A non discrete metric on the group of topologically
slice knots
Topology in dimensions 3, 3.5, and 4
Shell\&y Harvey Rive University
w/ Tim Cochran, Mark Powell, + Arunima Ray.

Def: A knot is a smooth embedding

$$
f: S^{\prime} \longleftrightarrow S^{3} .
$$

Remark: A knot K is the unknot \Longleftrightarrow K bounds a disk in S^{3}.

Def: A knot $K \leq S^{3}=2 B^{4}$ is slice if $K=2 D$ is the boundary of a smoothly embedded disk D in B^{4}.

Note: There is no known algorithm to determine if a knot is slice!!! Q. Is the Conway knot slice?

known to topologically slice but unknown if it is smoothly slice!

Ex: A knot is ribbon if it is the boundary of an immersed disk in S^{3} with "ribbon singularities":

Observation: Every ribbon knot is slice. Pf: Take a small disk around singularity and push it moo B^{4}.
push interior of

into interior of B^{4}

$\leftarrow\left(\right.$ what is left in $\left.S^{3}\right)$

$8 q$ is ribbon
Slice disk for 89

$\Rightarrow 8_{9}$ is slice but does not bound an embedded disk in \mathbb{R}^{3} !

Slice -ribbon conjecture: Every (smoothly)
slice knot is ribbon.

Note: This problem is extremely difficult since every ribbon knot has a slice disk that is not even is isotopic to any ribbon disk!

Ex: Let S be a smoothly embedded non trivial $2-k n o t, S^{2} \hookrightarrow S^{4}$. Let $U=$ unknot, and $D=$ standard disk with $\partial D=U$. Push U into B^{4} and then take a connected sum with S. Then $U=2 S$ (5 punctured) and $\pi_{1}\left(B^{4} \backslash S^{0}\right)=\pi_{1}\left(S^{4} \backslash S\right)$ is non-abelian since s is non-trivial.

Fact: If D is a ribbon disk for K then

$$
\pi_{1}\left(s^{3}, k\right) \xrightarrow{i_{*}} \not \pi_{1}\left(B^{4}, D\right)
$$

is surjective.
parched in
In example:

$\Rightarrow \dot{S}$ is a slice disk that is not isotopic to any ribbon disk.

Another example (using "movie moves") We can look at level set of a disk in \mathbb{R}_{+}^{4} 9_{46} is slice

We can put an 4-dimensional equivalence relation on knots.

Def: Let K and J be knots in S^{3}. We say that K is concordant to J if $K \times\{0\}$ and $\bar{J} \times\{1\}$ cobound a smoothly embedded annulus in $s^{3} \times[0,1]$.

Concordance group
Let $C=\{$ knots $\} / \sim \quad k \sim J$ if they are concordant.
Then C is a group under connected sum.

$$
(\vec{\rho}+\underbrace{\Omega}=(\sqrt{\infty}
$$

* need oriented knots.
$O=\{$ Slice knots $\}$
Inverse of K is \bar{K}.
For any $K, K \# \bar{K}$ is slice where

$\bar{K}=$ mirror image

Pf that $k \# \bar{K}$ is slice (ribbon)

Make immersed disk by lines from k to \bar{K}. The only self-intersection are ribbon singularities

C is a non finitely generated abelian group. We don't know what C is.

- C contains elements that are 2 -torsion.

$$
=
$$

4,

$\overline{4}$
$\Rightarrow 24_{1}=0$ and 4, is not slice $(4, \neq 0)$

- C contains elements al infinite order

Thy (Levine '60's) 子 surjective homomorphism

$$
C \xrightarrow{\pi} \underset{\uparrow}{\mathrm{~A}} \cong \mathbb{Z}^{\infty} \oplus \mathbb{Z}_{2}^{\infty} \oplus \mathbb{Z}_{4}^{\infty}
$$

algebraic concordance group (witt group of Seifert matrices)
Q. Are all torsion elements, 2-torsion?

- $\operatorname{ker}(\pi)$ is non-trivial (in higher.dimensons π is $a_{n} \cong$)

Thm (Casson-Gorton, Gilmer): $\operatorname{ker} \pi \neq 0$.

$$
k=(\sqrt{3}
$$

n-solvable filtration
Cochran-Orr-Teichner defined filtration

$$
\ldots c_{n}^{\alpha} \subseteq \ldots \leq f_{1} \leq f_{0.5} \leq f_{0} \leq C
$$

$K \in f_{0} \Leftrightarrow \operatorname{Arf}(K)=0 \quad$ Arf muariant
$K \in o f_{0.5} \Leftrightarrow k \in \operatorname{ker}(\pi) \quad$ Algebraically sliee
$K \in \mathcal{F}_{1.5} \Rightarrow$ Casson-Gordon invariants vanish.

Def: If G is a group, define $G^{(0)}:=G$ and

$$
G^{(n+1)}=\left[G^{(n)}, G^{(n)}\right],
$$

$\left\{G^{(n)}\right\}$ is the derived series of G.

Def: A knot K is (n)-solvable (in $^{o_{n}}$) if there is a smooth 4 -mild W with $\partial W=S^{3}$ and smoothly embedded disk $\Delta \subseteq W$ with $\partial \Delta=K$ st.
(1) $H_{1}\left(s^{3}-K\right) \cong H_{1}(W \cdot \Delta)$
(2) $[\Delta]=0$ in $H_{2}\left(W, S^{3}\right)$
(3) $H_{2}(W) \cong \mathbb{Z}^{2 g}$ has a basis represented bu surfaces $\Sigma_{i}, d_{i} \subseteq W \cdot \Delta$ s.t. $\Sigma \mid \cdot c_{j}=\delta_{i j}$, $d_{i} \cdot d_{j}=0=\Sigma_{i} \cdot \Sigma_{j}$.
(4) $\pi_{1}\left(\Sigma_{i}\right), \pi_{1}\left(d_{i}\right) \subseteq \pi_{1}(W-\Delta)^{(n)}$

Thm (Cochran-H-heidy): For each $n \geq 0$, $\mathcal{F}_{n} / \mathcal{F}_{n .5}$ contains $\underset{p(t)}{\oplus}\left(\mathbb{Z}^{\infty} \oplus \mathbb{Z}_{2}^{\infty}\right)$ symmentic irreducible
$n=0$: Milnor-Tristram, Levine (60's)
$n=1$: Jiang, Livingston
$n=2$: Cochran-Teichner

Operators on C
Def: A pattern P is a slice knot R and unknot η disjoint from R, such that η bounds a surface disjoint from R.

PiC $\longrightarrow C$ (not a homomorphism)

tie strands $\underset{\text { going to }}{\text { in }} \underset{K}{ }$ satellite operator.

$$
P: f_{n} \longrightarrow f_{n+1}
$$

Hence $P^{n}(k)=P\left(P(\ldots P(k)) \in \mathcal{F}_{n}\right.$ for any k with Art invariant zero. Exs of \mathbb{Z}^{∞} and $\mathbb{Z}_{2}^{\infty} \in \mathcal{F}_{n} / y_{n \cdot s}$ are constructed this way!
Q. When is P injective?
Conjecture: Q is mjective

$Q(K)$ is slice \Leftrightarrow K is slice

Known: There is a subgroup of C on which Q^{n} is injectice for $\forall n$.

Ex: Whitehead double

$$
w_{h}=0
$$

Th: K \longmapsto

$$
w h(k)
$$

Conjecture: Wh(K) is snioothly slice $\Leftrightarrow K$ is smoothly slice (ie. Wh is weakly infective).

Remark: For any K, the Alexander polynomial of $W h(K)$ is $1 \Rightarrow$ by Freedman, $W h(k)$ is always topologically slice (bounds a topologically locally flat disk in B^{4}).

Satellite operators gie a way to construct elements. in g_{n}. The difficult part is to show $P^{n}(K)$ is not sliced
(or even in on $_{n .5}$)!!!

- Use invariants of knots such as L^{2}-signatures, d-inuts and I invariants from Heegaard Floer homology, etc.

We conjecture that C has the structure of a "fractal set".

Would like some notion of distance where mage $\left(P^{n}\right)$ is getting smaller as $n \rightarrow \infty$.

Symmetric gropes
Def: A grope of height 1 is a compact oriented surface G, with $|\partial \Sigma|=1$.

$$
G_{1}
$$

Let $\left\{\alpha_{1}, \ldots, \alpha_{2 g}\right\}$ bc a standard symplectic basis of curves for $H_{1}\left(G_{1}\right)$ on $G_{1}, g=$ genus $\left(G_{1}\right)$

A grope of height $n+1$ is obtained by attaching gropes of height n to $\alpha_{1}, \ldots, \alpha_{g}, \beta_{1}, \ldots, \beta_{g}$.

Def: A branched symmetric grope is defined as follows:

Let Σ_{1} be a compact connected orientable surface of genus g_{0} with a standard sympl. basis of curves $\left\{\alpha_{1}, \ldots, \alpha_{2 g}\right\}$ with $\alpha_{2 i-1}$ dual to $\alpha_{2 i}$. Attach to each α_{i}, a grope of height m_{i} s.t. $m_{2 i-1}=m_{2 i}$, no subsurface of which is a disk.

Let $n_{i}=m_{2 i}$.

$$
n_{1}=m_{1}=m_{2}=0 \quad n_{2}=m_{3}=m_{4}=2 \quad n_{3}=m_{5}=m_{6}=1
$$

Let ε be a branched symmetric grope.
Define $g_{1}=$ genus $\left(\Sigma_{1}\right)$
$g_{2}^{i}=$ sum of genera of first stage surfaces attached to $\alpha_{2 i-1}, \alpha_{2 i}$.
$g_{n_{n+1}}^{i}=$ sum of genera of n_{i} stage surfaces attached to $\alpha_{2 i-1}, \alpha_{2 i}$.

No g_{2}^{\prime} since $n_{1}=m_{1}=m_{2}$.

Note: For each $1 \leq i \leq g_{1}$ and $2 \leq k \leq n_{i}+1$,

$$
\begin{array}{ll}
& g_{k}^{i} \geqslant 2 g_{k-1}^{i} \\
\Rightarrow \quad & g_{k}^{i} \geqslant 2^{k-1}
\end{array}
$$

Let $q \geqslant 1$ be a real number and \sum a branched symmetric grope. Define

$$
\|\Sigma\|_{q}:=\sum_{i=1}^{g_{1}} \frac{1}{q^{n_{i}}}\left(1-\sum_{k=2}^{n_{i}+1} \frac{1}{g_{k}^{\prime}}\right)
$$

Def: If K, J are knots, define

$$
d^{q}(K, J):=\inf \left\{\|\Sigma\|_{q} \left\lvert\, \begin{array}{c}
\left.\sum_{\text {embedded in }}^{\text {is } S^{3} \times I \text { with boundary }}\right\} \\
K \times\{03 \text { and } \bar{J} \times\{1\}
\end{array}\right.\right\}
$$

Note: Any two knot cobound a surface.

$$
\|\Sigma\|_{q}=\left(\frac{1}{q^{0}} \cdot 1\right)+\frac{1}{q^{2}}\left(1-\frac{1}{3}-\frac{1}{9}\right)+\frac{1}{q^{\prime}}\left(1-\frac{1}{4}\right)=1+\frac{5}{9 q^{2}}+\frac{3}{4 q}
$$

Ex: If K has bounds a genus 1 surface ε and $\operatorname{Arf}(k) \neq 0$ then k cannot bound a (symmetric) height 2 grope. So

$$
d^{9}(k, u n k n o t)=g(\Sigma)=1 .
$$

Ex $\quad \frac{1}{\partial q} \leq d^{q}(\leftrightarrow,(\Omega)) \leq \frac{\partial 7}{16 q}$

Prop (Cochran-H-Powell): For $q \geqslant 1$, the function d^{q} determine a psendo-meturic on C.

- Need to show $\|\Sigma\|_{q} \geqslant 0$ for any Σ.

Prop: If K does not bound a grope of height n then

$$
d(k, \text { unknot }) \geqslant \frac{1}{(2 q)^{n-2}}
$$

The (colhran-Orr-Teidhner): If k bounds a height n grope then $k \in \mathcal{F}_{n-2}$

Prop(Cochroa-H-Powell): If P is a pattern then $P: C \rightarrow C$ is a contraction w.r.t. d^{q} for $q>g W(P)=\#$ of times R goes through η.

Thy (Cochran-H-Powell): For any $q>1$ there exists uncountable many sequences of knots $\left\{k_{i}\right\}$ sit.

$$
\begin{array}{ll}
d^{q}\left(k_{i}, \text { unknot }\right)>0 & \forall i \\
d^{q}\left(k_{i}, \text { unknot }\right) \rightarrow 0 & \text { as } \quad i \rightarrow \infty .
\end{array}
$$

Hence the topology on $\left(e, d^{q}\right)$ is not discrete for $q>1$.

Topologically slice knots
Let $\tau=\{$ topologically slice knots $\} \leq C$.
Thin is an interesting and subtle subgp of C.

Thy (Hon): T has a \mathbb{Z}^{∞} summand. (Ends showed that $\mathbb{Z}^{\infty} \subseteq C$).

Remark 1: If $k \in T$, then $k \in \exists_{n} \forall n$.
Remark 2: If $k \in T$, then k bounds an arbitrarily long symmetric grope all of whose first stage genus is fixed.
Hence for $q>1$,

$$
d^{9}(k, \text { unknot })=0 .
$$

Remark 3: For $q=1$, the only way to get $d^{\prime}(k$, unknot $)=0$ would be for k to bound a arbitrarily long grope with each stage having genus 1.

$$
\|k\|_{1}=1-\frac{1}{2}-\frac{1}{4}-\cdots-\frac{1}{2^{n_{1}}} \rightarrow 0 \quad \text { as } n_{1} \rightarrow \infty
$$

It is unknown if there is a non-slice knot that bounds such a rose!
Conj: $\exists k \in T$ s.t. $d^{\prime}(k$, unknot $)>0$.

Mone generally
conjectuce: $d^{\prime}(k, J)>0 \quad \forall \quad k \neq J$.

Bipolar Filtration
Cochin, Horn and I defined a filtration

$$
\cdots \subseteq B_{1} \leq B_{0} \subseteq C
$$

that is a refinement of $\left\{\mathrm{f}_{n}\right\}$ and Gompt and Cochran's notion of positivity of knots.
The (Cochran-H -Horns): $\mathbb{Z}^{\infty} \subseteq B_{n} / B_{n+1} \quad \forall n$. unlike $\left\{\mathscr{F}_{n}\right\}$ this is an interesting filtration for topologically slice knots.

Def: A knot $K \in P_{n}$ (is n-positive) if $k=\partial \Delta, \Delta$ is a saroothly embedded disk in a smooth m fld W s.t.

- $2 W=S^{3}, \pi_{1}(W)=1$
- $[\Delta]=0$ in $H_{2}\left(W, S^{3}\right)$.
- The int. form on $H_{2}(W)$ is pos. def.
- $\mathrm{H}_{2}(\mathrm{~W})$ has a basis neper. by surfaces $\left\{S_{i}\right\}$, disjountly embedded in W•D s.t.

$$
\pi_{1}\left(S_{i}\right) \leq \pi_{1}(w-\Delta)^{(n)}
$$

* Can also define when $K \in N_{n}$ (n-negatice).

$$
B_{n}:=N_{n} \cap P_{n} \quad \forall n \text {. (n bipolar knots) }
$$

$\operatorname{Prop}(C H H): B_{n} \subseteq f_{n}$.
Prop (CHH): If $K \in B_{0} \Rightarrow$

$$
\tau(k)=s(k)=\delta(k)=d(+1 \text { sur is. on } k)=\varepsilon(k)=0
$$

Prop ($C H H$): If $K \in B_{1}$ and $y=p^{\text {- }}$-fold branched cyclic cover of $K, s_{0} \in \operatorname{spin}^{c}(y)$ corresponding to a spin itruntue on $Y \Rightarrow$

$$
d\left(Y, s_{0}\right)=0 .
$$

Def: $T_{n}:=T_{\cap} B_{n}$.
Than (cochran-H-Horn): $T_{0} / T_{1} \neq 0$
Thm (Cochran-Horn): $T_{1} / T_{2} \neq 0$.
Thm (Cha-Kim) $T_{n} / T_{n+1} \neq 0 \quad \forall n$.
Pf wees $L^{2}-\rho$ invts and d-incts of p-fold branched colers for an infinite $\#$ of p.

Tower metrics (cochran, H, Powell, Ray)
For $q \geqslant 1$, can define a metric $d_{q}^{B}: e_{x} \times \rightarrow \mathbb{R}$ based on kinky disks and gropes.
"Def" A generalized positive plumb d dandle (GPH")
 attach gropes of height n_{i} to $\alpha_{\text {: }}$

$$
\begin{aligned}
& g_{1}^{+}=\#+ \\
& g_{1}^{-}=\#-
\end{aligned}
$$

Ex:

attach grope to $\alpha \quad g_{1}^{+}=1 \quad g_{1}^{-}=1$

$$
a m_{1}=g m_{i}=2 \quad a m_{2}=g m_{2}=1
$$

Def: A positive truer for K ir an embedding of a GPH ${ }^{+}$into B^{4} with $C \rightarrow K$. (C has 0 -framing)

If K, J bound a positive tower, Σ,

$$
\begin{aligned}
& d_{\varepsilon, q}^{+}(k, J)=\sum_{i=1}^{g_{1}} \frac{m_{i}}{q^{n_{i}}}\left(1-\frac{1}{2} \sum_{k=2}^{n_{i+1}} \frac{1}{g_{k}^{n}}\right) \\
& g_{1}=g_{1}^{+}+g_{1}^{-} \\
& m_{i}=\frac{\mid \text { alg multi } \mid+ \text { geom. mu lt }}{2}
\end{aligned}
$$

$$
d_{q}^{+}(k, J)=\min \left\{d_{\varepsilon, q}^{+}(k, J) \mid \Sigma\right\} .
$$

can define $d_{q}^{-} \sin$.

$$
\begin{aligned}
& d_{q}^{\beta}(k, J)=\max \left\{d_{q}^{+}(k, J), d_{q}^{-}(k, J)\right\} . \\
& \underline{\operatorname{Prop}}(C H P R): \text { If }\|k\|_{q}^{+}<\frac{1}{(2 q)^{n}} \Rightarrow k \in P_{n}
\end{aligned}
$$

Cor: \exists topologically slices knots K_{i} with $d_{q}^{B}\left(K_{i}\right.$, un $\left.k_{n O} t\right)>0$.

Conjecture '(1) There are topologically slice knots K_{i} s.t. $d_{a}^{B}\left(k_{i}\right.$, unknot $) \underset{i \rightarrow \infty}{\longrightarrow}$ and $d_{q}^{B}\left(k_{i}\right.$,unknot $) \neq 0$ for all $q \geqslant 1$.
(2) d_{q}^{B} is a metric (not just pseudo-metric) $\forall q \geqslant 1$.

