matr%Aljatls %2) of sizel x m is related to one of the

form <A/1J;t,|‘*1 %,2) of size(l — r) x (m — r) wherer >1.
3

Proof. Let

_ (A1 A2
= (% %)
anday ; be the(k, i) entry of A. By permuting rows inAz we can assume that the last row has a non-
zero element. Suppose that the first non-zero element in this row occurs iththelumn. We can
assume that this element is 1. Nowjf; is any other non-zero entry in the last roin j <s) we add
(columni) - (—a, ;) to (column j) to get a presentation with a zero in colujrof the last row. However,

this changes the, j) the entry of our matrix téa; ; —a; ;a;, ;) —tay, ; which does not lie iri<. To remedy
this, we add[a[’jt_l) - (rowj) to (rowi). Performing these two steps for all non-zeyg gives us a
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matrix whose last row is of the forg®, ..., 0,1, 0, ..., 0). By cyclically permuting columnsthrough

m (so that theth column becomes theth column) and using the operation of type 5 in Lemma 9.2, we
see that this matrix is related to the matrix obtained by deleting coluand rowl. We note that all the
entries in rowi lie in K. For the final step we cyclically permute rowghroughs (so that the'th row
becomes theth row) and use Lemma 9.3 to get our desired resuli.

Proof of Proposition 9.1. Let P = A + tB be a presentation matrix &. As in the proof of Lemma 9.3
there areC;«; and D, ,, (units in the rings of matrices ovét) such that

CBD= (Io g)
wheres < min{/, m}. Now if C* = tCt~1 we have
C'PD=C'"(A +tB)D = C'AD + tCBD.
HenceM has a presentation matrix of the form
aii1+t - ais

I; O : - :
A—i—t( ) e 92)
0 0 Ixm ds 1 SRR R e

* *k

where byA is nowC’AD, a matrix with entries iri<. We can now use Lemma 9.3 and Lemma 9.4 to get
a new presentation matrix

Aty Al
0 0)’

wheres’ <s. It follows thatTM has a presentation matrix
(AL +1tly Ay, (9.3)

whereA’ are matrices irK. Lets; (1<i <s’) be the generators GiM corresponding to (9.3). We show
that these generaleM as ak-module. Lets; ; be the(, j) the entry ofA] then we have the relations
o1a1,j+---+oajajj+1)+---+agay j=0for j<s'. Hences;t = — ) oxay ; is in the span ofs;}.
We prove by induction on thats;¢" is in the span ofs;}. Suppose;t” =) arbr; Whereby ; € K then

it = (Z okbk z)
= Z oxt (t by it)
k

= Z (Z a[bl,k> (l_lbk,it)
k l

= Z 0 (Z bl,k(t_lbk,if))
1 k
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forall i <s’. Therefore any elemedt o; p; (t) with p; (¢) € K[t*1] can be written as a linear combination
of ¢; with coefficients inK. It follows that rkc TM<s' <s< min{l, m}. O

10. Relationships ofs, and 5, to the Thurston norm

In this section, we will prove one of the main theorems of this paper. We show that the higher-order
degrees of a 3-manifold give lower bounds for the Thurston norm. The resultXib@knot complement
appears irf3] although it uses some of our work.

Theorem 10.1. Let X be a compagbrientable3-manifold (whose boundary if any is a union of thri
Forall y € H(X; 7) andn>0

S < Il

except for the case whely(X) = 1,n = 0, and XS x D?. In this casedo(y) <|[y|l7 + 1 + f3(X)
whenevely is a generator of 1(X; 7) ~ 7. Moreover equality holds in all cases wheh: n1(X)—Z
can be represented by a fibratiogh— 7.

The proof of this theorem will follow almost directly from Propositions 7.4 and 9.1. However, because
of some technical details we postpone the proof until after Corollary 10.7. We will begin the section
by proving a more generalized (but less applicable) version of Theorem 10.1. We first introduce some
notation.

Let X be a 3-manifoldy € HY(X; 2), G = ni(X), I, = G/Gﬁ"“). Recall that ifF is an embedded
surface dual ta@y, we can consider the homology Bfwith coefficients inik,, wherelg, is the field of
fractions ofZI7,. Define the higher-order Betti numbersfofo be

b!(F) =rky, H; (F; Kp,).

By Remark 4.4 we see that the Euler characteristié ohn be computed usirig,

1(F) = (=1)'b}(F) (10.1)

for anyn >0.

Now we consider the collection of Thurston norm minimizing surfaces dual#, . Itis very possible
that a surface i7 , is highly disconnected. One could ask, “What s the minimal number of components of
asurface iz, ?” For our purposes, it will turn out to be important to compute the number of components
of surface in7, that lift to thenth order cover oK. To be precise we make the following definitions.

Let F=]] F' be a (possibly disconnected) surface. We defipéF') to be the number of components

of Fwith i, (1 (F)) € G andN¢(F) to be the number of closed componentg afith i, (w1 (F')) C
GV Finally, we define

Wn(w) = mI,D {Nn(F) +N,§(F)}
FE.#‘,/,
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Theorem 10.2.Let X be a compagtorientable 3-manifold (possibly with boundady For all y €
HY(X:;7)andn>0

on()<IYliT + A0 ().

Proof. LetF be aThurston norm minimizing surface duajtthat minimizesv, (F)+ N (F). We remark

that a connected surface hgg ) = 0 if and only if the coefficient systemio i, : n1(F) — G/Gﬁ") is
non-trivial by Lemma 5.7. Therefor®, (F) = by (F). Similarly, we haveN, (F) = b5(F). By (10.1),

bi(F)= — y(F) + Nu(F) + N, (F)

<z + A ().

To complete the proof, we show that(y) <b’ (F). By Proposition 7.6,%}?(X) has a presentation
matrix of the formA + tB of size(b] (F) x m) wherem = rky, H1(Y; ;). Thus, by Proposition 9.1 we
have

Sn (W) = ke, /s (X) < Min{by (F), m}<bi(F). O

We note that the term,, () is an invariant of the paifX, ). However, in a general{’,, (/) may be
difficult to compute. Fortunately, in some cases, we may be able bound this term by a constant.

Suppose that we are interested in the genera of knots or links. More generally, suppose we are only
interested in the connected surfaces embedded in a 3-manifold. Then it is reasonable to measure the
complexity of the surface by its first Betti number. Using the proof of Theorem 10.2, we can find a lower
bound for the first Betti number & that has no “extra term”.

Corollary 10.3. If F is any surface dual tg thends, (¥) < f1(F).

Proof. SinceN, (F) < fo(F) andNy (F) < fo(F),

1(F)= — y(F) + N,(F) + N, (F)
= p1(F) + (Nu(F) — po(F)) 4+ (N, (F) — Bo(F))
<P1(F).

Thereforep, () <b](F)<py(F). O

We consider the case whéfis the complement of a link in S3. If L hasm components then
Hi(X; 7)=7" generated by then meridiansy; . Lety; be defined byy; (1) = 1% . That is,); is dual to
any surface that algebraically intersects atiemeridian once and thah meridian zero times foj # i.

We will show that a Thurston norm minimizing surface dualjtocan be chosen to be connected and
hence we can bound the termi, (;) by 1.

Corollary 10.4. LetX = $° — L andy; be as defined above. Then

on(Y)<IYillr +1

forall n>0.
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Proof. We show that for ali € {1,...,m} there exists a Thurston minimizing surfaée which is
connected and has non-trivial boundary. Hencg(y;) <1 and./"(;) = 0. The result follows from
Theorem 10.2.

Let F = || F/ be a Thurston norm minimizing surface dualfp Let {«} be the set of boundary
components oF. Suppose thai; ando; are parallel and have opposite orientation. Then we can glue
an annulus along; and«; to get a new surface whose relative homology class;angre unchanged.
Altering our surface in this way, we can assume that there is exactlkgsech thaty, - ¢, = 1 and
o - ;=0 for allkwheneverj # i. Secondly, we can assume that all the componerfisalze boundary
since every closed surface is zeraHa(X, 0X; Z). Now, let F; be the connected componentfohaving
ak, as one of its boundary components. Thgrrepresents the same relative homology class aad
v _(F;)<y_(F). ThusF; is a Thurston norm minimizing surface dualy#owhich is connected and has
non-trivial boundary. O

Theropelengthof a link is the quotient of its length by it's thickness.[® Corollary 22] Cantarella
et al. show that theninimal ropelengthr(L;) of the ith component of a link. = [ [ L; is bounded
from below by 2:(1 + /||y; ||7). Hence the higher-order degrees give computable lower bounds for the
ropelength of knots and links.

Corollary 10.5. Let X = §% — L andy; be as defined above. For eagt0,

R(Li)>2r(1+ /ou(Y;) — D).

Moreover if f1(X)>2o0rn>1 (or both) then

R(Li)=2r(1+ /6, (1))

Proof. The first (respectively second) statement follows from the bound given in Corollgi3] 2&d
Corollary 10.4 (respectively Theorem 10.1)]

Although it seems that the second statement in the Corollary is “stronger”, in practice the first statement
is often more useful. That i$,, = 0 whenever the rank is positive hence gives no new information. We
exemplify this phenomena in Example 8.3.

We would like to determine conditions that will guarantee that a surface will not lift tatin@rder
cover ofX. We show that if5; (X) > 2 thenr, (X) = 0 guarantees that no homologically essential surface
can lift to thenth-order cover oK. In particular, ifro(X) =0 theni*nl(F)gZGﬁl) S0 thati*nl(F)gGﬁ"H)
foralln>0. If 81(X)=1 a surface representing the generataipfX, 0X; Z) can only liftif the rational
derived series stabilizes at the first step,d}él.) = Gﬁz) == Gﬁ”*l).

Proposition 10.6. If there exists a compagatonnectedorientable two-sided properly embedded surface
F € X with f1(X)>2 such thaO # [F] € Ha(X, 0X; Z) andi,m(F) € G thenr, (X) > 1.

Proof. LetY=X\(F x I),since[F] # OF does not separak HenceYis connected. Letbe a oriented
simple closed curve that interset®xactly once, thelr = n1(X) = (m1(Y), 7| relations fromr1(F)).

If T (Y) C Gfl) then G/Gﬁl) = (y) which contradict$$;(X)>2. This implies thahl(Y)gGﬁl) hence
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nl(Y)ng””) for all » >0. Now we consider the Mayer—Vietoris sequence

0— Im(@ix @ jx) - Hi(X; Ay) — Ho(F- U Fy; 47) —
Ho(F x I; Ay) ® Ho(Y; #'n) — Ho(X; # ) — 0.

Sincenl(Y)gGﬁ"*l), n1(Y) — G — T, is a non-trivial coefficient system. Therefore we haig
(Y; #y) =0 andHo(X; #,) =0 by Lemma 5.7. We note that yk Ho(F; #,) = 1 sincen1(F) C
Gt follows that

rn(X) =Ky, Hi(X; A'y)
=Ky, Ho(F; A y) + Ky, IM(iy @ js)
>1. O

In particular, if there is a non-trivial surface that lifts to thik cover then, (X) > 1.

Corollary 10.7. If there exists a compaatonnectedorientable two-sided properly embedded surface
F € X with f1(X)>2 such tha0 # [F] € Ha(X, 8X; Z) andi,n1(F) € G thens, (y) = 0 for all
Y € HY(X: 7).

Proof. r,(X)>1implies thab, (y) =0forally € HY(X; 7). O
We now prove the main theorem of this section.

Proof of Theorem 10.1. We break the proof up into two cases.
Casel: LetX be a 3-manifold withg; (X) >2. Let F = UF; be a surface dual t that is minimal with
respect td| - ||7. We can assume that;] # 0 for all i. If any component of, say F; lifts to the nth

rational derived cover of, i.e.n1(F;) C G§”+1) thens, () =0 by Corollary 10.7. Otherwise ,, () =0
so by Theorem 10.2 we havg(y) <6, (V) < ||V 1.

Case2: Let X be a 3-manifold with3;(X) = 1 andy, be a generator off1(X; 7). Let F = UF; be a
surface dual tg/ that is minimal with respect tf - ||7. Sincep(ker y) < co and the boundary (if any)
is a union of tori, we can assume thais a connected surface wihy(F) = f3(X) [26, Proposition
6.1]. Therefore 1 o(y) <1+ B3(X) so by Theorem 10.2 we havg(y) = do(W) < |l¥liT + 1+ B3(X).
Now suppose: > 1. If n1<F)g_G£2> (hencenl(F_)gGS””)) then./",, () = 0 so the result follows from
Theorem 10.2. Otherwise, by Proposition 18,9 = J§,() = 0. We remark that if the higher-order
degrees of! x 52 ands! x D? are zero.

The last sentence in the theorem follows from the calculations in Proposition 8.4. Natg(fiat= 0
for fibered 3-manifolds so thay, () = 6, () foralln. O

To complete the proof of Theorem 10.1, we need prove Proposition 10.9 which states that if a homo-
logically essential surface dual ¢olifts to the nth order cover theM;./’(X) =0 fori < n. This will be
our main objective for the rest of this section.
We begin by showing thav,”f(X) is generated byf1(F; K, [t*1]). The idea behind the proofis simple.
If « # 0 is I, [t*1]-torsion then there existsa(r) € K[r*1] such that.p(r) = 0. Moreover, sincés is a
(skew) field, we can assume that)=1+ta1+- - - +1"a,, wherea,, # 0. Thusz andatay +- - - +at™ay,
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Fig. 3.7/ (X) is generated byf; (F; K, [t£1]).

cobound a surfac&in X, (seeFig. J). Since the power of on each term of the latter sum is positive,
Smust intersect a lift of the surfade Hencex is homologous to the intersection 8fwvith the lift of F.
Note that inFig. 3, « is homologous t@; + fo.

Lemma 10.8. y/f(X) C Im(iy) where
it Hy(F; K[t > Hi(X: K, [151).

Proof. By Proposition 7.647" (X) C T Im(j,) wherej, : Hi(Y; K, [t=1]) 55 Ha(X; K, [11]). We will
show thatT Im(j,) < Im(i,) which completes the proof.

Letox € T Im(jy) with j.(oy) = ox. Sinceoy is K, [r*1]-torsion, there existg (1) € K,[t*1] such
thatox p(r) = 0. We havej,(ay p(1)) = j«(oy) p(t) = ax p(t) = 0 so there existsr € H1(F; K,[t*1])
such thaty(or) = oy p(r). We can assume that(r) =1+ rc1 + - -- + "¢, Sinceay p(¢t) = 0 if and
only if ox p(t)u = 0 for any unitu € K,[tT1]. Now Hy(F; K,[tT1]) ~ Hi(F; K,)®x, K, [tF1] and
H1(Y; K, [1FY]) = Hi(Y; K,)®i, Ka[t71] S0 every element iy (F; I, [t£1]) (resp.Ha(Y; K, [t£1]))
has the form)_2° o ® t'(resp.> 2 B ® t') such thaty; € Hi(F; KK,) (resp.p; € Hi(Y; Ky))
and there are only finitely many non-zero(resp.g;). We writeor =Y 00 o ®t' and (as withp(t))
we may writesy = Zf:o B; ® t'. Using this notation we now have

k m
oyp() =) (B®t) )Y il
i=0 j=0
k+m

=Y > Bilep) ®1't)

=0 i+j=I
k+m

=2 | 2 mep|ef
=0

=0 \i+j=!
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and

o0

nep) =Y neer)

i=—00

= ) ()@ ®1) = (1), ® )t

i=—00

= > () @1 — (i4)u() @12

i=—00

= Y () @1 — (i) (-1 @1

i=—00

= Y (()u) = (i) (1) ® 1.

i=—00

Recallthayy(cr)=0y p(t) which impliesthagiﬂ.:l Bi (i) =(i-) (o) — (i) (oy—1) forall 0<I <k+
m. In particularco = 1 so when <k we can write; as a combination of; and(i_), (oy) + (i+)s(oy—1)
with i < /. That is,

Bt =G ). )— ()@ = > picy) @t
i+j=li<l
We will prove by induction thatj,.(f, ® ') € Im(i,) for eachl implying thatoy = j.(oy) =
j*(Zo<1<k B, ® t') € Im(i,) which completes the proof. We first note that
() (o) + () (1) @ 1) = jul(i ) (n @ 1) + (i), (-1 @ 1))
=iy @t —o_1 1)
=iy — o1 ®1h).
It follqws that o ® 1= (i—),(00) — (i+)s(2—1) @ L =i, (090 — 2—1 ® 1) € Im(i,). Now we assume that
Bi ® 1" =ix(y,) foralli<l — 1 so that

Je B @) = ju((i () — (i) ) ®@ ) = Y julBile)) ®1)

i+j=l.i<l
: ! : !
=iy —oy-1®1) — Z J«(B; @ 17)c;
i+j=li<l
. l .
=ix(g —y-1Q1) — Z ()
i+j=li<l

e Im(iy). O

We can use this to show thatyf is dual to a union of surfaces X whose fundamental groups all
include into the(n + 1)S! rational derived subgroup @ = 71(X) thens; () = 0 fori <n — 1.
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Proposition 10.9. If there exists a union of properly embedded surfages UF; in X with [F] €

H>(X,0X; Z) dual toy € HY(X; Z) such that for all | n1(Fj) C Gﬁ”“’ then;z/;/’(X) = 0 whenever
o<ign —1.

Proof. Consider the following diagram of abelian groups:

Hy(Fr,) _ Hy(Xr,)
p FJ pxl (10.2)
HUF G 5 Hux i),

wherei, is induced by the inclusion map F — X andpg([¢]) = [0 ® 1] (similarly for py). First we
observe that if <n — 1, every class i1 (Fr;) gets mapped intGﬁ”H) C G§i+2) by i, o p. hence is
zeroinGY™ /G = Hy(X,)/{z-torsion. Therefore, : Hy(Fr,) — Hi(Xr,) mapsHi(Fr,) to the
Z-torsion subgroup off1(Xr,;). SinceH1(X; K; [t*1]) is Z-torsion freepy o iy = 0.

Fr, — X,
F — 5 X.

Since (10.2) commutes, the imagef goes to zero undek. Therefore iflc ® p(7)] is an element of
Hi(F; K;[t*1), ix([c @ p()]) = ix([e ® 1]) p(t) = 0p(¢) = O (i is alk;[r*1]-module homomorphism).
By Lemma 10.8,9/;’(X) is generated by Iiti,) =0 henceszi;”(X) =0. O

Corollary 10.10. Let X be a’B-manifoId withf;(X)=1and F a surface dual to a generator HiL(X; 7).
If 11(F) < G@ thenGY = GU*Y forall i >1.

Proof. Sincep;(X) = 1, r,(X) = 0 by Proposition 5.2. That is1(X; K;[t*]) is a torsion module.
Wheni =0, g = Q so that

THL(X; Kolt]) = Hi(X; Qi) = Hu(X ) @ =GP /6P ® Q.

If n1(F) C sz), Proposition 10.9 implieFH1(X; Ko[r*1]) = 0. SinceGﬁl)/Gﬁz) .is Z-to.rsion free,
¢Y/6? - 69P/6? @ @ sendingg — ¢ ® 1 is a monomorphism. Therefo@” = GV for all
i>1. O

11. Realization theorem
We are ready to prove that the invariafisgive much more information than the classical invariants.

In fact, we subtly alter 3-manifolds to obtain new 3-manifolds with striking behavior. Cochran proves
this result wherg, (X) = 1 [3].



Shelly L. Harvey /Topology 44 (2005) 895-945 931

Theorem 11.1. For eachm >1 and > 2 there exists &-manifold X withf;(X) = u such that

[¥lla = d0(W) <o1(y) <--- <dm(W) <WliT

for all y € HY(X; Z). Moreover X can be chosen so that it is closédeducible and has the same
classical Alexander module as3amanifold that fibers oves?.

The proof of this will be an application of the following more technical theorem. We will postpone the
proof until later in the section. Theorem 11.2 is a tool that will allow us to subtly alter 3-manifolds in
order to construct new 3-manifolds whose degrees are unchanged up:th stage but increase at the
nth stage.

Theorem 11.2(Realization Theorejn Let X be a compagbrientable3-manifold withG = =1(X) and
G™ /G £ 0 for somen >0. Let[x] be a primitive class ir1(X; Z). Then for any positive integer
k, there exists &-manifold X (n, k) homology cobordant to X such that

(1)
G

—~ forO<i<n — 1,
G£z+1) Hr(x+1)

whereH = n1(X (n, k)) and
2)
xRy =X () + klpl.
foranyy € HY(X (n, k); Z) with y(x) = t7.

Proof. Let X be a compact 3-manifold wits"™” /G =~ 0. G = G implies thatG™ = "
hence our hypothesis guarantees thak) > 1. Since[x] is a primitive class irH1(X; Z), we can present
Gas

G=(x1,...,xu, ¥1, ..., YIIR1, ..., Rp),

wherey; € Gﬁl), x1=x,and{[x1],..., [x,]} is a basis foG/Gﬁl).

Begin by adding a 1-handle 6 x I to obtain a 4-manifol®/ with boundary X L X") U (0X x I) where
X' is obtained fronX by taking the connect sum witftt x S2. Thenny (V) ~n1(X')~G * (z) wherez
is the generator af1 (St x $2). Choose a non-trivial elemest e G — G and letw = zx ! and
o = [Ar, B] whereA; is defined inductively as

Al=w
Ap =[Ar—1,x] fork>2.

Now add a 2-handle td along a curvee (any framing) embedded iK' representingu(x, «] to obtain a
4-manifoldW with boundary X L —X (n, k)) U (0X x I). Let E =1 (W), H = n1(X (n, k)) and denote
by i andj the inclusion maps ok andX (n, k) into W, respectively.

Adding the 2-handle tX’ kills the elementw([x, ] iIN G * (z) =G * (w) SO E=(G, w|w[x, «]) =
(X1, ..., X Y1, - ., YL WIR1, ..., Ry, w(x, o). We see thaK (n, k) is the 3-manifold obtained by per-
forming Dehn surgery (with integer surgery coefficient corresponding to the framing of the 2-handle)
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along the curvec. Let y be the meridian curve to in X (n, k). The dual handle decomposition \&f
rel X (n, k) is obtained by adding t& (n, k) a O-framed 2-handle alongand 3-handle. This gives us

E=~(H]|y).
We show that
G =~ E ~ H
D =07 0 g0 g® O (11.1)
6. 6" BV EPT (85, B
for 0<i <n. Using Lemma 3.5, this will imply that
G = E =~ H
— «— (11.2)

G£i+l) Er(i-i-l) Hr(i-i-l) ’

There is a surjective map pKG, w|w[x, «])—G defined by killingw so that pr i, =ids. Consider the
induced maps

G iy E pr G
6.6 e ED 167,60
We will show by induction thatv € [E,(i), Eﬁ”] for.0<i <n. Sincew = [[Ag, B], x], it is clear that
w e [EQ, E©]. Now suppose thai € [E,(_’_l), EYV] for somei <n. Since Ay = [Ag_1, x] and
A1 = w, we haved, e [EV 7Y, Er(’_l)] c EY. Moreover, sinceB e.Gﬁn)Z we haveB ¢ E™ c gD
for i <n. Thereforg Ay, B] € [E_,(’), EDfori<n and hencew € (ED, ED1 < EYY . 1t follows that
pr is an isomorphism. Sing® o i, is an isomorphism,, is an isomorphism for i <n.
Now consider the maps
H e E
a0 5 ED B

where now we are consideriigas the groupH |y). We will show thaty € [H,(i), Hr(i)] for 0<i <n hence
the above map will be an isomorphism. Recall thd, k) can be obtained frorK by first doing Dehn
surgery on a 0-framed unlinked trivial knotito get the manifold’ = X#(S* x §2) and then performing
Dehn surgery along a cunearepresentingu[x, «] in X’. LetY = X’ — N(c) be the 3-manifold obtained
by removing a regular neighborhoodmin X’. We use the notationB = n1(Y), K = n1(X') =G x (z),
and/: Y — X’ be the inclusion map. Letbe the meridian of based afkg as inFig. 4. We show that
y € [Pr(i), P,(i)] for 0<i <n which implies that € [H,(i), Hr(i)] sinceP—H.

To begin, we will show that

y= [y, ur]™ - [y, upk 12 [A1, 221" - - =1, Am 1"/, (11.3)

wherel,(u;) € Kr(”) andZ; € Ncl(y) = ker(l,: P—K). Using this, we will show that the induced
map/, : P,(i)—»K,(i) is surjective for G<i <n + 1. Assuming these two statements to be true for now,
we shall prove by induction onthaty € (P, PV for 0<i<n as desired. It is clear from (11.3) that
v € (P2, P27, Now suppose that € [P, P™P] < P for somei <n. Thens,; € P for all

j. Sincel,: Pk is surjective and, (u;) € K", it follows thatu; = p;jA; wherep; ¢ P and

Aj e Ncl(y) < P,(i).Thus by (11.3)y € [P,(i), P,(i)] for 0<i <n.
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Fig. 4.y and the,vlils cobound a punctured sphere.

Let c be a curve representing the element

wlx, o] = zocx_loc_l

=zABA B I IBABTIA L

For simplicity, we prove the case whelntersects the cosphere (belt sphere) of the 1-handle attached to
X x I exactly 1+ 2Kt times. The proof can be modified for the case whengersects the cosphere more
than 1+ 2*+1 times. The #*1 intersections are a result of th&2 occurrences of andz 1 in A; and
the first intersection is a result the fissthat occurs incex 1«1, Note that the only occurrences oin
ax Lo~ show up inA sinceB is an element o6. Lety; be the meridian of based atg corresponding
to the jth occurrence of or z~1 in ax o1 as shown irFig. 4
Before proceeding, we sketch the idea of the next part of the proof. First we nofagtzaproduct of
yfl. We can pair each; with y,i1_; since they bound an annulus asdig. 5 Thus they are related by

yaky1j=u"tyuand hencejy;klﬂ_j = [y;, u~*]. We show that, («) is in thenth term of the derived
series ofK. Sincey; is a conjugate of, y is a product of commutators which can be writter(:as]"
with 7, (u) € K™

Leta” = b~1ab. Since the longitude of the unknot is trivial i) we see thag is equal to a product of
theyj.El as inFig. 4 Moreover, we can order the as we choose since switchinpgandy; only changes
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Xp
u
-‘———'-—--

Fig. 5.7; andy2k+1_j differ by a conjugation.

the element by a commutator of elementdNaf(y). For example,
by iz =ayyly 07 A2
_ -1 —1yi2
= Jayvidely; "0y

Hence we see that

2k—l 2k—1
41+ NS R ) qw , w
v= | TT et | T 2 e | Ve 220" L, A2,
j=1 j=1

where/; € Ncl(y). The chosen ordering will become clear in the next paragraph.

If the jth occurrence of a*! is aztheny; = 77/ wherel,(p;) = zw; andw, is the word that
occurs inax 1o~ up to but not including theth z. Whereas, if thejth occurrence of a*! is az~1
theny; = y?/ wherel.(p;) = zwjz~* wherew; is the word that occurs irx~*o* up to but not
including thejth z—1. Now we consider the caseclj <2¢~. The jth occurrence of*t in ox 141 =
ABATB~1x1BAB~1A * occurs in the firsi; and the(2 — j + 1)th occurrence of* occurs in the
firstA,:1 as the opposite power as tjih occurrence. Hence if; =z thenpa 1 ; =z A BAk‘le and
. _ 1 41 41
if pj=zojzt thenpoi 1 ; = zAkBA "oz 1. Moreover, the termy e, ;I the formula above
will always be of the forrr(yjyz‘lirl_j)ﬂ. Similarly, the(2¥ + j)th occurrence of*1 in ax~1s~1 occurs
in the secondi; and the(2**1 + 1 — j)th occurrence of*! occurs in the secon&l,:l as the opposite
power as the2* + j)th occurrence. Thus, ipy, ; = zaex 1Bw; then pyua, g ; = zaxta toy, if
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—y—lp -1 e —1—1 -1 . -1 +1
Pty j=zox ~Bawjz " theNpoiy  ; =zox™ "o w2z andyzkﬂ /2k+1+1 j (W/2k+j7/2k+l+17j) In
either case we see that foxlj <21
— P p2k+1
/]/2k+1] L O J
- [V? p]pgﬁflfj]p]

and

P ok . Pok+1,1_;
/zk+,/2k+1+1 JEVEHIG Pt

= [y, p2k+jp2k+l+1 j]P2k+/

_ _ -1 _ Se—1y—1
wherel(pjpy, 1 ) = L(B™HEWT) € K andlu(pay jpyta,y ) = L(BE 7)€ K.
Therefore

Y= [V’ Ml]vl te [}’» uzk]vzk [;"17 ;LZ]wl tee [;Lm—l, }Lm]wm/zv

wherel, (u;) € K™ andi; € Ncl(y) as desired.
Before proceeding, we note thatan be simplified to the form

Y= [V’ ul]vl e [}” u2k+m]vzk+m, (114)

wherel, (u;) € K,(”), since ifi1, 22 € Ncl(y) then[/1, A2] is a product of elements of the forfp, u]¥
wherel, (1) = 1. This is easily verified using the relation

[ab, c] = [b, c]]a, c].

We prove by induction thdt, : PP - K(‘) is surjective for &Xi <n + 1. Itis clear thai, : P,(O)

k2 is surjective. Now assume that P k" fori <n and letg € K", We note that ilG— H is
surjective thefiG, G]—[H, H]is surjective. Therefore it suffices to considesuch thag* K,(’), K(’)]
for somek # 0. SinceP”) — K" is surjectivel, : [P”, P11k, kV]is surjective and hence there
exists anf e [P,(i), P,(i)] such that.(f) = g*. Moreover, since®?—K there exists @ € P such that
1.(p) = g. It follows thatl,(f) = L.(p*) and hence* = £/ where/. € Ncl(y).Sincei <n, L.(u;) € j e
Hence, by the induction hypothesis, there exist P,(i) withu; =¢g;A; for A; € Ncl(y). Using (11.4)
we have

Y =17, q1A11" -+ - [, Gor o Aoty 1"24m

hencey e [P, P. Sincel e Nel(y), 1 e [P, PP sothatpk = £2 e [P?, PV]. Thusp e PIHY
andl,(p) = g which implies that, : P(’”) K,(i+1) is surjective fori <n. This concludes the proof
of (11.2).

The isomorphisms in (11.1) and (11.2) imply the following three statements. First, we can obtain the
G/ Gﬁ”“) andH /H}”*l)-regular covers oK andX (n, k), respectively by restricting to the boundary of
the E/Er("H)—reguIar cover ofV. Secondly, whemn = 0 the inclusion mapsand]j induce isomorphisms
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on Hi(—, 7) hence onH(—, 7). In fact,i andj induce isomorphisms on all integral homology groups.
Thus, we can consider the homomorphigras a homomorphism déandH as well asG. Lastly,

¢ =~ E” =~ HY
6,61 EPEPT HD, B

for 0<i <n — 1. In particular this implies that for any € HX(X (n, k), ) and 0<i <n —1, (SiX(”’k)(u,b) =
5" () =5 ).

We use the presentation given by the Fox Free Calculus (Section 6) to coﬁffb@t&. Let F =
F(x1,...,Xu y1,..., 1, w), x- F—-G. Recall that

olC, D oC oD
CDV_ e, oy €+ —1c, o 2
ow ow ow
foranyC, D € F. We computeaa% =1- Akx)a/;’;)‘l and% =1s0
0A
_k=(1—Akx)---(1—A2x).
ow

It follows that

whe el g — )
ow ow
=1+ wkx —[x,a]) <(1—ocB)% + (A — o) 6_B>
ow ow
=14+ wk — [x,a]) <(1— oaB)Y(1— Agx)--- (1 — Axx) + (A — o) S—z) .
Similarly we computea“’éj‘c’“] andawgf}’“] whenv € {x2, ..., x4 Y1, ..., Wik
uls.d _, [(1— Lx, a]) + (x — [x, o)) ((1 — ) 2 A %ﬂ ,
ox ox ox
owlx, o] 0A 0B
=wx — [x, a]) ((l— aoB) — + (A — o) —) .
ov ov ov

0AL Xi*(/)f

e — 0 since?t — 0 and

ox

We note tha%" = 0 sinceA; does not involves. Moreover

0A 0Ak—1
— =1 —[Ar—1,x]) —/—— + (Ax—1 — [Ak—1, x]).
ox ox

Using the involution and projecting tZ)[E/E,("H)] we get

S
a , / n
wa[x A I G _DA_B)A_ ot
w
Y ) Y )
dwlx, a1 ** " Ty, "

= =0.
ox; Oyi
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Thus

ixpE
W L 0
ox; ®Z[E/Er(n+l)]idkf[til] (11.5)
0 1+ (x—1)(1—B)A—x)k?

is a presentation oy (W, *; KE[¢F1]).

Let y be a primitive class itHX(W; Z) with y(x) = t” and let¢ be a splitting ofy,, : E/E,—Z. We
rewritea =1+ (x — 1)(1— B)(L—x)*lasa polynomial in. The lowest and highest degree terms of
aareB and

P (e TP A - B,

respectively. Our assumption th&t¢ Gﬁ”*l) (henceB ¢ E,(”+1) guarantees thaB — 1 is a unit in
Kf[tﬂ]). Therefore the degree afis k. Moreover, dedd_ tia; = deg)_ t'a; hence

degl+ (x — 1)1 — B)(L— x)F L =kp.
Lastly, H1(X, *; K¢[t+1]) is presented as%%)ﬁ‘bf ®Z[G/G,<."“>]idﬂ<§[tﬂ] therefore

oY () = 05 () + kp.

To finish the proof we will show thaif(”’k)(lp»é)‘,?’(w) for any y. Since(W, X (n, k)) has only 2
and 3-handles1 (W, X (n, k); R) = 0. By Lemma 11.5H>(W, X (n, k); R) is R-torsion. We have the
following long exact sequence of pairs:

s THa(W, X (1, k); R) > Hy(X (n, k): R) 5 Hi(W; R) — 0.

Sincej, (TH1(X (n, k); R)) € TH1(W; R) we can consider the homomorphism

THL(X (n, k): R) 25 THL(W: R).

We show that this map is surjective. Lete THi(W; R) andd € Hi(X (n, k); R) such thatj,(0) = o.
There exists € R such thatr =050/, (0r) = j.(0)r =or =0. By exactness, this implies that € Im 0.
Hence there exisise THx(W, X (n, k); R) with 9(v) =0r andvs =0 for some non-zero € R. Therefore
0(rs) = (0r)s =3(v)s =d(vs) =0(0) =0 which impliest) € TH1(X (n, k); R) Lastly, letR = K, [r*1] then
TH1(X (n, k); K, [rF1]) and TH(W; KK,,[t*1]) can be considered as frég,-modules with finite rank.
We havej, surjective so

5K )y = ki, THL(X (1, k); K [1E1]) =1k, THL (W 1G5 = oW (). O

Before proceeding, we will construct a specific example. We will begin with zero surgery on the trivial
link with 2 components and subtly alter the manifold to increase

Example 11.3.A specific example off (1, 1) when X = ST x $2#S1 x $2. Let X be 0-surgery on
the 2-component trivial link. The& = ST x §2#S1 x §2 with =, generated by andy (Fig. 6). Let
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o
o

SK =X,

Fig. 6. X = 51 x §2#51 x 52,

Fig. 7.X (1, 1) is our resulting manifold.

B =[x, y] and construcK (1, 1) as in the theorem by doirlgframed surgery o (seeFig. 7). For all
Y € HY(X (L, 1)),

3o PP ) =) =o0.
Moreover, we have
S yozef W) +1=1.

We can assume that the manifolds that we have constructed to be irreducible.
Proposition 11.4. If X is irreducible andd-irreducible thenX (n, k) is irreducible andb-irreducible.

Proof. Recall thatX (n, k) can be constructed froX by first taking a connected sum witt x $2 and
then doing integer surgery on a curvdRecall that the first homology class@ivas equal ta: ~1z where
xwas a generator df/1 (X) andzwas the generator of! x §2. Let M = (X#S1 x §2). We will show that
M — cisirreducible and-irreducible. A theorem of M. Scharlemaf80, p. 481]implies thatX (n, k)
is irreducible. It is clear thaX (n, k) is 0-irreducible.

First we show thatM — c is 0-irreducible. SincéM is 0-irreducible, it suffices to show that key:
n1(0c) — w1 (M) is trivial. Any curve on the boundary af that is parallel ton # 0 copies ofc is
non-trivial inz1(M) since it is non-zero in homology. Any other curvedans homotopic to the meridian
of c which we showed to be non-trivial in the proof of Theorem 11.2.

Let Sbe a non-separating 2-spherérihat represents the clajgs'} x S2 andN = M — S. ChooseSso
that it minimizes #S N ¢). Note thatV = M — (B, U B2) whereB1 and B, are disjoint 3-balls itM. After
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Fig. 8.D is a compression disc.

isotopingc to make it transverse t8 let P be the punctured 2-sphereMi — ¢ obtained by puncturing
Sat each intersection point with Let M’ be the manifold obtained by cutting — ¢ alongP. M’ has
two copies ofP in it's boundary, denote these punctured 2-sph&jesnd P> (so thatP; C 9B;). We will
show thatM" is irreducible andP; is incompressible id/’. It will follow that M — ¢ is irreducible.

Suppose thaM — c is reducible and let be a 2-sphere i — ¢ that does not bound a 3-ball and
minimizes #2 N P). SinceM’ is irreducible, we have@ N P)>1. Consider the intersection afand
P and letx be an innermost circle an. Theno bounds a dis® in M’. SinceP; is incompressible /',

« bounds a dis&€ in P. D U E is an embedded 2-sphereMi so it bounds a 3-baB in M’. We useB
to isotopeX in M — ¢ to get rid of the intersection. This contradicts the minimality of & N P). Thus
M — cisirreducible.

We note thatM’ is homeomorphic taf — (W) whereW is a wedge of spheres affdt W — M is
an embedding dfVinto M. Suppose that’ is reducible and let be an embedded 2-sphereifi that
does not bound a 3-ball. Sindéis irreducible,2 bounds a 3-balB in M. HenceM = BUsV. f(W) is
connected ang' (W) N 2 = so eitherf (W) C B or f(W) C V. However, the homology class ofs
equal tox 1z hencef (W)¢ B. Thereforef (W) C V henceX must bound a ball in/’, a contradiction.
ThusM’ is irreducible.

Suppose thaP; is compressible in/’. Leto be an curve oP; that bounds an embedded di3an M'.

o bounds the discg1 andE> on S SinceM is irreducible,D U E1 bound a 3-balBin M. If BN By, =
then eitherD U E1 or D U E5 bounds a 3-balB’ in N. We can use3’ to isotopec and reduce the number
of intersections ot with E1 or E> (seeFig. 8). This contradicts the minimality of# N ¢).

Now suppose thak N B> # J. UsingB we can assume that eithBrU E1 or D U E» bounds a 3-ball
B’ in M — B1. Let S’ =0B’. We note that #5’ N ¢) < #(S N ¢) sincec intersectst, and E2. Moreover,
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Mi S'x §?

S‘l

Fig. 9.Sands’ cobound ars? x I.

S’ anddB, cobound an embeddetf x I in N. ThereforeS’ andS cobound an embeddes® x 7 in M
(seeFig. 9) which can be used to isotope the cuovi® reduce the number of intersections Wahrhis
contradicts our minimality condition hend® is incompressible in/’. This completes the proof that
M — cisirreducible. O

Lemma 11.5. The manifoldX (n, k) is ¢ ;-homology cobordant to X far<n. Thatisi: X — W and
ji: X, k) - W induce isomorphisms on homology wity; coefficients where W is the cobordism
between X an& (n, k).

Proof. Consider the relative chain compl€x(W, X (n, k)). SinceéWis obtained fronX (n, k) by adding

only 2 and 3-handled)V is homotopy equivalent to a cell complex obtained by adding a single 2 and
3-cell. Hence we can assur@e(W, X (n, k)) =C3(W, X (n, k)) =Z andC; (W, X(n k))=0 for all other

j. For alli <n we lift the cells of(W, X (n, k)) to form the chain complex qu X(n k))

~ o~ 0.®id ~ o~
0> Ca(W.X(n. k) @ #; 3 Co(W.X(n. k) ® #'; — O,

where(W, X (n, k)) are the regulag/ E*V-cover of (W, X (n, k). Sinceds ® id : #; — A1, 05®

id is an isomorphism if and only i; ® id # O if and only if 95(¢) # O for somes. But since
H.(W,X(n,k)) =0,05 : C3(W, X(n,k)) - C2(W, X(n, k)) is not the zero map, henég is not the
zero map. Therefor#, (W, X (n, k); #";) =0 which gives ug, : H.(X (n, k); #7;) 3 H,(W;.x;). The
proof thati, : H,(X; A7) 3 H.(W; ;) follows almost verbatim except thaw, X) has only cells in
dimensions 1 and 2. O

Lemma 11.6. For eachn > 1, if 3,_1(y) # O for somey € H(X; Z) thenG™ /G" ™ £ 0.

Proof. If 6,_1(y) # O for somey then the rank ofH1(X,_1) as an abelian group is at least 1,
henceHy(X,_1)/{Z — torsion} # 0. But, Lemma 3.5 give&"™/G"™Y = Hy(X,_1)/{Z-torsion
soG™ /G 20, O
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We now proceed with the proof of Theorem 11.1.

Proof of Theorem 11.1. Let X¢ be a 3-manifold witho(Xo) = 0, 1(Xo) and whose universal torsion-
free abelian cover has non-trivigd and letG = =1 (Xo). For example, itis well-known that for eaph> 1
there exist 3-manifolds X (with and without boundary) which fibers dewith fiber a surface of genus
g >2 and such thaf; (X) = u. Each of these would satisfy the necessary condition¥ @mentioned
above (see Proposition 8.4). Ligt, .. ., x,} be a basis ot1(Xo; Z)/{Z-torsion} and{y,, ..., ’/’xu} the

(Hom) dual basis o1 (Xo; 2). Sincepy((Xo)r,) >0, Gﬁl)/Gﬁz) # 0 we can use Theorem 11.2 with
k =1 to construct a new manifol&i; with 5§°(lp) = 5§1(xp) andéf"(np) < 5f1(np)for ally € HY(X1; 2).

1
We do this by first constructing} from Xq to accomplishy)®(y) = 58(1@) forally € H1(X}; 72) and

310y < 87 °0hyy) +1< 53}_(%([//)51). We note that Theorem 11.2 guaranté?ls(lp) >67°(y) for all other
. Now we continue this for all other basis elemeunts, .. ., Y, togeta 3-manifoldXy, = X/ with
350(h) = 65 -(w) andsL () < 63 ~(y) for all y € HY(X1; 7).

In particular,éfl(np) > 0sobylLemma 11.G§2)/G£3) # 0. Hence we can construkb with (SiXZ(lp) =
51 () wheni <1andsy* () < 652(y) forally € HY(X7; 7). We continue this process until we obtain a
3-manifoldX = X,, with 5% () <X () <--- < 3X () forally € HX(X; 7). Sincerg(Xo) =0, Lemma
11.5 guarantees thag(X) = 0 hence|y/|| 4 = do(y) andé,, (V) <||¥li 7.

If we chooseX( to be closed, theK will be closed. Finally, to guarantee thats irreducible, it suffices
to chooseXy irreducible by Proposition 11.4.0J

We note that since (X) = 0, 6; () = d; () hence we could have stated this theorem in ternds aé
well asé;.

12. Applications

We show that the higher-order degrees give new computable algebraic obstructions to 3-manifolds
fibering overS! even when the classical Alexander module fails. Moreover, using the work of Kron-
heimer, Mrowka, and Vidussi we are able to show that the higher-order degrees give hew computable
algebraic obstructions a 4-manifold of the folnx S admitting a symplectic structure, even when the
Seiberg—-Witten invariants fail.

12.1. Fibered 3-manifolds

Recall that ifX is a compact, orientable 3-manifold that fibers o§érthen by Proposition 8.4, the
higher-order ranks must be zero. Moreoveg,ifX) > 2 andy is dual to a fibered surface théy(y) must
be equal to the Thurston norm for aland hence are constant as a function.afle define the following
function ofy. Letd;; : HY(X;7) — 7 be defined byl;; = ¢; — ¢; for i, j>0. Note that/;; = 0 if and
only if 8; = ¢; for all y € HY(X; 2).
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Theorem 12.1. Let X be a compagtonnectedorientable3-manifold. If at least one of the following
conditions is satisfied then X does not fiber as&r

Q) r,(X) # 0for somen >0,

(2) p1(X)>2and there exists, j >0 such thatd;; () # Oforall y e HY(X: ),

(3) p1(X) =1andd;; () # Ofor somei, j>1andy € HX(X; 7),

(4) ﬂl(Xl) =1, X%Sllx 52, X281 x D? anddo; () # 1+ f3(X) for somej > 1 wherey is a generator
of H(X; 7).

Proof. We consider each of the cases separately.

(1) This follow immediately from Proposition 8.4.

To prove that each of last three conditions implies tabes not fiber oves! we can assume that
r,(X)=0foralln >0. Otherwise the conclusion would be (vacuously) true siheeuld satisfy condition
(1). Hences,, = 6, for all n >0 by Remark 5.11.

(2) If X fibers overS! andf,(X)>2 then for alln >0, 6,(y) = ||| 7 for somey € H(X; Z) by
Proposition 8.4. Hencg, (y) is a constant function af. In particular,d;; () = 0 for all i, j >0 which
contradicts our hypothesis.

(3) If X fibers overs andp,(X)=1thenforall >1 andy € HY(X; Z), 6, () = |y 7 by Proposition
8.4. Hencej, (y) is a constant function af for n>1. In particulard;; (y) = 0 for alli, j >1 andy €
HY(X; z) which contradicts our hypothesis.

(4) If X fibers overs?, p;(X) =1, XSt x §2, X1 x D? andy is a generator of/1(X; Z) then
by Proposition 8.490(}) = ||¥|l7 + 1 + B3(X). The rest of the proof is similar to the previous two
cases. [J

The previously known algebraic obstructions to a 3-manifold fibering SVere that the Alexander
module H1(X; ZI'o) is finitely generated and (wheh (X) = 1) the Alexander polynomial is monic. If
B1(X)>2, the Alexander module being finitely generated implies th@t) = 0.

Consider the 3-manifolds in Theorem 11.1. We note that d9 hence they cannot fiber ovet.
Moreover, they can be chosen to have the same Alexander module as those of a 3-manifold that fibers
over S1 as remarked in the first paragraph in the proof of Theorem 11.1.

Corollary 12.2. For eachu>1, Theoremll1.1gives an infinite family of closed irreducibBmanifolds
X wheref;(X) = u, X does not fiber oves!, and X cannot be distinguished from a fibe@dhanifold
using the classical Alexander module.

12.2. Symplectic 4-manifolds of the fodnx St

We now turn our attention to symplectic 4-manifolds of the fotfnx S2. It is well known that ifX is a
closed 3-manifold that fibers ovst thenX x S* admits a symplectic structure. Taubes conjectures the
converse to be true.

Conjecture 12.3(Taube$. Let X be a3-manifold such thak x S admits a symplectic structure. Then
X admits a fibration oves?.
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Using the work of Meng—Taubes and Kronheimer—Mrowka, Vid{&5] has recently given a proof
of McMullen’s inequality using Seiberg—Witten theory. This generalizes the work of Kronhgigr
who dealt with the case thxtis the 0-surgery on a knot. Moreover, Vidussi shows that i S* admits
a symplectic structure (ang} (X) >2) then the Alexander and Thurston normsXatoincide on a cone
over a face of the Thurston norm ball ¥f supporting the conjecture of Taubes.

Theorem 12.4(Kronheimer[23] and Viduss[34,35]). Let X be an closedrreducible 3-manifold such
that X x St admits a symplectic structure if(X) > 2there exists & € H1(X; Z) suchthat|y/|la=|v| 7.
If 1(X) = 1then for any generatop of HX(X; 2), |¥lla = V|7 + 2.

Consequently, we show that the higher-order degrees of a 3-maXifileé new computable algebraic
obstructions to a 4-manifold of the ford x S* admitting a symplectic structure.

Theorem 12.5. Let X be a closed irreducibl@-manifold. If at least one of the following conditions is
satisfied therk x S* does not admit a symplectic structure.

(1) B1(X) >2 and there exists an> 1 such thab, () > do(y) for all y € H(X; 7).
(2) p1(X) =1,y is a generator ofH1(X; Z), and s, () > do(1y) — 2 for somen >1.

Proof. If f(X)>2,n>1, andX x s admits a symplectic structure then by Theorems 10.1, 12.4, and
Proposition 5.125, () < ||l = do() for somey € HY(X; 7). If fo(X)=1,n>1,y is a generator of
ﬁl(X; 7) andX x S admits a symplectic structure then by Theorems 10.1 and 3204 < ||l =

do(y) —2. O

Thus, Theorem 11.1 gives examples of 4-manifolds of the #5rnS* which do not admit a symplectic
structure but cannot be distinguished from a symplectic 4-manifold using the invariants of Seiberg—Witten
theory.

Corollary 12.6. For eachu>1, Theoreml1.1gives an infinite family ofi-manifoldsX x S where
B1(X) = u, X x ST does not admit a symplectic structusnd X cannot be distinguished from fibered
3-manifold using the classical Alexander module.

We note that the conditions in Theorem 12.5 are (strictly) stronger that the conditions in Theorem 12.1.
The cause of this discrepancy is our lack of knowledge of the behavior of higher-order degrees when
X x S admits a symplectic structure. We make the following conjecture, supporting the conjecture of
Taubes.

Conjecture 12.7. If Xis a closedorientableg irreducible3-manifold such thak x St admits a symplectic
structure then there existsyae H1(X; Z) such that, () = ||y|/r for all n>1.

More interesting would be the possibility of finding an a symplectic 4-manifold of the form st
such thaby () < do(y) for all y € HY(X; 7); giving a counterexample to the conjecture of Taubes 12.3.
We conclude with the remark that Conjecture 12.7 is true wXés a knot complement i3, [3,
Theorem 9.5] The proof of this relies on the fact that the higher-order degrees are non-decreasing
in n [3, Theorem 5.4Jand are bounded by the Thurston norm. More precisely, Cochran proves that
do() — 1< (Y) < -+ - <, (Y) - - - wheneverX = S8 — K andy is a generatoH (X ; Z). Moreover, the
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proof of Theorem 5.4 i§3] can be modified to prove that higher-order degrees are non-decreasing (in
n) whenX s any finite CW-complex homotopy equivalent to a 2-complex with Euler characteristic zero.
Hence Conjecture 12.7 is also true for any 3-manifold wibh-empty toroidal boundary.
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