RICE UNIVERSITY

A new filtration of the Magnus kernel

by

R. Taylor McNeill

A Thesis Submitted
 in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy

Approved, Thesis Committee:

Associate Professor of Mathematics
Tim Cochran,
Tim Cochran
Professor of Mathematics

Houston, Texas
April, 2013

Abstract

A New Filtration of the Magnus Kernel

by

R. Taylor McNeill

For a oriented genus g surface with one boundary component, S_{g}, the Torelli group is the group of orientation preserving homeomorphisms of S_{g} that induce the identity on homology. The Magnus representation of the Torelli group represents the action on $F / F^{\prime \prime}$ where $F=\pi_{1}\left(S_{g}\right)$ and $F^{\prime \prime}$ is the second term of the derived series. I show that the kernel of the Magnus representation, $\operatorname{Mag}\left(S_{g}\right)$, is highly non-trivial and has a rich structure as a group. Specifically, I define an infinite filtration of $\operatorname{Mag}\left(S_{g}\right)$ by subgroups, called the higher order Magnus subgroups, $M_{k}\left(S_{g}\right)$. I develop methods for generating nontrivial mapping classes in $M_{k}\left(S_{g}\right)$ for all k and $g \geq 2$. I show that for each k the quotient $M_{k}\left(S_{g}\right) / M_{k+1}\left(S_{g}\right)$ contains a subgroup isomorphic to a lower central series quotient of free groups $E(g-1)_{k} / E(g-1)_{k+1}$. Finally I show that for $g \geq 3$ the quotient $M_{k}\left(S_{g}\right) / M_{k+1}\left(S_{g}\right)$ surjects onto an infinite rank torsion free abelian group. To do this, I define a Johnson-type homomorphism on each higher order Magnus subgroup quotient and show it has a highly non-trivial image.

Acknowledgments

This body of mathematical work was in no way a sole venture, and I am indebted to many for their support in completing it.

Let me first thank my advisor, Shelly Harvey, for her guidance. Her advice not only helped me to navigate the field of topology, but promoted the development of my persistence and resourcefulness as a researcher. I am very fortunate to have had an advisor so invested in my success, and will carry the skills I have learned from her throughout my future career.

I would also like to thank the many other students and faculty in the Rice Math department. It has been a great benefit to be part of the mathematics community at Rice, with the opportunity to freely exchange ideas with other researchers in this intellectual playground. While they frequently go unnoticed, the passing conversations and discussions in hallways and common rooms were important catalysts for my mathematical growth. In particular, I would like to extend my thanks to Tim Cochran and Andy Putman, who not only kept their doors open to me, but actively invited my questions.

Lastly, I would like to thank my friends and family for their support throughout my graduate school career, especially during this past year. I would like to voice special appreciation for Kelsey Hattam and Eve Cohen. Through the tumult of the last years they have each played the role of caretaker, cheerleader, and counselor. Their pride in my accomplishment is my greatest reward.

Contents

Abstract ii
Acknowledgments iii
List of Figures vi
1 Introduction 1
1.1 Background 1
1.2 Summary of results 5
1.3 Outline of thesis 8
2 Johnson Subgroups and Homomorphisms 10
2.1 Johnson subgroups and Johnson homomorphisms for surfaces with one boundary component 10
2.2 Johnson subgroups and homomorphisms for surfaces with multiple boundary components 13
3 Higher-Order Johnson Subgroups and Homomorphisms 25
3.1 Higher-Order Johnson Subgroups and Homomorphisms 25
3.2 higher-order Magnus Subgroups 30
4 Algebraic Tools 32
4.1 Basis theorems and properties of lower central series quotients 32
4.2 Module structure of the lower central series quotients 41
5 Main Results 48
5.1 Constructing elements of M_{k} via subsurfaces 48
5.2 Magnus homomorphism computations 54
5.3 Structure of the Magnus subgroup quotients 66

List of Figures

1.1 An illustration of a Dehn twist performed about the dotted curve. 2
2.1 An illustration of the doubled surface $\bar{\Sigma}$. 17
2.2 A basis for the relative homology $H_{1}(\Sigma, \partial \Sigma)$. 21
2.3 The elements of $H_{1}(\bar{\Sigma})$ corresponding to the basis of $H_{1}(\Sigma, \partial \Sigma)$ chosen in Figure 2.2. 22
5.1 A separating embedding of D in S. 49
5.2 The chosen basis $\left\{\alpha_{1}, \gamma_{1}, \ldots, \alpha_{g}, \gamma_{g}\right\}$ of F 51
5.3 The generators y_{i} of $G=\pi_{1}(D)$. 55
5.4 The continuous map $g_{j}: S \rightarrow T$ 56
5.5 The generator $A_{i, n}$ of the pure braid group and the Dehn twist $f_{i, n}$ corresponding to $A_{i, n}$ 60
5.6 The map $\ell: D_{n} \rightarrow D_{n-1}$ 63
5.7 The embeddings $i_{n}: D \rightarrow S$. 70
5.8 The basis $\left\{c_{1}, c_{2}, c_{3}, c_{4}, c_{5}, c_{6}, \ldots, c_{2 g}\right\}$ chosen for computation of theMagnus homomorphisms.71

Chapter 1

Introduction

1.1 Background

A central goal to the field of topology is to classify manifolds up to homeomorphism.
For surfaces (2-manifolds), this classification has been achieved. For example, oriented surfaces are completely classified by their genus and number of boundary components. With this goal completed, we seek to understand the algebraic structure of the homeomorphisms between these surfaces.

Understanding homeomorphisms of surfaces is crucial to classifying 3-manifolds. Given a surface Σ, one can obtain a 3-manifold from a "mapping torus" construction, by which one uses a homeomorphism $f: \Sigma \rightarrow \Sigma$ to obtain a quotient space $\Sigma \times I /(x, 0) \sim(f(x), 1)$. Intuitively, in this construction the "ends" of $\Sigma \times I$ are glued together by the homeomorphism f. In the case where Σ has no boundary, the result is a closed 3 -manifold which fibers over the circle. If Σ has boundary components b_{i} and f is a homeomorphism fixing the components pointwise, one can obtain
a closed 3-manifold M from the mapping torus by adding the additional identification $(y, t) \sim\left(y, t^{\prime}\right)$ for all $y \in \partial \Sigma$, and $t, t^{\prime} \in[0,1]$. In the latter case, the mapping torus $\frac{\Sigma \times I}{(x, 0) \sim(f(x), 1),(y, t) \sim\left(y, t^{\prime}\right)}$ is called an open book decomposition of M. Open book decompositions have been shown by Giroux and Thurston-Winkelnkemper to correspond with contact structures on closed 3-manifolds up to positive stabilization [8] [19]. These applications make homeomorphisms of surfaces, more specifically mapping class groups, an integral tool in active areas of 3-manifold topology. These homeomorphism groups are also applied broadly in geometric group theory and algebraic geometry.

Let S be a closed orientable surface of genus g with 1 boundary component (we will sometimes denote this surface by S_{g} when it is necessary to be precise about the genus of the surface). The mapping class group of S, denoted $\operatorname{Mod}(S)$ is the group of classes of orientation preserving homeomorphisms of S which fix the boundary pointwise. Two homeomorphisms represent the the same element (called a mapping class) if they are isotopic maps where the isotopy also fixes the boundary pointwise. A thorough introduction to mapping class groups can be found in [5].

Dehn twists provide some simple examples of mapping classes. A Dehn twist is a self-homeomorphism of a surface achieved by cutting the surface along a simple closed curve, twisting one of the new boundary components by one full rotation, and re-gluing, as illustrated in Figure 1.1. The Lickorish twist theorem [12] states that

Figure 1.1: An illustration of a Dehn twist performed about the dotted curve.
the mapping class group is generated by Dehn twists.
While we will make extensive use of Dehn twists, the framework for our study is more algebraic in nature. In particular we study the mapping class group through an analysis of the fundamental group of the surface, denoted $\pi_{1}(S, *)$. As we restrict to maps which fix the boundary of S pointwise, by choosing a basepoint x_{0} on the boundary of S, a homeomorphism $f: S \rightarrow S$ induces an automorphism $f_{*}: \pi_{1}(S, *) \rightarrow \pi_{1}(S, *)$. For the future, we will drop the $*$ from this notation and denote the fundamental group of S by $\pi_{1}(S)$ with the basepoint assumed to lie on the boundary. This correspondence induces a map

$$
\operatorname{Mod}(S) \hookrightarrow \operatorname{Aut}\left(\pi_{1}(S)\right)
$$

which is well defined on mapping classes and yields an injective homomorphism. This homomorphism provides an algebraic lens for studying the mapping class group. It is important to note that for surfaces with boundary, $\pi_{1}(S)$ is a free group, and hence $\operatorname{Aut}\left(\pi_{1}(S)\right)$ is quite large. Hence to effectively employ this homomorphism we instead study mapping classes which approximate the identity automorphism. More specifically, we study subgroups of the form $\operatorname{ker}\left(\operatorname{Mod}(S) \rightarrow \operatorname{Aut}\left(\pi_{1}(S) / H\right)\right.$ where H is a characteristic subgroup of $\pi_{1}(S)$. There is well known commutator series $\left\{G_{n}\right\}$ known as the lower central series defined for any group G wherein each term G_{n} is a characteristic subgroup of G. Specifically, the terms of the lower central series of a group G are given inductively by $G_{1}=G, G_{k}=\left[G_{k-1}, G\right]$. The mapping classes which act trivially modulo terms of the lower central series of $\pi_{1}(S)$ form the wellstudied (for example [4], [7], [13], [14]) Johnson subgroups of the mapping class group.

More precisely, the $k^{t h}$ Johnson subgroup, $J_{k}(S)$, is given by $J_{k}(S)=\operatorname{ker}(\operatorname{Mod}(S) \rightarrow$ $\operatorname{Aut}\left(\pi(S) / \pi_{1}(S)_{k}\right)$. Since a homeomorphism which acts trivially modulo $\pi_{1}(S)_{k}$ also acts trivially modulo larger subgroups of $\pi_{1}(S)$, and $\pi_{1}(S)_{n} \subset \pi_{1}(S)_{k}$ for all $n>k$, the Johnson subgroups are nested and hence form a filtration of the mapping class group:

$$
\operatorname{Mod}(S)=J_{1}(S) \supset J_{2}(S) \supset \cdots \supset J_{k}(S) \cdots
$$

The second term of this filtration, $J_{2}(S)$ is the subgroup of the mapping class group which acts trivially on the homology of S. This subgroup is more commonly known as the Torelli group and frequently denoted \mathcal{I}. The Torelli group plays a crucial role in the study of mapping class groups of surfaces as the quotient $\operatorname{Mod}(\Sigma) / \mathcal{I}(\Sigma)$ is a well understood symplectic group.

An important tool in the study of the Torelli group is the Magnus representation. There are several Magnus representations for various groups defined via Fox calculus derivatives [2]. Of particular interest to the study of mapping class groups is the Magnus representation of the Torelli group, which can be defined as follows. Given a basis, $\left\{x_{1}, \ldots, x_{n}\right\}$, for $\pi_{1}(S)$, the Magnus representation of the Torelli group is map which sends a mapping class $f \in \operatorname{Mod}(S)$ to a $2 g \times 2 g$ matrix with entries in $\mathbb{Z} H_{1}(S)$ namely,

$$
f \mapsto\left(\phi\left(\frac{\partial f\left(x_{i}\right)}{\partial x_{j}}\right)\right)_{i, j} .
$$

where $\frac{\partial f_{*}\left(x_{i}\right)}{\partial x_{j}}$ is the Fox calculus derivative of $f_{*}\left(x_{i}\right)$ with respect to x_{j} and $\phi: \mathbb{Z}\left[\pi_{1}(S)\right] \rightarrow \mathbb{Z}\left[H_{1}(S)\right]$ is the natural projection. However, the kernel of the Magnus representation, $\operatorname{Mag}(S)$ also has a characterization in terms of induced automor-
phisms [3]. Specifically,

$$
\operatorname{Mag}(S)=\operatorname{ker}\left(\operatorname{Mod}(S) \rightarrow \operatorname{Aut}\left(\pi_{1}(S) / \pi_{1}(S)^{\prime \prime}\right)\right.
$$

where $\pi_{1}(S)^{\prime \prime}=\left[\left[\pi_{1}(S), \pi_{1}(S)\right],\left[\pi_{1}(S), \pi_{1}(S)\right]\right]$ is the second commutator subgroup of $\pi_{1}(S)$.

While the Magnus representation was first introduced in the 1980s, for many years it was unknown whether the the Magnus representation was a faithful representation of the Torelli group. This remained an open question until 2001 when Suzuki constructed an explicit mapping class contained in $\operatorname{Mag}\left(S_{g}\right)$ for genus $g \geq 2$ [18]. In 2009 Church and Farb proved that in fact the Magnus kernel is quite large, exhibiting infinitely many independent elements of the Magnus kernel [3]. In this paper we demonstrate that $M a g_{g}$ is larger still, possessing a nontrivial filtration by subgroups, called the higher-order Magnus subgroups,

$$
\operatorname{Mag}\left(S_{g}\right)=M_{2}\left(S_{g}\right) \supset M_{3}\left(S_{g}\right) \supset M_{4}\left(S_{g}\right) \supset \cdots
$$

for which the successive quotients are themselves infinitely generated. The previous examples of Church and Farb are all contained in $M_{2}\left(S_{g}\right) \backslash M_{3}\left(S_{g}\right)$. Hence the higherorder Magnus subgroups reveal new structure in the Magnus kernel.

1.2 Summary of results

The Johnson subgroups have provided a key tool for studying the Torelli group. While there is a clear similarity between the algebraic characterizations of the Magnus kernel
and the Torelli group, attempts to define analogous tools for studying the Magnus kernel have been limited.

For any characteristic subgroup H of $\pi_{1}(S)$, we define an infinite family of subgroups, $J_{k}^{H}(S)$, called the higher-order Johnson subgroups. These subgroups form a filtration of the subgroup $\operatorname{ker}\left(\operatorname{Mod}(S) \rightarrow \operatorname{Aut}\left(\pi_{1}(S) / H\right)\right)$ of the mapping class group. The higher-order Johnson subgroup filtration is a generalization of the Johnson subgroup filtration of the Torelli group. In the special case where $H=\left[\pi_{1}(S), \pi_{1}(S)\right]$, we call these subgroups the higher-order Magnus subgroups, as they yield a filtration of the Magnus kernel. We show that these higher-order Johnson subgroups are have much of the natural structure known for the Johnson subgroups. These properties include the result that the higher-order Johnson subgroups are equipped with a homomorphism, analogous to the Johnson homomorphisms.

Theorem 3.1. For each characteristic subgroup $H \subset F$ the higher-order Johnson homomorphisms,

$$
\tau_{k}^{H}: J_{k}^{H}(S) \rightarrow \operatorname{Hom}_{\mathbb{Z}[F / H]}\left(H / H^{\prime}, H_{k} / H_{k+1}\right),
$$

are well defined, group homomorphisms for $k \geq 2$.
In the special case of the Magnus subgroups, $M_{k}(S)$ we give an explicit way of constructing examples in $M_{k}(S)$ from known examples of mapping classes in $J_{k}(D)$ where D is a disk with n holes.

Lemma 5.1. Let $i: D \rightarrow S$ be an embedding such that each boundary component of $i(D)$ is either separating in S, or the boundary component of S. Let $[f] \in \operatorname{Mod}(D)$ and let f be a homeomorphism representing $[f]$. Let $f^{\prime}: S \rightarrow S$ be the homeomorphism
defined by

$$
f^{\prime}(x)= \begin{cases}f(x) & x \in D \\ x & x \in S \backslash D\end{cases}
$$

then if $[f] \in J_{k}(D),\left[f^{\prime}\right] \in M_{k}(S)$.
Using this construction, we describe an explicit subgroup of $M_{k}(S) / M_{k+1}(S)$ which is isomorphic to a lower central series quotient of free groups. For $E(n)$ the free group on n generators, we show the following result.

Theorem 5.6. Let S_{g} be an orientable surface with genus $g \geq 3$. Then the map $\rho: E(g-1) \rightarrow \operatorname{Mod}\left(S_{g}\right)$ induces a monomorphism on the quotients $\bar{\rho}: E(g-1)_{k} / E(g-1)_{k+1} \hookrightarrow M_{k}\left(S_{g}\right) / M_{k+1}\left(S_{g}\right)$ for all k.

Finally, we construct an epimorphism onto an infinite rank torsion free abelian subgroup of $\frac{F_{k}^{\prime}}{F_{k+1}^{\prime}}$, where $F=\pi_{1}(S)$ is the fundamental group of S and F^{\prime} is its commutator subgroup. Using Magnus homomorphism computations we prove:

Theorem 5.7. Let S be an orientable surface with genus $g \geq 3$. Then the successive quotients of the Magnus filtration $\frac{M_{k}(S)}{M_{k+1}(S)}$ surject onto an infinite rank torsion free abelian subgroup of $\frac{F_{k}^{\prime}}{F_{k+1}^{\prime}}$ via the map

$$
\frac{M_{k}(S)}{M_{k+1}(S)} \stackrel{\tau_{k}^{\prime}(-)\left[c_{6}, c_{2}\right]}{\longrightarrow} \frac{F_{k}^{\prime}}{F_{k+1}^{\prime}}
$$

where c_{6} and c_{2} are generators in the carefully chosen basis for F shown in Figure 5.8.
These results establish key tools for working with the Magnus subgroups and unveil new structure in this poorly understood subgroup of the Torelli group.

1.3 Outline of thesis

We begin in Chapter 2 by providing an overview of the original Johnson subgroups and homomorphisms. As the higher-order Johnson and Magnus subgroups and homomorphisms are a generalization of these ideas, the Johnson subgroups provide a crucial foundation for the paper.

While many of the results presented in this chapter are well known for surfaces with at most one boundary component, we also provide a detailed discussion of generalized Johnson homomorphisms on surfaces with multiple boundary components. Johnson subgroups of surfaces with multiple boundary components have been employed before, but a precise and detailed treatment of these cases have not yet appeared in the literature. We also present some new results showing some properties of traditional Johnson subgroups to apply to surfaces with multiple boundary components.

In Chapter 3 we define generalizations of the Johnson subgroups and homomorphisms called the higher-order Johnson subgroups and homomorphisms. A specific case of these generalized Johnson subgroups are the Magnus subgroups. These Magnus subgroups provide a filtration of the Magnus kernel and are the central focus of our study.

Chapter 4 contains some group theoretic results that are useful in proving our main theorem. These results primarily focus on the lower central series quotients of an infinitely generated free group, E, and its commutator subgroup, E^{\prime}. We provide several generalizations of the basis theorem for lower central series quotients of free groups which applies to groups which are infinitely generated. We also explore the
$\mathbb{Z}\left[F / F^{\prime}\right]$ module structure of $F_{k}^{\prime} / F_{k+1}^{\prime}$ where $F=\pi_{1}(S)$ for use in computing Magnus homomorphisms.

In Chapter 5 we prove our main results. We develop a correspondence between Magnus subgroups on surfaces with one boundary component and Johnson subgroups on disks. We use this correspondence to explore the structure and size of the successive quotients of the higher-order Magnus subgroups M_{k} / M_{k+1}. We demonstrate that there is a specific subgroup of $M_{k}\left(S_{g}\right) / M_{k+1}\left(S_{g}\right)$ that is isomorphic to the finitely generated free abelian group $E(g-1)_{k} / E(g-1)_{k+1}$ where $E(g-1)$ is the free group on $g-1$ generators and S_{g} is an oriented surface of genus g. We also show that successive quotients of the higher-order Magnus subgroups M_{k} / M_{k+1} are infinitely generated by displaying a surjection to a infinite rank torsion free abelian group.

Chapter 2

Johnson Subgroups and

Homomorphisms

2.1 Johnson subgroups and Johnson homomorphisms for surfaces with one boundary component

Let S be an oriented surface with one boundary component. Let F denote the fundamental group of S with a basepoint chosen on the boundary of the surface (note that the fundamental group is a free group). A self-homeomorphism f of S induces an automorphism $f_{*}: F \rightarrow F$. This function from homeomorphisms of S to automorphisms of F is well defined on isotopy classes of homeomorphisms and yields the following monomorphism:

$$
\operatorname{Mod}(S) \hookrightarrow \operatorname{Aut}\left(\pi_{1}(S)\right)
$$

Given a group G, the lower central series of $G,\left\{G_{n}\right\}$ is given inductively by
$G_{1}=G, G_{k}=\left[G_{k-1}, G\right]$, where $\left[G_{k-1}, G\right]$ is the subgroup of G generated by elements of the form $a b a^{-1} b^{-1}, a \in G, b \in G_{k-1}$.

The mapping classes which act trivially modulo terms of the lower central series of F form the well-studied Johnson subgroups of the mapping class group.

Definition 2.1. The $k^{\text {th }}$ Johnson subgroup is the subgroup of the mapping class group given by $J_{k}(S)=\operatorname{ker}\left(\operatorname{Mod}(S) \rightarrow \operatorname{Aut}\left(F / F_{k}\right)\right)$.

Note that for $n>k$, as $F_{n} \subset F_{k}$ the map from $\operatorname{Mod}(S)$ to $\operatorname{Aut}\left(F / F_{n}\right)$ factors through $\operatorname{Aut}\left(F / F_{k}\right)$:

Hence $\operatorname{ker}\left(\operatorname{Mod}(S) \rightarrow \operatorname{Aut}\left(F / F_{n}\right)\right) \subset \operatorname{ker}\left(\operatorname{Mod}(S) \rightarrow \operatorname{Aut}\left(F / F_{k}\right)\right)$ and thus $J_{n}(S) \subset$ $J_{k}(S)$. We achieve a filtration of the Torelli group:

$$
\operatorname{Mod}(S)=J_{1}(S) \supset J_{2}(S) \supset \cdots \supset J_{k}(S) \cdots
$$

It is an easy task to define filtrations of the Torelli group, however the filtration by Johnson subgroups has been integral in their study. The Johnson subgroup filtration earns its important place in the study of mapping class groups for the many available tools that can be employed for their study. One class of tools frequently used in exploring the Johnson subgroups is the Johnson homomorphisms. While these homomorphisms can be defined in a variety of ways, for the course of this paper we find the following definition of the Johnson subgroups to be the most convenient.

Definition 2.2. Let $[x] \in H_{1}(S)$ and let x be an element of the fundamental group in the homology class $[x]$. For $f \in J_{k}(S) f(x) \equiv x \bmod \pi_{1}(S)_{k}$ or equivalently $f(x) x^{-1} \in \pi_{1}(S)_{k}$. The $k^{\text {th }}$ Johnson homomorphism

$$
\tau_{k}: J_{k}(S) \rightarrow \operatorname{Hom}\left(H_{1}(S), \pi_{1}(S)_{k} / \pi_{1}(S)_{k+1}\right)
$$

is given by $\tau_{k}(f)=\left([x] \mapsto\left[f(x) x^{-1}\right]\right)$.

While this definition provides for easy calculations, it does not provide much clarity for why such a homomorphism is well defined. For a more thorough treatment, see [10].

Remark 2.1. It is important to note that $\operatorname{ker} \tau_{k}=J_{k+1}(S)$. That $\operatorname{ker} \tau_{k} \supset J_{k+1}(S)$ can be readily seen as for $f \in J_{k+1}(S), f(x) x^{-1} \in \pi_{1}(S)_{k+1}$, and hence $f(x) x^{-1}$ is trivial in $\pi_{1}(S)_{k} / \pi_{1}(S)_{k+1}$ for all $[x]$. To see that $\operatorname{ker} \tau_{k} \subset J_{k+1}(S)$, note that if $f \in \operatorname{ker} \tau_{k}$, then $f(x) x^{-1} \in F_{k+1}$ for all classes $[x]$. Thus $f(x)=x \bmod F_{k+1}$ and therefore $f \in \operatorname{ker}\left(\operatorname{Mod}(S) \rightarrow \operatorname{Aut}\left(F / F_{k}\right)\right.$. Thus $f \in J_{k+1}(S)$.

This fact provides an enlightening result when performing Johnson homomorphism computations. If f is an element of $J_{k}(S)$ such that $\tau_{k}(f) \neq 0$, then $f \notin J_{k+1}(S)$. Thus computing $\tau_{k}(f) \neq 0$ pins the precise location of f in the Johnson filtration to $J_{k}(S) / J_{k+1}(S)$.

2.2 Johnson subgroups and homomorphisms for surfaces with multiple boundary components

Through the course of this paper we will employ Johnson homomorphisms on surfaces with multiple boundary components. There are many variations for Johnson subgroups with multiple boundary components. In addition, there are many cases in which surfaces with multiple boundary components are overlooked in the study of mapping class groups. Resources detailing definitions and results concerning surfaces with multiple boundary components are sparse difficult to find. Treatment of Johnson subgroups and Johnson homomorphisms for surfaces with multiple boundary components can be found in [4], [15], [16]. We will take this opportunity to address an analog of the Johnson machinery in detail for surfaces with multiple boundary components, through a perspective compatible with our following definitions of higher-order Johnson subgroups.

Let Σ be an orientable surface with $m+1$ boundary components. Choose an ordering of the boundary components b_{0}, \ldots, b_{m}. Let p_{i} be a point on the $i^{\text {th }}$ boundary component (we choose p_{0} to be the basepoint for $\pi_{1}(\Sigma)$). Choose $\operatorname{arcs} A_{i}$ which originate from p_{0} and terminate at p_{i} for each $0<i<m$.

Definition 2.3. Let $f \in \operatorname{Mod}(\Sigma)$. Then f is in the $k^{t h}$ Johnson subgroup of $\Sigma, J_{k}(\Sigma)$ if f satisfies the following two properties:

1. For $\gamma \in \pi_{1}(\Sigma), f_{*}(\gamma) \gamma^{-1} \in \pi_{1}(\Sigma)_{k}$.
2. For all $A_{i},\left[f\left(A_{i}\right) \overline{A_{i}}\right] \in \pi_{1}(\Sigma)_{k}$
where $\overline{A_{i}}$ is the reverse of the path A_{i}.

Note that when $m=0$ we obtain from this definition the standard Johnson subgroups for a surface with a single boundary component. Note also that the combination of properties (1) and (2) show that the Johnson subgroups on surfaces with multiple boundary components are independent of the ordering of the boundary components, the choices of points p_{i} and the choices of $\operatorname{arcs} A_{i}$.

Given this definition of Johnson subgroups on surfaces with multiple boundary components, we would like to be able to easily generate examples of elements in the Johnson subgroups for these surfaces. Below is a generalization of a result of Morita [13], which allows us to generate examples in the Johnson subgroups via commutators.

Lemma 2.2. Let Σ be an oriented surface with at least one boundary component. Let $f_{k} \in J_{k}(\Sigma)$ and $f_{l} \in J_{l}(\Sigma)$. Then the commutator $\left[f_{k}, f_{l}\right]$ is contained in $J_{k+l-1}(\Sigma)$.

Proof. It suffices to prove the statement for $k \leq l$. To show that $\left[f_{k}, f_{l}\right]$ is contained in $J_{k+l-1}(\Sigma)$, we must show the following two conditions are satisfied:
(i) For each arc A_{i} connecting the basepoint to the $i^{\text {th }}$ boundary component, $\left[f_{k}, f_{l}\right]\left(A_{i}\right) \overline{A_{i}} \in F_{k+l-1}$.
(ii) For all $x \in \pi_{1}(\Sigma),\left[f_{k}, f_{l}\right](x) x^{-1} \in F_{k+l-1}$.

A result of Morita ([13] Corollary 3.3) shows condition (ii) to be satisfied in the case where Σ is a closed surface with a marked point. In addition, Morita [13] shows when Σ is a closed surface with a marked point, $y \in F_{l}, f_{k *}(y) y^{-1} \in F_{k+l-1}$. While these results are not stated for surfaces with multiple boundary components, the proofs
employ only the property that for $\gamma \in \pi_{1}(\Sigma)$ and $f \in J_{n}(\Sigma), f_{*}(\gamma) \gamma^{-1} \in \pi_{1}(\Sigma)_{n}$. As this property also holds for surfaces Σ with multiple boundary components, identical arguments show analogous results for the case of multiple boundary components. We will employ these results for surfaces Σ with multiple boundary components with no further proof.

It suffices to show that $\left[f_{k}, f_{l}\right]\left(A_{i}\right) \overline{A_{i}} \in F_{k+l-1}$. For this we follow the structure of the aforementioned corollary. As $f_{k} \in J_{k}(\Sigma), f_{k}\left(A_{i}\right) \overline{A_{i}} \in F_{k}$. Let $x_{k}=f_{k}\left(A_{i}\right) \overline{A_{i}} \in F_{k}$ and note that $f_{k}\left(A_{i}\right)$ is homotopic rel endpoints to the path $x_{k} A_{i}$. Applying f_{k}^{-1} to this expression we find $A_{i} \simeq f_{k}^{-1}\left(x_{k}\right) f_{k}^{-1}\left(A_{i}\right)$ or $f_{k}^{-1}\left(\overline{x_{k}}\right) A_{i} \simeq f_{k}^{-1}\left(A_{i}\right)$. Similarly we know $f_{l} \in J_{l}(\Sigma), f_{l}\left(A_{i}\right) \overline{A_{i}} \in F_{l}$. Defining $x_{l}=f_{l}\left(A_{i}\right) \overline{A_{i}} \in F_{l}$ we have $f_{l}\left(A_{i}\right) \simeq x_{l} A_{i}$ and $f_{l}^{-1}\left(\overline{x_{l}}\right) A_{i} \simeq f_{l}^{-1}\left(A_{i}\right)$. Using this we can perform the following computation:

$$
\begin{aligned}
{\left[f_{k}, f_{l}\right]\left(A_{i}\right) } & =f_{k} f_{l} f_{k}^{-1}\left(f_{l}^{-1}\left(A_{i}\right)\right) \\
& \simeq f_{k} f_{l} f_{k}^{-1}\left(f_{l}^{-1}\left(x_{l}^{-1}\right) A_{i}\right) \\
& \simeq f_{k} f_{l}\left(f_{k}^{-1} f_{l}^{-1}\left(x_{l}^{-1}\right) f_{k}^{-1}\left(A_{i}\right)\right) \\
& \simeq f_{k} f_{l}\left(f_{k}^{-1} f_{l}^{-1}\left(x_{l}^{-1}\right) f_{k}^{-1}\left(x_{k}^{-1}\right) A_{i}\right) \\
& \simeq f_{k}\left(f_{l} f_{k}^{-1} f_{l}^{-1}\left(x_{l}^{-1}\right) f_{l} f_{k}^{-1}\left(x_{k}^{-1}\right) f_{l}\left(A_{i}\right)\right) \\
& \simeq f_{k}\left(f_{l} f_{k}^{-1} f_{l}^{-1}\left(x_{l}^{-1}\right) f_{l} f_{k}^{-1}\left(x_{k}^{-1}\right) x_{l} A_{i}\right) \\
& \simeq\left[f_{k}, f_{l}\right]\left(x_{l}^{-1}\right) f_{k} f_{l} f_{k}^{-1}\left(x_{k}^{-1}\right) f_{k}\left(x_{l}\right) f_{k}\left(A_{i}\right) \\
& \simeq\left[f_{k}, f_{l}\right]\left(x_{l}^{-1}\right) f_{k} f_{l} f_{k}^{-1}\left(x_{k}^{-1}\right) f_{k}\left(x_{l}\right) x_{k} A_{i}
\end{aligned}
$$

This gives us the following expression for the homotopy class of the loop $\left[f_{k}, f_{l}\right]\left(A_{i}\right) \overline{A_{i}}$
in $\pi_{1}(\Sigma)$:

$$
\begin{aligned}
& {\left[\left[f_{k}, f_{l}\right]\left(A_{i}\right) \overline{A_{i}}\right]=\left[f_{k *}, f_{l *}\right]\left(x_{l}^{-1}\right) f_{k *} f_{l *} f_{k *}^{-1}\left(x_{k}\right) f_{k *}\left(x_{l}\right) x_{k}} \\
& =\left[f_{k *}, f_{l *}\right]\left(x_{l}^{-1}\right) x_{l} x_{l}^{-1} f_{k *} f_{l *} f_{k *}^{-1}\left(x_{k}^{-1}\right) x_{k} x_{l} x_{l}^{-1} x_{k}^{-1} f_{k *}\left(x_{l}\right) x_{l}^{-1} x_{k} x_{l}\left[x_{l}^{-1}, x_{k}^{-1}\right]
\end{aligned}
$$

As $k \leq l, J_{l}(\Sigma) \subset J_{k}(\Sigma)$ and so $\left[f_{k}, f_{l}\right] \in J_{k}(\Sigma)$. As shown in [13], lemma 3.2 (i), for $y \in F_{l}, f_{k *}(y) y^{-1} \in F_{k+l-1}$. Thus $\left[f_{k *}, f_{l *}\right]\left(x_{l}^{-1}\right) x_{l} \in F_{k+l-1}$. Looking at this expression mod F_{k+l-1} we have that $\left[f_{k}, f_{l}\right]\left(x_{l}^{-1}\right) x_{l}=1$. By [13] Lemma 3.2 (ii) the class of $f_{k} f_{l} f_{k}^{-1}\left(x_{k}^{-1}\right) x_{k}$ is equal to that of $f_{l}\left(x_{k}^{-1}\right) x_{k}$ and is thus also in F_{k+l-1} by [13] 3.2 (i). Similarly, $f_{k}\left(x_{l}\right) x_{l}^{-1} \in F_{k+l-1}$. As $\left[x_{l}^{-1}, x_{k}^{-1}\right] \in\left[F_{l}, F_{k}\right] \subset F_{k+l} \subset F_{k+l-1}$ this term also reduces to 1 modulo F_{k+l-1}. Since the entire expression is trivial mod F_{k+l-1} it follows that $\left[\left[f_{k}, f_{l}\right]\left(A_{i}\right) \overline{A_{i}}\right] \in F_{k+l-1}$.

It is natural to seek an analog for the Johnson homomorphisms which apply to surfaces with multiple boundary components. Let Δ be an open arc on b_{0} originating at p_{0}. Let $\bar{\Sigma}=\partial(\Sigma \times I) \backslash(\operatorname{int}(\Delta \times I))$. Note that $\bar{\Sigma}$ is a doubled version of the surface Σ with an added boundary component, as illustrated in Figure 2.1. Let $i: \Sigma \rightarrow \bar{\Sigma}$ be the natural embedding which sends Σ to $\Sigma \times\{0\}$. We give $\bar{\Sigma}$ an orientation that agrees with the orientation on Σ. We will define the Johnson homomorphisms on Σ via the Johnson homomorphisms on $\bar{\Sigma}$.

In order to do this, we first develop some algebraic tools to relate the homology and lower central series quotients of the fundamental groups of Σ and $\bar{\Sigma}$. These build on a result of Stallings ([17], Theorem 7.3), reproduced below. We first define an

Figure 2.1: An illustration of the doubled surface $\bar{\Sigma}$.
adaptation of the lower central series: the rational lower central series. We employ this commutator series to gain insight on the lower central series of free groups.

Definition 2.4. Let G be a group. The rational lower central series of G, with terms G_{n}^{r}, is defined inductively by setting $G_{1}^{r}=G$ and where G_{n+1}^{r} is the subgroup of G generated by set $S=\left\{[x, u] \mid x \in G, u \in G_{n}^{r}\right\}$ and elements w for which some power of w is a product of elements in S.

More intuitively, G_{n+1}^{r} is the smallest subgroup of G_{n}^{r} such that G_{n+1}^{r} is central in G and G / G_{n+1}^{r} is torsion free. Note that for a free group E, the standard lower central series quotients E / E_{n} are torsion free. Thus for a free group E, the lower central series of E coincides with its rational lower central series.

Theorem 2.3 (Stallings). If $f: A \rightarrow B$ a homomorphism of abelian groups inducing an isomorphism $f_{*}: H_{1}(A, \mathbb{Q}) \rightarrow H_{1}(B, \mathbb{Q})$, and a surjective mapping $H_{1}(A, \mathbb{Q}) \rightarrow$
$H_{1}(B, \mathbb{Q})$. Then for all finite n, f induces isomorphisms

$$
\left(A_{n-1}^{r} / A_{n}^{r}\right) \otimes \mathbb{Q} \cong\left(B_{n-1}^{r} / B_{n}^{r}\right) \otimes \mathbb{Q}
$$

and for all $k, H_{k}\left(A / A_{n}^{r}\right) \cong H_{k}\left(B / B_{n}^{r}\right) ; f$ induces embeddings $A / A_{n}^{r} \subset B / B_{n}^{r}$ and an embedding $A / A_{\omega}^{r} \subset B / B_{\omega}^{r}$ at the first infinite ordinal ω.

We prove the following proposition employing Stalling's result.

Proposition 2.4. Let A and B be groups with $H_{2}(A ; \mathbb{Q})=H_{2}(B ; \mathbb{Q})=0$. Let $h: A \rightarrow B$ be a group homomorphism inducing an injection $H_{1}(A ; \mathbb{Q}) \hookrightarrow H_{1}(B ; \mathbb{Q})$, then for all n, h induces an injection $A / A_{n}^{r} \hookrightarrow B / B_{n}^{r}$.

Proof. Consider the injection $h_{*}: H_{1}(A ; \mathbb{Q}) \rightarrow H_{1}(B, \mathbb{Q})$. As $H_{1}(B, \mathbb{Q})$ is a \mathbb{Q} vector space, it decomposes as $H_{1}(B ; \mathbb{Q}) \cong H_{1}(A ; \mathbb{Q}) \oplus V$ where V is a \mathbb{Q} vector space. Let C be a free group of the same rank as V with generating set $\left\{c_{i}\right\}$ and note that $H_{1}(C ; \mathbb{Q}) \cong V$. Let $\left\{e_{i}\right\}$ be a basis for V and choose elements $b_{i} \in B$ such that $b_{i} \mapsto e_{i}$ through the isomorphism $H_{1}(B ; \mathbb{Q}) \cong H_{1}(A ; \mathbb{Q}) \oplus V$. There is a unique group homomorphism $g: C \rightarrow B$ such that $c_{i} \mapsto b_{i}$. Consider the map $h * g: A * C \rightarrow$ B. By construction, this is a group homomorphism which induces an isomorphism $(h * g)_{*}: H_{1}(A * C ; \mathbb{Q}) \rightarrow H_{1}(B ; \mathbb{Q})$. As $H_{2}(A * C)=H_{2}(B)=0$, clearly the induced map $H_{2}(A * C ; \mathbb{Q}) \rightarrow H_{2}(B ; \mathbb{Q})$ is surjective. Hence by Stallings result, for all n, $A * C /(A * C)_{n}^{r} \stackrel{(h * g)_{*}}{\cong} B / B_{n}^{r}$. As

$$
A / A_{n}^{r} \hookrightarrow A / A_{n}^{r} * C / C_{n}^{r} \cong A * C /(A * C)_{n}^{r} \stackrel{(h * g)_{*}}{\cong} B / B_{n}^{r},
$$

the map $A / A_{n}^{r} \rightarrow B / B_{n}^{r}$ induced by h is injective.

Remark 2.5. Note that for a free group E, since E is torsion free, the rational lower central series agrees with the standard lower central series, i.e. $E_{n}^{r}=E_{n}$. Hence for free groups A and B satisfying the conditions of Proposition 2.4 we achieve an injection $A / A_{n} \hookrightarrow B / B_{n}$ on the standard lower central series quotients. We will make extensive use of this fact throughout the paper.

For ease of notation, let us rename $C=\pi_{1}\left(\Sigma, p_{0}\right)$ and $\bar{C}=\pi_{1}\left(\bar{\Sigma}, i\left(p_{0}\right)\right)$.

Lemma 2.6. The embedding $i: \Sigma \rightarrow \bar{\Sigma}$ induces a group monomorphism

$$
\overline{i_{*}}: \frac{C_{k}}{C_{k+1}} \rightarrow \frac{\bar{C}_{k}}{\bar{C}_{k+1}}
$$

Proof. This is a direct application of Proposition 2.4. Note that as Σ and $\bar{\Sigma}$ are surfaces with boundary, they each deformation retract to a wedge of circles. Thus $\pi_{n}(\Sigma)=\pi_{n}(\bar{\Sigma})=1$ for $n>1$. Thus Σ is a $K(C, 1)$ and $\bar{\Sigma}$ is a $K(\bar{C}, 1)$. Hence $H_{2}(C, \mathbb{Q})=H_{2}(\Sigma, \mathbb{Q})=0$ and $H_{2}(\bar{C}, \mathbb{Q})=H_{2}(\bar{\Sigma}, \mathbb{Q})=0$. The embedding i induces a homomorphism $C \rightarrow \bar{C}$ and a monomorphism $i_{*}: H_{1}(C ; \mathbb{Q}) \rightarrow H_{1}(\bar{C} ; \mathbb{Q})$. Thus C and \bar{C} satisfy the conditions of Proposition 2.4 and hence we achieve an injective homomorphism $\overline{i_{*}}: \frac{C_{k}}{C_{k+1}} \rightarrow \frac{\bar{C}_{k}}{\bar{C}_{k+1}}$.

We now work to relate the homology of Σ and $\bar{\Sigma}$. Let $\Theta=\bar{\Sigma} \backslash \operatorname{int}(i(\Sigma))$ and let $j: \Theta \rightarrow \bar{\Sigma}$ be the natural inclusion map. The inclusion j yields the following long exact sequence of a pair:

$$
\cdots \rightarrow H_{1}(\Theta) \xrightarrow{j_{*}} H_{1}(\bar{\Sigma}) \xrightarrow{\pi} H_{1}(\bar{\Sigma}, \Theta) \rightarrow \tilde{H}_{0}(\Theta) \rightarrow \tilde{H}_{0}(\bar{\Sigma}) .
$$

Note in particular that this exact sequence provides us with an isomorphism

$$
\pi: \frac{H_{1}(\bar{\Sigma})}{j_{*}\left(H_{1}(\Theta)\right)} \cong H_{1}(\bar{\Sigma}, \Theta) .
$$

By excision, the inclusion $i: \Sigma \rightarrow \bar{\Sigma}$ induces an isomorphism on homology:

$$
i_{*}: H_{1}(\Sigma, \partial \Sigma) \xlongequal{\rightrightarrows} H_{1}(\bar{\Sigma}, \Theta) .
$$

Hence there is an isomorphism

$$
\pi^{-1} i_{*}: H_{1}(\Sigma, \partial \Sigma) \stackrel{\cong}{\rightrightarrows} \frac{H_{1}(\bar{\Sigma})}{j_{*}\left(H_{1}(\Theta)\right)} .
$$

Let $[f] \in J_{k}(\Sigma)$ and let f be a representative homeomorphism of $[f]$. Let $\bar{f}: \bar{\Sigma} \rightarrow \bar{\Sigma}$ be given by

$$
\bar{f}(x)= \begin{cases}f(x) & \text { if } x \in \Sigma \\ x & \text { if } x \notin \Sigma\end{cases}
$$

Let $i^{\prime}: \operatorname{Mod}(\Sigma) \rightarrow \operatorname{Mod}(\bar{\Sigma})$ be the map given by $i^{\prime}([f])=[f]$. Note that this map is well defined since isotopic maps on Σ extend to isotopic maps on $\bar{\Sigma}$. It is naturally a homomorphism.

Let η_{k} be the map

$$
\eta_{k}: \operatorname{Hom}\left(\frac{H_{1}(\bar{\Sigma})}{j_{*}\left(H_{1}(\Theta)\right)}, \frac{\bar{C}_{k}}{\bar{C}_{k+1}}\right) \rightarrow \operatorname{Hom}\left(H_{1}(\Sigma, \partial \Sigma), \frac{\bar{C}_{k}}{\bar{C}_{k+1}}\right)
$$

which is the dual of the isomorphism $\pi^{-1} i_{*}$.
Lemma 2.7. Given a mapping class $[f] \in \operatorname{Mod}(\Sigma), \tau_{k}\left(i^{\prime}([f])\right) \in \operatorname{Hom}\left(\frac{H_{1}(\bar{\Sigma})}{j_{*}\left(H_{1}(\Theta)\right)}, \frac{\bar{C}_{k}}{\overline{C_{k+1}}}\right)$.
Furthermore, for $[\alpha] \in H_{1}(\Sigma, \partial \Sigma)$,

$$
\eta_{k} \tau_{k} i^{\prime}([f])[\alpha] \in \bar{i}\left(\frac{C_{k}}{C_{k+1}}\right) .
$$

Equivalently, we have the following sequence of maps

$$
\begin{aligned}
& J_{k}(\Sigma) \xrightarrow{i^{\prime}} J_{k}(\bar{\Sigma}) \xrightarrow{\tau_{k}} \operatorname{Hom}\left(\frac{H_{1}(\bar{\Sigma})}{j_{*}\left(H_{1}(\Theta)\right)}, \frac{\bar{C}_{k}}{\bar{C}_{k+1}}\right) \xrightarrow{\eta_{k}} \operatorname{Hom}\left(H_{1}(\Sigma, \partial \Sigma), \frac{\bar{C}_{k}}{\bar{C}_{k+1}}\right) \\
& \stackrel{\bar{i}^{-1}}{\rightarrow} \operatorname{Hom}\left(H_{1}(\Sigma, \partial \Sigma), \frac{C_{k}}{C_{k+1}}\right) .
\end{aligned}
$$

Proof. To prove the first statement in the lemma we examine an element $j_{*}[\beta] \in$ $H_{1}(\bar{\Sigma})$. The element $[\beta] \in H_{1}(\Theta)$ has a representative element $\beta \in \pi_{1}(\Theta)$. As the following diagram commutes

we have that $j_{*}[\beta] \in H_{1}(\bar{\Sigma})$ has a representative loop β which lies entirely in Θ. Thus by definition of i^{\prime}, for any $[f] \in J_{k}(\Sigma), \tau_{k}\left(i^{\prime}([f])\right)[\beta]=\bar{f}(\beta) \beta^{-1}=\beta \beta^{-1}=1$. Hence $\tau_{k}\left(i^{\prime}([f])\right) \in \operatorname{Hom}\left(\frac{H_{1}(\bar{\Sigma})}{j_{*}\left(H_{1}(\Theta)\right)}, \frac{\bar{C}_{k}}{\overline{C_{k+1}}}\right)$.

To prove that $\eta_{k} \tau_{k} i^{\prime}([f])[\alpha] \in \bar{i}\left(\frac{C_{k}}{C_{k+1}}\right)$ let us consider the following basis for $H_{1}(\Sigma)$, shown in Figure 2.2.

Figure 2.2: A basis for the relative homology $H_{1}(\Sigma, \partial \Sigma)$.

Through the map $\pi^{-1} i_{*}$ these basis elements map to loops in $H_{1}(\bar{\Sigma})$ as shown in
Figure 2.3.
Note that the loops a_{i} include to the same homology elements of $H_{1}(\Sigma)$. Let the $\operatorname{arcs} A_{i}$ be parametrized by $t \in[0,1]$. Then under this map the arcs A_{i} are sent to

Figure 2.3: The elements of $H_{1}(\bar{\Sigma})$ corresponding to the basis of $H_{1}(\Sigma, \partial \Sigma)$ chosen in Figure 2.2.
loops c_{i} given by:

$$
c_{i}(t)= \begin{cases}\left(A_{i}(4 t), 0\right) & 0 \leq t \leq 1 / 4 \\ \left(p_{i}, 4 t-1\right) & 1 / 4<t<1 / 2 \\ \left(A_{i}(3-4 t), 1\right) & 1 / 2 \leq t<3 / 4 \\ \left(p_{0}, 4-4 t\right) & 3 / 4 \leq t \leq 1\end{cases}
$$

as illustrated in Figure 2.3. First, note that for any homology class $[\alpha] \in H_{1}(\bar{\Sigma})$ which
has a representative loop $\alpha \in i_{*} \pi_{1}(\Sigma)$ and for any $[f] \in J_{k}(\Sigma)$ we have

$$
\begin{aligned}
\tau_{k}\left(i^{\prime}([f])[\alpha]\right. & =\left[\bar{f}(\alpha) \alpha^{-1}\right] \\
& =\left[i_{*} f(\alpha) \alpha^{-1}\right] \\
& =\overline{i_{*}}\left[f(\alpha) \alpha^{-1}\right]
\end{aligned}
$$

Hence the image by $\tau_{k}\left(i^{\prime}([f])\right.$ of a_{i} yields an element of $\overline{i_{*}}\left(\frac{C_{k}}{C_{k+1}}\right)$.
Let B_{i} be the segment of c_{i} parametrized by $1 / 4 \leq t \leq 1$ so that $c_{i}=A_{i} \cup B_{i}$. Note that by definition $i^{\prime}(f)$ acts by the identity on B_{i} and acts by f on A_{i}. By construction the loops c_{i} are based at p_{0}. Thus they also represent elements of $\pi_{1}(\bar{\Sigma})$. We will abuse notation by referring to the parametrized loop, the homotopy class, and the homology class of c_{i} as c_{i}. Then we may compute $\tau_{k}\left(i^{\prime}([f]) c_{i}\right.$ as follows.

$$
\begin{aligned}
\tau_{k}\left(i^{\prime}([f]) c_{i}\right. & =\left[\bar{f}\left(c_{i}\right) c_{i}^{-1}\right] \\
& =\left[\bar{f}\left(A_{i} B_{i}\right) \overline{\left(A_{i} B_{i}\right)}\right] \\
& =\left[i\left(f\left(A_{i}\right)\right) B_{i} \overline{\left(A_{i} B_{i}\right)}\right] \\
& =\left[i\left(f\left(A_{i}\right)\right) B_{i} \overline{B_{i}} \overline{A_{i}}\right] \\
& =\left[i\left(f\left(A_{i}\right)\right) \overline{A_{i}}\right] \\
& =\left[i_{*}\left(f\left(A_{i}\right) \overline{A_{i}}\right)\right] \\
& =\overline{i_{*}}\left(\left(f\left(A_{i}\right) \overline{A_{i}}\right)\right]
\end{aligned}
$$

This shows that for each $i, \tau_{k}\left(i^{\prime}([f]) c_{i} \in \overline{i_{*}}\left(\frac{C_{k}}{C_{k+1}}\right)\right.$. As $\tau_{k}\left(i^{\prime}([f])[\alpha] \in \overline{i_{*}}\left(\frac{C_{k}}{C_{k+1}}\right)\right.$ for all elements $[\alpha]$ of a basis for $H_{1}(\Sigma, \partial \Sigma)$, then for all $[\alpha] \in H_{1}(\Sigma, \partial \Sigma)$ we have $\tau_{k}\left(i^{\prime}([f])[\alpha] \in \overline{i_{*}}\left(\frac{C_{k}}{C_{k+1}}\right)\right.$.

This shows we have the following composition of homomorphisms:

$$
J_{k}(\Sigma) \xrightarrow{i^{\prime}} J_{k}(\bar{\Sigma}) \xrightarrow{\tau_{k}} \operatorname{Hom}\left(\frac{H_{1}(\bar{\Sigma})}{j_{*}\left(H_{1}(\Theta)\right)}, \frac{\bar{C}_{k}}{\bar{C}_{k+1}}\right) \xrightarrow{\eta_{k}} \operatorname{Hom}\left(H_{1}(\Sigma, \partial \Sigma), \overline{i_{*}}\left(\frac{C_{k}}{C_{k+1}}\right)\right) .
$$

By applying ${\overline{i_{*}}}^{-1}$ on the range of $\operatorname{Hom}\left(H_{1}(\Sigma, \partial \Sigma), \overline{i_{*}}\left(\frac{C_{k}}{C_{k+1}}\right)\right)$ we get the following composition:

$$
\begin{aligned}
& J_{k}(\Sigma) \xrightarrow{i^{\prime}} J_{k}(\bar{\Sigma}) \xrightarrow{\tau_{k}} \operatorname{Hom}\left(\frac{H_{1}(\bar{\Sigma})}{j_{*}\left(H_{1}(\Theta)\right)}, \frac{\bar{C}_{k}}{\bar{C}_{k+1}}\right) \xrightarrow{\eta_{k}} \operatorname{Hom}\left(H_{1}(\Sigma, \partial \Sigma), \frac{\bar{C}_{k}}{\bar{C}_{k+1}}\right) \\
& \stackrel{\bar{i}_{*}-1}{\rightarrow} H o m\left(H_{1}(\Sigma, \partial \Sigma), \frac{C_{k}}{C_{k+1}}\right)
\end{aligned}
$$

as desired.

Definition 2.5. We define the generalized Johnson homomorphisms for surfaces with multiple boundary components $\tau_{k}: J_{k}(\Sigma) \rightarrow \operatorname{Hom}\left(H_{1}(\Sigma, \partial \Sigma), \pi_{1}(\Sigma)_{k} / \pi_{1}(\Sigma)_{k+1}\right)$ to be the composition $\bar{i}^{-1} \eta_{k} \tau_{k} i^{\prime}$ given in Lemma 2.7.

Thus to compute the Johnson homomorphism for surfaces with multiple boundary components, we must consider how the mapping class acts on all representatives of a basis for $\operatorname{Hom}\left(H_{1}(\Sigma, \partial \Sigma)\right)$. In particular, this includes the action on arcs joining boundary components of Σ. It suffices to consider the action of mapping classes on $\operatorname{arcs} A_{i}$ (as described in Definition 2.3). As shown in the proof of Lemma 2.7, for these arcs we obtain the Johnson homomorphism $\tau_{k}([f])=\left(\left[A_{i}\right] \mapsto\left[f\left(A_{i}\right) \overline{A_{i}}\right]\right)$. Note that Definition 2.3 verifies that $f\left(A_{i}\right) \overline{A_{i}}$ is in fact an element of $\pi_{1}(\Sigma)_{k}$ as desired.

Chapter 3

Higher-Order Johnson Subgroups

and Homomorphisms

3.1 Higher-Order Johnson Subgroups and Homomorphisms

The Johnson subgroups and homomorphisms are heavily built upon the lower central series. In this section we generalize the concepts of Johnson subgroups and homomorphisms to more general characteristic subgroups. These tools are useful in analyzing subgroups of the mapping class group which induce trivial automorphisms on F / H for any characteristic subgroup H.

Recall that S is an oriented surface with one boundary component and let $*$ be a basepoint for $\pi_{1}(S)$ which lies on the boundary. We are then able to define the higher-order Johnson subgroups as follows.

Definition 3.1. Let $F=\pi_{1}(S, *)$ and let H be a characteristic subgroup of F. Let $\phi^{H}: \operatorname{Mod}(S) \rightarrow \operatorname{Aut}(F / H)$ be the map which takes a homeomorphism class in $\operatorname{Mod}(S)$ to the induced automorphism of F / H. We define the higher-order Johnson subgroup with characteristic subgroup $H, J^{H}(S)$, by $J^{H}(S)=\operatorname{ker} \phi^{H}$. Equivalently, $J^{H}(S)$ is the subgroup of the mapping class group which acts trivially on F / H.

For any characteristic subgroup H of F, H_{k} is also a characteristic subgroup of F. The higher-order Johnson subgroup with characteristic subgroup H_{k} is denoted $J_{k}^{H}(S)$. As any homeomorphism acting trivially on F / H_{k} also acts trivially on F / H_{n} for $n<k, J_{k}^{H}(S) \subset J_{n}^{H}(S)$ for $n<k$. Hence the subgroups $J_{k}^{H}(S)$ form a filtration of $J^{H}(S)$: the higher-order Johnson filtration with characteristic subgroup H.

$$
J^{H}(S)=J_{1}^{H}(S) \supset J_{2}^{H}(S) \supset J_{3}^{H}(S) \supset \cdots \supset J_{k}^{H}(S) \supset \cdots,
$$

Note that the traditional Johnson filtration is recovered by choosing $H=F$.
There is a natural structure on H_{k} / H_{k+1} as a left $\mathbb{Z}[F / H]$ module. Here the module action by elements $[g] \in F / H$ is given by $[g] \cdot[x]=\left[g x g^{-1}\right]$. It is clear that this action is well defined since given $g \in H$ and $x \in H_{k}$, the conjugate $g x g^{-1} x^{-1}$ belongs to H_{k+1}. Hence for $g \in H,\left[g x g^{-1}\right]=[x]$ as elements of H_{k} / H_{k+1}. The action by elements of $\mathbb{Z}[F / H]$ is given by the obvious extension. It is important to note that in general F / H is a nonabelian group, and hence H_{k} / H_{k+1} is a module over a noncommutative ring.

Having constructed subgroups analogous to the Johnson subgroups, it is natural to develop a corresponding analog to the Johnson homomorphisms.

Definition 3.2. The higher-order Johnson homomorphisms,

$$
\tau_{k}^{H}(f): J_{k}^{H}(S) \rightarrow \operatorname{Hom}_{\mathbb{Z}[F / H]}\left(H / H^{\prime} \rightarrow H_{k} / H_{k+1}\right)
$$

are given by $\tau_{k}^{H}(f)=\left([x] \mapsto\left[f_{*}(x) x^{-1}\right]\right)$ where $f_{*}: F \rightarrow F$ is the automorphism induced by f.

Theorem 3.1. The higher-order Johnson homomorphisms,

$$
\tau_{k}^{H}: J_{k}^{H}(S) \rightarrow \operatorname{Hom}_{\mathbb{Z}[F / H]}\left(H / H^{\prime}, H_{k} / H_{k+1}\right),
$$

are well defined, group homomorphisms for $k \geq 2$.

Proof. We will start by showing that for each $f \in J_{k}^{H}(S)$ the map $\tau_{k}^{H}(f)$ is a well defined $\mathbb{Z}[F / H]$-module homomorphism. We first show that for $[a, b]=a b a^{-1} b^{-1}$, where $a, b \in H, \tau_{k}^{H}(f)([a, b])=0$ in H_{k} / H_{k+1}. By definition,

$$
\begin{aligned}
\tau_{k}^{H}(f)([a, b]) & =f_{*}([a, b])[a, b]^{-1} \\
& =\left[f_{*}(a), f_{*}(b)\right][a, b]^{-1} \\
& =[a d, b e][a, b]^{-1} \quad \text { for some } d, e \in H_{k} .
\end{aligned}
$$

Using the commutator identities $[u x, y]={ }^{u}[x, y][u, y]$ and $[x, v y]=[x, v]^{v}[x, y]$, where ${ }^{h} g=h g h^{-1}$, we can simplify this further.

$$
\begin{aligned}
\tau_{k}^{H}(f)([a, b]) & ={ }^{a}[d, b e][a, b e][a, b]^{-1} \\
& ={ }^{a}[d, b]^{a b}[d, e][a, b]^{b}[a, e][a, b]^{-1}
\end{aligned}
$$

As $d, e \in H_{k},[d, b],[d, e],[a, e] \in H_{k+1}$. Therefore, this expression is trivial in the quotient H_{k} / H_{k+1}.

We will next show that $\tau_{k}^{H}(f)$ is multiplicative. By definition, for $a, b \in H$,

$$
\begin{aligned}
\tau_{k}^{H}(f)(a b) & =f_{*}(a b)(a b)^{-1} \\
& =f_{*}(a) f_{*}(b) b^{-1} a^{-1} \\
& =f_{*}(a) a^{-1 a}\left(f_{*}(b) b^{-1}\right)
\end{aligned}
$$

$$
=f_{*}(a) a^{-1} f_{*}(b) b^{-1} \quad \text { as in } H_{k} / H_{k+1}, \text { conjugation by }
$$

an element in H is trivial.

$$
=\tau_{k}^{H}(f)(a) \tau_{k}^{H}(f)(b)
$$

Any $w \in[H, H]$ can be written as a product of commutators $w=c_{1} \cdots c_{n}$. This completes the proof that $\tau_{k}^{H}(f)$ is well defined, as $\tau_{k}^{H}(f)(w)=\tau_{k}^{H}(f)\left(c_{1}\right) \cdots \tau_{k}^{H}(f)\left(c_{n}\right)=0$. This also shows that $\tau_{k}^{H}(f)$ is a group homomorphism.

To show that $\tau_{k}^{H}(f)$ is a module homomorphism for a given f we must show for $[g] \in F / H$ and $[x] \in H / H^{\prime},[g] \cdot \tau_{k}^{H}(f)([x])=\tau_{k}^{H}(f)([g] \cdot[x])$. As the module action is by conjugation, we may compute as follows.

$$
\begin{aligned}
\tau_{k}^{H}(f)([g] \cdot[x]) & =\tau_{k}^{H}(f)\left(\left[g x g^{-1}\right]\right) \\
& =\left[f_{*}\left(g x g^{-1}\right)\left(g x g^{-1}\right)^{-1}\right] \\
& =\left[f_{*}(g) f_{*}(x) f_{*}\left(g^{-1}\right) g x^{-1} g^{-1}\right] \\
& =\left[f_{*}(g) g^{-1} g f_{*}(x) g^{-1} g f_{*}\left(g^{-1}\right) g x^{-1} g^{-1}\right]
\end{aligned}
$$

This expression reduces to:

$$
\tau_{k}^{H}(f)([g] \cdot[x])=\left[\left(f_{*}(g) g^{-1}\right) g f_{*}(x) g^{-1}\left(f_{*}(g) g^{-1}\right)^{-1} g x^{-1} g^{-1}\right]
$$

The element $g f_{*}(x) g^{-1} \in H$ as H is a characteristic subgroup. As $f \in J_{k}^{H}, f_{*}$ acts trivially $\bmod H_{k}$, and thus $f_{*}(g) g^{-1} \in H_{k}$. Since $\tau_{k}^{H}(f)([x] \cdot[f]) \in H_{k} / H_{k+1}$, the conjugation of an element of H by an element of H_{k} is a trivial conjugation. This observation yields the following expression.

$$
\begin{aligned}
\tau_{k}^{H}(f)([x] \cdot[g]) & =\left[g f_{*}(x) g^{-1} g x^{-1} g^{-1}\right] \\
& =\left[g f_{*}(x) x^{-1} g^{-1}\right] \\
& =[g] \cdot \tau_{k}^{H}(f)(x)
\end{aligned}
$$

This concludes the proof that $\tau_{k}^{H}(f)$ is an $\mathbb{Z}[F / H]$-module homomorphism. It remains to show that $\tau_{k}^{H}: J_{k}^{H}(S) \rightarrow \operatorname{Hom}_{\mathbb{Z}[F / H]}\left(H / H^{\prime}, H_{k} / H_{k+1}\right)$ is a group homomorphism.

Let $f^{1}, f^{2} \in J_{k}^{H}(S)$ and let $x \in H / H^{\prime}$. We consider the image of their product by the map τ_{k}^{H} in the computation below.

$$
\begin{aligned}
\tau_{k}^{H}\left(f^{1} f^{2}\right)(x) & =\left(f^{1} f^{2}\right)_{*}(x) x^{-1} \\
& =f_{*}^{1} f_{*}^{2}(x) x^{-1} \\
& =f_{*}^{1}\left(f_{*}^{2}(x)\right) x^{-1} \\
& =f_{*}^{1}\left(f_{*}^{2}(x)\right)\left(f_{*}^{2}(x)\right)^{-1} f_{*}^{2}(x) x^{-1} \\
& =\tau_{k}^{H}\left(f^{1}\right)\left(f_{*}^{2}(x)\right) \tau_{k}^{H}\left(f^{2}\right)(x)
\end{aligned}
$$

As $f^{2} \in J_{k}^{H}(S), f_{*}^{2}(x)=x$ as an element of H / H^{\prime} for $k \geq 2$. Hence $\tau_{k}^{H}\left(f^{1}\right)\left(f_{*}^{2}(x)\right)=\tau_{k}^{H}\left(f^{1}\right)(x)$. Combining this with the above computation gives us the desired result: $\tau_{k}^{H}\left(f^{1} f^{2}\right)(x)=\tau_{k}^{H}\left(f^{1}\right)(x) \tau_{k}^{H}\left(f^{2}\right)(x)$. Thus $\tau_{k}^{H}: J_{k}^{H}(S) \rightarrow \operatorname{Hom}_{\mathbb{Z}[F / H]}\left(H / H^{\prime}, H_{k} / H_{k+1}\right)$ is a group homomorphism.

Proposition 3.2. $J_{k+1}^{H} \subset \operatorname{ker} \tau_{k}^{H}$. Thus

$$
\tau_{k}^{H}: \frac{J_{k}^{H}}{J_{k+1}^{H}} \rightarrow \operatorname{Hom}_{\mathbb{Z}[F / H]}\left(H / H^{\prime}, H_{k} / H_{k+1}\right)
$$

is a well defined map.

Proof. By definition, $J_{k+1}^{H}=\operatorname{ker}\left(\operatorname{Mod}(S) \rightarrow \operatorname{Aut}\left(F / H_{k+1}\right)\right)$. Thus for $[f] \in J_{k+1}^{H},[x] \in$ F / H, we have for any representative homeomorphism $f \in[f], f_{*}(x)=x \bmod H_{k+1}$. Rewriting this expression we see $f_{*}(x) x^{-1} \in H_{k+1}$. Thus $\left[f_{*}(x) x^{-1}\right]=1$ as an element of H_{k} / H_{k+1}. Hence $[f] \in \operatorname{ker} \tau_{k}^{\prime}$.

3.2 higher-order Magnus Subgroups

While the higher-order Johnson subgroups and homomorphisms are defined for any characteristic subgroup H, this machinery is of particular interest in the case where
H is the commutator subgroup of F, denoted by $[F, F]$ or F^{\prime}. Through the remainder of the paper, we focus primarily on this case. For clarity, we repeat the definitions of the higher-order Johnson subgroups and homomorphisms here for this special case.

Definition 3.3. For $k \geq 2$, the higher-order Magnus subgroups $M_{k}(S)$ are given by $M_{k}(S)=J_{k}^{[F, F]}(S)$. Equivalently,

$$
M_{k}(S)=\operatorname{ker}\left(\operatorname{Mod}(S) \rightarrow \operatorname{Aut}\left(F / F_{k}^{\prime}\right)\right)
$$

It is of particular importance that $M_{1}(S)=\operatorname{ker}\left(\operatorname{Mod}(S) \rightarrow \operatorname{Aut}\left(F / F^{(1)}\right)\right.$ is the Torelli group, and $M_{2}(S)=\operatorname{ker}\left(\operatorname{Mod}(S) \rightarrow \operatorname{Aut}\left(F / F^{(2)}\right)\right.$ is the kernel of the Magnus representation of the Torelli group. Thus the higher-order Magnus filtration,

$$
\operatorname{Mag}(S)=M_{2}(S) \supset M_{3}(S) \supset \cdots \supset M_{k}(S) \supset \cdots
$$

is a filtration of the Magnus kernel.

To investigate the structure of these higher-order Magnus subgroups, we will make frequent use of their corresponding higher-order Johnson homomorphisms.

Definition 3.4. The higher-order Magnus homomorphisms,

$$
\tau_{k}^{\prime}(f): M_{k}(S) \rightarrow \operatorname{Hom}_{\mathbb{Z}\left[F / F^{\prime}\right]}\left(F^{\prime} / F^{\prime \prime} \rightarrow F_{k}^{\prime} / F_{k+1}^{\prime}\right)
$$

are the higher-order Johnson homomorphisms with characteristic subgroup F^{\prime}.

Remark 3.3. Note that as a special case of Proposition 3.2 we have that $M_{k+1} \subset \operatorname{ker} \tau_{k}^{\prime}$. Hence the Magnus homomorphisms are well defined on successive quotients

$$
\tau_{k}^{\prime}: \frac{M_{k}}{M_{k+1}} \rightarrow \operatorname{Hom}_{\mathbb{Z}\left[F / F^{\prime}\right]}\left(F^{\prime} / F^{\prime \prime}, F_{k}^{\prime} / F_{k+1}^{\prime}\right)
$$

Thus, just as with the Johnson homomorphisms, for $f \in M_{k}$, computing $\tau_{k}^{\prime}(f) \neq 0$ pins the location of f in the higher-order Magnus filtration precisely.

Chapter 4

Algebraic Tools

We take this opportunity to prove some algebraic results that will be of use in proving our main theorems.

4.1 Basis theorems and properties of lower central series quotients

We will make extensive use of several variations on the basis theorem for lower central series quotients of free groups [9] Theorem 11.2.4. We begin by discussing the notation and results for Hall's basis theorem before proceeding to generalizations of this result.

Let E be a free group on a free basis $x_{1}, \ldots x_{r}$. We define basic commutators and construct an ordering on the basic commutators inductively as follows:

- The basic commutators of weight 1 are the generators $x_{1}, \ldots x_{r}$ with $x_{i}<x_{j}$ for $i<j$.
- The basic commutators of weight n ate the commutators $c=\left[c_{i}, c_{j}\right]$ where c_{i} and c_{j} are basic commutators with weights summing to n. These are ordered lexicographically: if $c=\left[c_{i}, c_{j}\right]$ and $c^{\prime}=\left[c_{i}^{\prime}, c_{j}^{\prime}\right]$ then $c>c^{\prime}$ if $c_{i}>c_{i}^{\prime}$ or if $c_{i}=c_{i}^{\prime}$ and $c_{j}>c_{j}^{\prime}$.

By imposing the additional requirement that $c_{i}<c_{j}$ if the weight of c_{i} is less than the weight of c_{j}, we achieve an ordering of all basic commutators.

Above we have given a precise construction of a strict ordering on basic commutators. While this ordering is consistent with Hall's original definition of ordering on basic commutators, he only insisted that the ordering be consistent with the partial ordering given by the weights and allowed for arbitrary ordering of commutators of the same weight. For our generalizations of the basis theorem, we find it advantageous to work with the specific ordering given above. This specific ordering of basic commutators has appeared before in [20].

To speak precisely about commutators and lower central series, we also introduce some new terminology.

Definition 4.1. Let $a_{1}, \ldots, a_{n} \in G$. We define an n-bracketing of a_{1}, \ldots, a_{n} inductively by

- The 1 -bracketing of a_{1} is a_{1}
- A n-bracketing of a_{1}, \ldots, a_{n} is any commutator $\left[c_{k}, c_{n-k}\right]$ where c_{k} is a k bracketing of a_{1}, \ldots, a_{k} and c_{n-k} is an $(n-k)$-bracketing of a_{k+1}, \ldots, a_{n}.

We call an element a_{i} in an n-bracketing of a_{1}, \ldots, a_{n} an entry.

Note that the definition of n-bracketing is not very restrictive. For example, the commutators $\left[\left[a_{1}, a_{2}\right],\left[a_{3}, a_{4}\right]\right],\left[\left[\left[a_{1}, a_{2}\right], a_{3}\right], a_{4}\right]$, and $\left[a_{1},\left[a_{2},\left[a_{3}, a_{4}\right]\right]\right]$ are all 4bracketings of the entries $a_{1}, a_{2}, a_{3}, a_{4}$. Note that by the definition, any n-bracketing is an element of G_{n}, but it is possible for an n-bracketing to lie in a deeper term of the lower central series.

Given these definitions for commutators, we are now equipped to approach the basis theorem.

Theorem 4.1 (Hall). If E is the free group with free generators x_{1}, \ldots, x_{r} and if in a sequence of basic commutators c_{1}, \ldots, c_{t} are those of weight $1,2, \ldots, k$ then an arbitrary element g of E has a unique representation

$$
g=c_{1}^{e_{1}} \cdots c_{t}^{e_{t}} \quad \bmod \quad E_{k+1}
$$

The basic commutators of weight k form a basis for the free abelian group E_{k} / E_{k+1}.

Hall's basis theorem applies only to lower central series quotients of finitely generated free groups. Below, we generalize the basis theorem to hold for lower central series quotients of infinitely generated free groups.

Corollary 4.2. If E is the free group with free generators x_{1}, x_{2}, \ldots and if in a sequence of basic commutators $\left\{c_{i}\right\}$ are those of weight $1,2, \ldots, k$ then an arbitrary element g of E has a unique representation

$$
g=\prod c_{i}^{e_{i}} \quad \bmod \quad E_{k+1}
$$

where $e_{i}=0$ for all but finitely many i. The basic commutators of weight k form a basis for the free abelian group E_{k} / E_{k+1}.

Proof. Let $E(i)$ be the free group on x_{1}, \ldots, x_{i}. Note that the natural inclusion $E(i) \rightarrow E(j)$ for $j>i$ sends basic commutators to basic commutators and respects the ordering on basic commutators.

We first show that show that the map $\iota_{i, j}: E(i) \rightarrow E(j)$ induces an injection on the lower central series quotients $\bar{\iota}_{i, j}: E(i)_{k} / E(i)_{k+1} \hookrightarrow E(j)_{k} / E(j)_{k+1}$. Note that $H_{2}(E(i), \mathbb{Q})=H_{2}(E(i), \mathbb{Q})=0$, as the wedge of i or j circles is a $K(G, 1)$ for $E(i)$ or $E(j)$ respectively. Furthermore, $\iota_{i, j}$ induces an injection $H_{1}(E(i), \mathbb{Q}) \rightarrow H_{1}(E(j), \mathbb{Q})$. By Proposition 2.4, $\iota_{i, j}$ induces an injection $\bar{\iota}_{i, j}: E(i)_{k} / E(i)_{k+1} \hookrightarrow E(j)_{k} / E(j)_{k+1}$ since free groups have the same rational lower central series and lower central series.

Let $\iota_{i}: E(i) \rightarrow E$ be the natural inclusion map sending $x_{k} \mapsto x_{k}$ for $k \leq i$. By an analogous argument, ι_{i} induces an injection $\bar{\iota}_{i}: E(i)_{k} / E(i)_{k+1} \hookrightarrow E_{k} / E_{k+1}$.

Given this it is easily checked that $\left\{E(i)_{k} / E(i)_{k+1}, \iota_{i j}\right\}$ is a directed system of groups. We will show that E_{k} / E_{k+1} is the direct limit of this system. For this it suffices to show that for a group G and maps $f_{i}: E(i)_{k} / E(i)_{k+1} \rightarrow G$ such that $f_{i}=f_{j} \circ \iota_{i j}$, there exists a map $f: E_{k} / E_{k+1} \rightarrow G$ such that $f \circ \iota_{i}=f_{i}$. For any element $x \in E_{k} / E_{k+1}, x$ can be written as a finite length word in the generators x_{1}, \ldots Hence $x \in E(i)_{k} / E(i)_{k+1}$ for some i. Define $f(x)=f_{i}(x)$. It is clear the resulting map f is well defined and has the desired properties.

To prove the first statement of the theorem, let $g \in E$, then $g \in E(i)$ for some i. Hence in $E(i)$ there is a unique representation for g as $g=c_{1}^{e_{1}} \cdots c_{t}^{e_{t}} \bmod E(i)_{k+1}$. As $E(i)_{k} \subset E_{k}, g=c_{1}^{e_{1}} \cdots c_{t}^{e_{t}} \quad \bmod E_{k+1}$ is a representation of g in the desired form in E. Suppose there is another representation of this form, $g=d_{1}^{\epsilon_{1}} \cdots d_{s}^{\epsilon_{s}} \bmod E_{k+1}$. There exists a j such that all of the basic commutators $c_{1}, \ldots, c_{t}, d_{1}, \ldots, d_{s} \in E(j)$.

Then by the basis theorem for finitely generated free groups these representations must be the same.

To prove the second statement, note that as E_{k} / E_{k+1} is a direct limit of $E(i)_{k} / E(i)_{k+1}$, it follows from the basis theorem for finitely generated free groups that the basic commutators of weight k generate E_{k} / E_{k+1}. Furthermore, for any finite collection of basic commutators of weight $k c_{1}, \ldots, c_{m}$, there is some i such that $c_{1}, \ldots, c_{m} \in$ $E(i)_{k} / E(i)_{k+1}$. Hence all commutators of weight k are independent. Therefore the basic commutators of weight k form a basis for E_{k} / E_{k+1}.

Lemma 4.2. Let G be a group and let $a \in G_{k}$. By the definition of the lower central series, a is some n-bracketing of $a_{1}, \ldots a_{n}$ where $a_{i} \in G, n \leq k$, and $a_{i} \in G_{k_{i}}$ where $\sum_{i=1}^{n} k_{i}=k$. Let c_{1}, \ldots, c_{n} be elements of G with $c_{i} \in G_{k_{i}+1}$. Let a^{\prime} be the commutator a where each entry a_{i} is replaced by $c_{i} a_{i}$. Then $a^{\prime}=c a$ for some $c \in G_{k+1}$

Proof. We prove this using strong induction. For the case $k=2$, $a=\left[a_{i_{1}}, a_{i_{2}}\right]$. Using the commutator identities $[u x, y]={ }^{u}[x, y][u, y]$ and $[x, v y]=[x, v]{ }^{v}[x, y]$ we can perform the following computation:

$$
\begin{aligned}
a^{\prime} & =\left[c_{1} a_{i_{1}}, c_{2} a_{i_{2}}\right] \\
& ={ }^{c_{1}}\left[a_{i_{1}}, c_{2} a_{i_{2}}\right]\left[c_{1}, c_{2} a_{i_{2}}\right] \\
& ={ }^{c_{1}}\left[a_{i_{1}}, c_{2}\right]{ }^{c_{2} c_{1}}\left[a_{i_{1}}, a_{i_{2}}\right]\left[c_{1}, c_{2} a_{i_{2}}\right] \\
& ={ }^{c_{1}}\left[x_{i_{1}}, c_{2}\right] c_{2} c_{1}\left[a_{i_{1}}, a_{i_{2}}\right] c_{1}^{-1} c_{2}^{-1}\left[c_{1}, c_{2} a_{i_{2}}\right] \\
& ={ }^{c_{1}}\left[a_{i_{1}}, c_{2}\right] c_{2} c_{1}{ }^{\left[a_{i_{1}}, a_{i_{2}}\right]}\left(c_{1}^{-1} c_{2}^{-1}\left[c_{1}, c_{2} x_{i_{2}}\right]\right)\left[a_{i_{1}}, a_{i_{2}}\right]
\end{aligned}
$$

Hence for $c={ }^{c_{1}}\left[a_{i_{1}}, c_{2}\right] c_{2} c_{1}{ }^{\left[a_{i_{1}}, a_{i_{2}}\right]}\left(c_{1}^{-1} c_{2}^{-1}\left[c_{1}, c_{2} a_{i_{2}}\right]\right)$ our base case holds.
For the inductive step, suppose $a=\left[a_{m}, a_{n}\right]$ where $a_{m} \in G_{m}$, and $a_{n} \in G_{n}$. By the inductive hypothesis, $a_{m}^{\prime}=c_{m} a_{m}$ where $c_{m} \in G_{m+1}$ and $a_{n}^{\prime}=c_{n} a_{n}$ where $c_{n} \in G_{n+1}$

$$
\begin{aligned}
a^{\prime} & =\left[a_{m}^{\prime}, a_{n}^{\prime}\right] \\
& =\left[c_{m} a_{m}, c_{n} a_{n}\right] \\
& =c_{m}\left[a_{m}, c_{n} a_{n}\right]\left[c_{m}, c_{n} a_{n}\right] \\
& =c_{m}\left[a_{m}, c_{n}\right]{ }^{c_{n} c_{m}}\left[a_{m}, a_{n}\right]\left[c_{m}, c_{n} a_{n}\right] \\
& =c^{c_{m}}\left[a_{m}, c_{n}\right] c_{n} c_{m}\left[a_{m}, a_{n}\right] c_{m}^{-1} c_{n}^{-1}\left[c_{m}, c_{n} a_{n}\right] \\
& =c_{m}\left[a_{m}, c_{n}\right] c_{n} c_{m}{ }^{\left[a_{m}, a_{n}\right]}\left(c_{m}^{-1} c_{n}^{-1}\left[c_{m}, c_{n} a_{n}\right]\right)\left[a_{m}, a_{n}\right]
\end{aligned}
$$

To finish the proof we must show that ${ }^{c_{m}}\left[a_{m}, c_{n}\right] c_{n} c_{m}{ }^{\left[a_{m}, a_{n}\right]}\left(c_{m}^{-1} c_{n}^{-1}\left[c_{m}, c_{n} a_{n}\right]\right)$ is an element of G_{n+m+1}. Note that $\left[a_{m}, c_{n}\right] \in G_{m+n+1}$, and so any conjugate is also in E_{m+n+1}. We simplify the above expression as modulo G_{m+n+1} as follows:

$$
\begin{aligned}
c_{m}\left[a_{m}, c_{n}\right] c_{n} c_{m}{ }^{\left[a_{m}, a_{n}\right]}\left(c_{m}^{-1} c_{n}^{-1}\left[c_{m}, c_{n} a_{n}\right]\right) & =c_{n} c_{m}{ }^{\left[a_{m}, a_{n}\right]}\left(c_{m}^{-1} c_{n}^{-1} c_{m} c_{n} a_{n} c_{m}^{-1} a_{n}^{-1} c_{n}^{-1}\right) \\
& =c_{n} c_{m}{ }^{\left[a_{m}, a_{n}\right]}\left(\left[c_{m}^{-1}, c_{n}^{-1}\right] a_{n} c_{m}^{-1} a_{n}^{-1} c_{n}^{-1}\right) \\
& =c_{n} c_{m}{ }^{\left[a_{m}, a_{n}\right]}\left(\left[c_{m}^{-1}, c_{n}^{-1}\right]\left[a_{n} c_{m}^{-1}\right]\left(c_{n} c_{m}\right)^{-1}\right) \\
& =c_{n} c_{m}\left[a_{m}, a_{n}\right]\left[c_{m}^{-1}, c_{n}^{-1}\right]\left[a_{n} c_{m}^{-1}\right]\left(c_{n} c_{m}\right)^{-1}\left[a_{m}, a_{n}\right]^{-1}
\end{aligned}
$$

As $\left[a_{m}, a_{n}\right] \in G_{m+n}$, it is in the center of G / G_{m+n+1}. Also note that the commutators $\left[c_{m}^{-1}, c_{n}^{-1}\right]$ and $\left[a_{n}, c_{m}^{-1}\right]$ are elements of G_{n+m+1}. Thus modulo G_{n+m+1} the expression
reduces further to:

$$
\begin{aligned}
c_{m}\left[a_{m}, c_{n}\right] c_{n} c_{m}{ }^{\left[a_{m}, a_{n}\right]}\left(c_{m}^{-1} c_{n}^{-1}\left[c_{m}, c_{n} a_{n}\right]\right) & =c_{n} c_{m}\left[a_{m}, a_{n}\right]\left[c_{m}^{-1}, c_{n}^{-1}\right]\left[a_{n} c_{m}^{-1}\right]\left(c_{n} c_{m}\right)^{-1}\left[a_{m}, a_{n}\right]^{-1} \\
& =c_{n} c_{m}\left[a_{m}, a_{n}\right]\left(c_{n} c_{m}\right)^{-1}\left[a_{m}, a_{n}\right]^{-1} \\
& =1
\end{aligned}
$$

Hence for $c={ }^{c_{m}}\left[a_{m}, c_{n}\right] c_{n} c_{m}{ }^{\left[a_{m}, a_{n}\right]}\left(c_{m}^{-1} c_{n}^{-1}\left[c_{m}, c_{n} a_{n}\right]\right)$ our induction holds.

Corollary 4.3. Commutators in $\frac{G_{k}}{G_{k+1}}$ are linear in each entry. In other words, given $a, b, c \in G$. If $C \in \frac{G_{k}}{G_{k+1}}$ be an n-bracketing with $[a b, c]$ as an entry. Let C^{\prime} be the commutator obtained by replacing the entry $[a b, c]$ with $[a, c][b, c]$. Then $C=C^{\prime}$. In addition, if $C \in \frac{G_{k}}{G_{k+1}}$ with an entry $[a, b c]$ and C^{\prime} is the commutator obtained by replacing the entry $[a, b c]$ with $[a, b][a, c]$, then $C=C^{\prime}$.

Proof. We will prove the first identity. The proof of the second is analogous.

In any group we have the identity

$$
\begin{aligned}
{[a b, c] } & ={ }^{a}[b, c][a, c] \\
& =[a, c]]^{[c, a] a}[b, c] \\
& =[a, c]\left[{ }^{[c, a] a} b,{ }^{[c, a] a} c\right] .
\end{aligned}
$$

Let $b \in G_{k_{b}}$ and $c \in G_{k_{c}}$. Note that the elements b and ${ }^{[c, a] a} b$ share the same class in $G / G_{k_{b}+1}$. Similarly, the elements c and ${ }^{[c, a] a} c$ share the same class in $G / G_{k_{c}+1}$. The result follows immediately from Lemma 4.2 .

Corollary 4.4. Let E be the free group with free generators x_{1}, x_{2}, \ldots Let $\overline{x_{1}}, \overline{x_{2}}, \ldots$ be the classes of x_{1}, x_{2}, \ldots in E / E^{\prime}. Consider the basic commutators \bar{c}_{i} of weights
$1,2, \ldots, k$ in elements $\overline{x_{1}}, \overline{x_{2}}, \ldots$ defined in the same fashion as before (inductively from the ordering $\left.\overline{x_{1}}<\overline{x_{2}}<\ldots\right)$. An arbitrary element g of E has a unique representation

$$
g=\bar{c}_{1}^{e_{1}} \cdots \bar{c}_{t}^{e_{t}} \quad \bmod \quad E_{k+1}
$$

The basic commutators of weight k form a basis for the free abelian group E_{k} / E_{k+1}.

Proof. By Lemma 4.2, the representation $g=c_{1}{ }^{e_{1}} \cdots c_{t}{ }^{e_{t}}$ mod E_{k+1} is unchanged by sending x_{i} to another element in the same homology class. It follows that $g=$ $\bar{c}_{1}{ }^{e_{1}} \cdots \bar{c}_{t}{ }^{e_{t}} \bmod E_{k+1}$ is a well defined representation of g. The remaining statements follow directly from Corollary 4.2.

The following proposition establishes a relationship between bases for the lower central series quotients $\frac{E(n)_{k}}{E(n)_{k+1}}$ and $\frac{E(n-1)_{k}}{E(n-1)_{k+1}}$.

Proposition 4.3. Let $E(n-1)$ be the free group on $\left\{x_{1}, \ldots, x_{n-1}\right\}$ and let $E(n)$ be the free group on $\left\{x_{1}, \ldots, x_{n}\right\}$. Let $\pi: E(n) \rightarrow E(n-1) \cong E(n) /\left\langle x_{n}\right\rangle$ be the natural quotient map. The kernel of the induced map

$$
\bar{\pi}: \frac{E(n)_{k}}{E(n)_{k+1}} \rightarrow \frac{E(n-1)_{k}}{E(n-1)_{k+1}}
$$

is generated by weight k basic commutators which have x_{n} as an entry.

Proof. Let K be the subgroup of $\frac{E(n)_{k}}{E(n)_{k+1}}$ generated by basic commutators which have x_{n} as an entry. We show $K=\operatorname{ker} \bar{\pi}$. First, consider a basic commutator c of weight k which has x_{n} as an entry. We show that $\pi(c)=1$ using strong induction.

In the first case we consider a weight 2 basic commutator. Suppose $c=\left[x_{i}, x_{n}\right]$ or $c=\left[x_{n}, x_{i}\right]$ for some x_{i}. Then

$$
\begin{aligned}
\pi(c) & =\left[\pi\left(x_{i}\right), \pi\left(x_{n}\right)\right] \\
& =\left[x_{i}, \pi\left(x_{n}\right)\right] \\
& =1 .
\end{aligned}
$$

and similarly for $c=\left[x_{n}, x_{i}\right]$
Suppose for induction that for all commutators c of weight less than k, that $\pi(c)=1$. Let c be a weight k basic commutator with x_{n} as an entry. Then $c=\left[c_{1}, c_{2}\right]$ where c_{1} and c_{2} are basic commutators of weight $\leq k-1$. Either c_{1} or c_{2} must have x_{n} as an entry. If c_{1} has x_{n} as an entry then

$$
\begin{aligned}
\pi(c) & =\left[\pi\left(c_{1}\right), \pi\left(c_{2}\right)\right] \\
& =\left[1, \pi\left(c_{2}\right)\right] \\
& =1
\end{aligned}
$$

and similarly if c_{2} has x_{n} as an entry. Thus $K \subset \operatorname{ker} \bar{\pi}$.
To show the opposite inclusion, let $\iota: E(n-1) \rightarrow E(n)$ be the natural inclusion map. This map induces a monomorphism $\bar{\iota}: \frac{E(n-1)_{k}}{E(n-1)_{k+1}} \rightarrow \frac{E(n)_{k}}{E(n)_{k+1}}$. Furthermore as $\bar{\pi} \circ \bar{\iota}$ is the identity map, $\bar{\pi}$ is a retract.

$$
\frac{E(n-1)_{k}}{E(n-1)_{k+1}} \xrightarrow{\grave{\imath}} \frac{E(n)_{k}}{E(n)_{k+1}} \xrightarrow{\bar{\pi}} \frac{E(n-1)_{k}}{E(n-1)_{k+1}}
$$

Suppose $c \in \frac{E(n)_{k}}{E(n)_{k+1}}$ and $c \notin K$. Then by the basis theorem c can be written as a product of basic commutators c_{1}, \ldots, c_{m} in the generators $\left\{x_{1}, \ldots, x_{n}\right\}$. In this product
there is some set of basic commutators $\left\{c_{i} \mid i \in A\right\}$ for which $c_{i} \notin K$. Then by definition of K, for each $i \in A, c_{i}$ is a basic commutator in the generators $\left\{x_{1}, \ldots, x_{n-1}\right\}$. Thus for each $i \in A, c_{i} \in \operatorname{im} \bar{\iota}$ and the product of these basic commutators $\prod_{i \in A} c_{i}$ is nontrivial. Then as $\bar{\pi}\left(c_{i}\right)=c_{i}$ for each $i \in A$ and $\bar{\pi}\left(c_{i}\right)=1$ for $i \notin A$, it follows that $\bar{\pi}(c)=\prod_{i \in A} c_{i}$. Hence $c \notin \operatorname{ker} \bar{\pi}$. Therefore, $K=\operatorname{ker} \bar{\pi}$, as desired.

4.2 Module structure of the lower central series

quotients

The first result in this section provides a homology basis for the commutator subgroup of a free group E^{\prime}. An equivalent set was shown to be a basis in [1]. We provide an original proof here for completeness.

Lemma 4.4. Let $E=E\left(x_{1}, \ldots, x_{n}\right)$ be a free group on $\left\{x_{1}, \ldots, x_{n}\right\}$. Let $B=\left\{{ }^{w_{i, j}}\left[x_{i}, x_{j}\right] \mid i<j, w_{i, j} \in \operatorname{Im}\left(H_{1}\left(E\left(x_{1}, \ldots, x_{j}\right)\right) \hookrightarrow H_{1}(E)\right)\right\}$. Then B is a basis for $H_{1}\left(E^{\prime}, \mathbb{Z}\right)$.

Proof. To show B is a basis for $H_{1}(E)$ we must show that B generates the homology of E, and also that there are no relations among the elements of B. We first show that B generates.

The set $B^{\prime}=\left\{\left[x_{i}, x_{j}\right]^{w} \mid i<j, w \in H_{1}(E)\right\}$ is a clear generating set for $H_{1}\left(E^{\prime}\right)$. Hence to show that B is a generating set it suffices to show that any element of B^{\prime} can be written as a linear combination of elements of B. Any element w of $H_{1}(E)$ can be written as a product $w=x_{1}^{m_{1}} \cdots x_{n}^{m_{n}}$, and hence a general element b^{\prime} of B^{\prime}
takes the form $b^{\prime}=x_{1}^{m_{1} \ldots x_{n}^{m_{n}}}\left[x_{i}, x_{j}\right]$. Note that if $m_{l}=0$ for all l with $j<l \leq n$, then $b^{\prime} \in B$. For $k>j$ we may express $x_{k}^{ \pm 1}\left[x_{i}, x_{j}\right]$ as follows:

$$
\begin{aligned}
x_{k}\left[x_{i}, x_{j}\right] & =\left[x_{i}, x_{j}\right]+\left[x_{j}, x_{k}\right]-x_{i}\left[x_{j}, x_{k}\right]-\left[x_{i}, x_{k}\right]+x_{j}\left[x_{i}, x_{k}\right] \\
x_{k}^{-1}\left[x_{i}, x_{j}\right] & =\left[x_{i}, x_{j}\right]+x_{k}^{-1}\left[x_{j}, x_{k}\right]+x_{k}^{-1} x_{i}\left[x_{j}, x_{k}\right]+x_{k}^{-1}\left[x_{i}, x_{k}\right]+x_{k}^{-1} x_{j}\left[x_{i}, x_{k}\right] .
\end{aligned}
$$

Note that both expressions above are linear combinations of elements of B. Given the above, we can express $v x_{k}^{ \pm 1}\left[x_{i}, x_{j}\right]$ as follows:

$$
\begin{aligned}
v x_{k}\left[x_{i}, x_{j}\right] & ={ }^{v}\left[x_{i}, x_{j}\right]+{ }^{v}\left[x_{j}, x_{k}\right]+{ }^{v x_{i}}\left[x_{j}, x_{k}\right]+{ }^{v}\left[x_{i}, x_{k}\right]+{ }^{v x_{j}}\left[x_{i}, x_{k}\right] \\
v x_{k}^{-1}\left[x_{i}, x_{j}\right] & ={ }^{v}\left[x_{i}, x_{j}\right]+{ }^{v x_{k}^{-1}}\left[x_{j}, x_{k}\right]+v x_{k}^{-1} x_{i}\left[x_{j}, x_{k}\right]+{ }^{v x_{k}^{-1}}\left[x_{i}, x_{k}\right]+v x_{k}^{-1} x_{j}\left[x_{i}, x_{k}\right] .
\end{aligned}
$$

Thus by induction, any element of B^{\prime} can be expressed as a linear combination of elements of B. Hence B is a generating set for $H_{1}\left(E^{\prime}\right)$.

To show that there are no relations among the elements of B we will employ the following map. Let X be the wedge of n circles and let \widetilde{X} denote the universal abelian cover of X. Note that $\pi_{1}(X)=E$. Thus $\pi_{1}(\widetilde{X})=E^{\prime}$ and $H_{1}(\tilde{X})=H_{1}\left(E^{\prime}\right)$. Let v be the vertex of X. Then by the long exact sequence of a pair we have that $i: H_{1}\left(E^{\prime}\right) \hookrightarrow H_{1}(\widetilde{X}, \tilde{v})$, where the i is induced by the natural inclusion. Note that $H_{1}(\tilde{X}, \tilde{v})$ can be identified with the free $\mathbb{Z} \Lambda$ module with basis $\left(x_{1}, \ldots, x_{n}\right)$ where Λ is the free abelian group on the basis $\left(y_{1}, \ldots y_{n}\right)$.

Consider a linear combination $\sum a_{i, j}(k){ }^{w_{i, j}}(k)\left[x_{i}, x_{j}\right]$ of elements of B that is 0 in $H_{1}(E)$. By looking at the geometry of the inclusion $\widetilde{X} \rightarrow(\widetilde{X}, \tilde{v})$ we see that $i\left(\sum a_{i, j}(k)^{w_{i, j}(k)}\left[x_{i}, x_{j}\right]\right)=\sum a_{i, j}(k) w_{i, j}(k)\left(\left(1-y_{j}\right) x_{i}+\left(y_{i}-1\right) x_{j}\right)$. We define up-
per and lower bounds on the height of x_{i} in the y_{j} direction as follows:

$$
\begin{aligned}
U_{i, j} & =\max _{k}\left\{m_{j} \mid w_{i, j}(k)=y_{1}^{m_{1}} \cdots y_{n}^{m_{j}}, a_{i, j}(k) \neq 0\right\} \\
L_{i, j} & =\min _{k}\left\{m_{j} \mid w_{i, j}(k)=y_{1}^{m_{1}} \cdots y_{n}^{m_{j}}, a_{i, j}(k) \neq 0\right\}
\end{aligned}
$$

As the expression $\sum a_{i, j}(k) w_{i, j}(k)\left(\left(1-y_{j}\right) x_{i}+\left(y_{i}-1\right) x_{j}\right)$ has finitely many $a_{i, j}(k) \neq$ 0 for each pair i, j, if there is $a_{i, j}(k) \neq 0$ for some k, then there must exist words $w_{i, j}\left(k^{*}\right)$ and $w_{i, j}\left(k_{*}\right)$ such that

$$
\begin{aligned}
& w_{i, j}\left(k^{*}\right)=y_{1}^{m_{1}} \cdots y_{j-1}^{m_{j-1}} y_{j}^{U_{i, j}} \\
& w_{i, j}\left(k_{*}\right)=y_{1}^{m_{1}} \cdots y_{j-1}^{m_{j-1}} y_{j}^{L_{i, j}}
\end{aligned}
$$

and with $a_{i, j}\left(k^{*}\right)$ and $a_{i, j}\left(k_{*}\right)$ nonzero.
Note that the only parts of the sum $\sum a_{i, j}(k) w_{i, j}(k)\left(\left(1-y_{j}\right) x_{i}+\left(y_{i}-1\right) x_{j}\right)$ containing x_{1} terms are of the form $a_{1, j}(k) w_{1, j}(k)\left(1-y_{j}\right) x_{1}$. Suppose that $a_{1, n}(k) \neq 0$ for some k. Consider the $-a_{1, n}\left(k^{*}\right) w_{1, n}\left(k^{*}\right) y_{n} x_{1}$ summand of the above expression, $\sum a_{i, j}(k) w_{i, j}(k)\left(\left(1-y_{j}\right) x_{i}+\left(y_{i}-1\right) x_{j}\right) . \quad$ By assumption, the summation $\sum a_{i, j}(k) w_{i, j}(k)\left(\left(1-y_{j}\right) x_{i}+\left(y_{i}-1\right) x_{j}\right)=0$.

Suppose that $w_{1, n}^{\prime}\left(k^{*}\right)$ is another word achieving the upper bound $U_{1, n}$. Then $w_{1, n}\left(k^{*}\right)=y_{1}^{m_{1}} \cdots y_{j-1}^{m_{n-1}} y_{j}^{U_{1, n}}$ and $w_{1, n}^{\prime}\left(k^{*}\right)=y_{1}^{m_{1}^{\prime}} \cdots y_{j-1}^{m_{n-1}^{\prime}} y_{j}^{U_{1, n}}$ where $m_{i} \neq m_{i}^{\prime}$ for some $i<n$. Hence the term corresponding to $w_{1, n}^{\prime}\left(k^{*}\right), a_{1, n}^{\prime}(k *) w_{1, n}^{\prime}\left(k^{*}\right)\left(1-y_{n}\right) x_{1}$ can have no interaction with $-a_{1, n}\left(k^{*}\right) w_{1, n}\left(k^{*}\right) y_{n} x_{1}$. The same holds for words $w_{1, n}(k)$ which do not achieve the upper bound $U_{i, j}$.

Note that by definition of our proposed basis $w_{1, j}(k)$ is an element of the free
abelian group generated by y_{1}, \ldots, y_{j}. Hence for $j \neq n, w_{1, n}\left(k^{*}\right) y_{n} x_{1} \neq w_{1, j}(k) x_{1}$ unless $U_{1, n}=-1$.

Similarly, we may consider the $a_{1, n}\left(k_{*}\right) w_{1, n}\left(k_{*}\right) x_{1}$ summand of the above expression, $\sum a_{i, j}(k) w_{i, j}(k)\left(\left(1-y_{j}\right) x_{i}+\left(y_{i}-1\right) x_{j}\right)$. By an analogous argument, for $w_{1, n}(k) x_{1} \neq w_{1, n}\left(k_{*}\right) x_{1}$ and for $j \neq n, w_{1, n}\left(k_{*}\right) x_{1} \neq w_{1, j}(k) x_{1}$ unless $L_{1, n}=0$.

By definition of our upper and lower bounds, $U_{1, n}$ and $L_{1, n}, U_{1, n} \geq L_{1, n}$, and hence we cannot have $-1=U_{1, n}<L_{1, n}=0$. Thus $a_{1, n}(k)=0$ for all k.

The key to concluding that $a_{1, n}(k)=0$ was the fact that for $j \neq n$, $w_{1, n}\left(k^{*}\right) y_{n} x_{1} \neq w_{1, j}(k) x_{1}$, and $w_{1, n}\left(k_{*}\right) x_{1} \neq w_{1, j}(k) x_{1}$ as the powers of y_{n} in $w_{1, j}(k)$ are zero. Now that we have concluded $a_{1, n}(k)=0$ we can make some similar statements about the height of x_{1} in the y_{n-1} direction: $w_{1, n-1}\left(k^{*}\right) y_{n-1} x_{1} \neq w_{1, j}(k) x_{1}$, and $w_{1, n-1}\left(k_{*}\right) x_{1} \neq w_{1, j}(k) x_{1}$. Since there are no nonzero $a_{1, n}(k)$, the only terms with nonzero powers of y_{n-1} now come from the $w_{1, n-1}$ terms. We make this concept precise via a descending induction on the index j.

Suppose that the coefficients $a_{1, l}(k)=0$ for all $l>p$. Suppose that $a_{1, p}(k) \neq 0$ for some k. Consider the $-a_{1, p}\left(k^{*}\right) w_{1, p}\left(k^{*}\right) y_{p} x_{1}$ summand of $\sum a_{i, j}(k) w_{i, j}(k)\left(\left(1-y_{j}\right) x_{i}+\left(y_{i}-1\right) x_{j}\right)$. By definition of our proposed basis $w_{1, j}(k)$ is an element of the free abelian group generated by y_{1}, \ldots, y_{j}. Since there are no terms with $j>p$, for $j \neq p, w_{1, p}\left(k^{*}\right) y_{p} x_{1} \neq w_{1, j}(k) x_{1}$ unless $U_{1, p}=-1$. As our sum is zero, the $w_{1, p}\left(k^{*}\right) y_{p} x_{1}$ term must be zero. Since the only contribution to this term is the $-a_{1, p}$ coefficient, it follows that $U_{1, p}=-1$.

Similarly, we may consider the $a_{1, p}\left(k_{*}\right) w_{1, p}\left(k_{*}\right) x_{1}$ summand of the sum, $\sum a_{i, j}(k) w_{i, j}(k)\left(\left(1-y_{j}\right) x_{i}+\left(y_{i}-1\right) x_{j}\right)$. As there are no terms with $j>p$, for $j \neq p$,
$w_{1, p}\left(k_{*}\right) x_{1} \neq w_{1, j}(k) x_{1}$ unless $L_{1, p}=0$. As our sum is zero, the $w_{1, p}\left(k_{*}\right) y_{p} x_{1}$ term must be zero. Since the only contribution to this term is the $a_{1, p}$ coefficient, it follows that $L_{1, p}=0$. By definition of our upper and lower bounds, $U_{1, p}$ and $L_{1, p}, U_{1, p} \geq L_{1, p}$, and hence we cannot have $-1=U_{1, p}<L_{1, p}=0$. Thus $a_{1, p}(k)=0$ for all k. Hence by our induction, $a_{1, j}(k)=0$ for all j and all k.

Since $a_{1, j}(k)=0, x_{2}$ now plays the role of x_{1}, and hence we can make the conclusion that $a_{2, j}(k)=0$. We make this precise by an induction on the index i.

Suppose that $a_{l, j}(k)=0$ for all j and for all $l<p$. Then the only x_{p} terms come from the $a_{p, j}(k)\left(1-y_{j}\right) x_{p}$ summands of $\sum a_{i, j}(k) w_{i, j}(k)\left(\left(1-y_{j}\right) x_{i}+\left(y_{i}-1\right) x_{j}\right)$. Thus we can repeat the above induction on the index j to conclude that $a_{p, j}(k)=0$ for all j and k. Hence $a_{i, j}(k)=0$ for all i, j and k.

Thus we have shown that for a linear combination $\sum a_{i, j}(k){ }^{w_{i, j}(k)}\left[x_{i}, x_{j}\right]$ of elements of B that is 0 in $H_{1}(E)$, all $a_{i, j}(k)=0$. Thus there are no relations in the among the elements in the set B.

As B generates $H_{1}\left(E^{\prime}\right)$ and has no relations, B is a basis for $H_{1}\left(E^{\prime}\right)$.

Lemma 4.5. The module $\frac{E_{k}^{\prime}}{E_{k+1}^{\prime}}$ has no $\mathbb{Z}\left[\frac{E}{E^{\prime}}\right]$ torsion of the form $\left(1-x_{i}\right) \omega=0$, where x_{i} is a generator for E.

Proof. Consider the homology basis B for E^{\prime} given by Lemma 4.4. Note that the set of basis elements, B, maps to itself under conjugation by x_{1}. Given an element $\omega \in \frac{E_{k}^{\prime}}{E_{k+1}^{\prime}}$, by Corollary $4.4, \omega$ can be written as a product $\omega=\prod_{i=1}^{m} c_{i}^{\alpha_{i}}$ where c_{i} are basic commutators in the elements of $H_{1}\left(F^{\prime}\right)$ and $c_{i}<c_{i+1}$ for all i.

As in the proof of Lemma 4.4, let X be the wedge of n circles and let \widetilde{X} denote the universal abelian cover of X. Note that $\pi_{1}(X)=E$. Thus $\pi_{1}(\tilde{X})=E^{\prime}$ and $H_{1}(\widetilde{X})=H_{1}\left(E^{\prime}\right)$. Let v be the vertex of X. Then by the long exact sequence of a pair we have that $i: H_{1}\left(E^{\prime}\right) \hookrightarrow H_{1}(\tilde{X}, \tilde{v})$, where the i is induced by the natural inclusion. The universal abelian cover, \tilde{X}, is a 1-complex taking the form of a square grid with a dimension corresponding to each generator. The vertices of this grid can be labeled by a vector $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ where a_{i} denotes the distance of the vertex in the x_{i} direction. These vertices can be ordered by the dictionary order. That is, if $v=\left(a_{1}, \ldots, a_{n}\right)$ and $v^{\prime}=\left(a_{1}^{\prime}, \ldots, a_{n}^{\prime}\right)$ then $v<v^{\prime}$ if $a_{1}<a_{1}^{\prime}$ or $a_{i}=a_{i}^{\prime}$ for all $i<j$ and $a_{j}<a_{j}^{\prime}$.

Any edge in the lattice can then be written as an ordered pair of vertices, $e=$ $\left(v_{1}, v_{2}\right)$ with $v_{1}<v_{2}$. The edges then inherit a strict ordering by the dictionary order on the weighted vertices. That is, if $e=\left(v_{1}, v_{2}\right)$ and $e^{\prime}=\left(v_{1}^{\prime}, v_{2}^{\prime}\right)$ then $e<e^{\prime}$ if $v_{1}<v_{1}^{\prime}$ or if $v_{1}=v_{1}^{\prime}$ and $v_{2}<v_{2}^{\prime}$.

Any basis element of $H_{1}\left(E^{\prime}\right)$ (in the basis described in Lemma 4.4) can be written as a finite sum of edges, $c=\sum_{i=1}^{l} b_{i} e_{i}$ where $e_{i} \leq e_{i+1}$. Thus the weighting on oriented edges of E^{\prime} induces an ordering on basis elements of the homology of E^{\prime} by the dictionary order in the same way. We may represent any element c as a vector $\left(b_{1}, b_{2}, \cdots\right)$ where b_{i} is the coefficient of the edge e_{i}. Note that by construction, such a vector has finitely many nonzero entries. For $c=\left(b_{1}, \ldots\right)$ and $c^{\prime}=\left(b_{1}^{\prime}, \ldots\right)$ then $c<c^{\prime}$ if $b_{1}<b_{1}^{\prime}$ or $b_{i}=b_{i}^{\prime}$ for all $i<j$ and $b_{j}<b_{j}^{\prime}$. In this manner we obtain a strict ordering on basis elements of $H_{1}(E)$. We can use this ordering of our homology basis to construct our basic commutators as in the basis theorem. Conjugating by
x_{1} preserves the ordering on homology elements of E^{\prime} as it preserves the ordering on vertices. Hence since B is invariant under conjugation by x_{1}, each basic commutator c_{i} in the product $\omega=\prod_{i=1}^{m} c_{i}^{\alpha_{i}}$ where c_{i} is sent to another basic commutator in the elements of B, c_{i}^{\prime}. As the ordering on elements of B is preserved under the conjugation by x_{1}, the c_{i}^{\prime} also satisfy $c_{i}^{\prime}<c_{i+1}^{\prime}$.

Hence by Corollary 4.4, $x_{1} \cdot \omega$ can be written uniquely by the basis theorem as $x_{1} \cdot \omega=\prod_{i=1}^{m} c_{i}^{\prime \alpha_{i}}$, where $c_{i}^{\prime}={ }^{x_{1}} c_{i}$. Note that $\omega \neq x_{1} \cdot \omega$ as $c_{1} \neq c_{1}^{\prime}$ and thus the unique expressions of ω and ${ }^{x_{1}} \omega$ have distinct least commutators. Thus $\left(1-x_{1}\right) \omega \neq 0$.

The result that $\left(1-x_{i}\right) \omega \neq 0$ for any i can be obtained by reordering the generators of E such that x_{i} plays the role of x_{1}.

Note that $\left(1-x_{1}\right)\left(1-x_{2}\right) \omega \neq 0$ is equivalent to the statement that the map $\cdot\left(1-x_{1}\right)\left(1-x_{2}\right): \frac{E_{k}^{\prime}}{E_{k+1}^{\prime}} \rightarrow \frac{E_{k}^{\prime}}{E_{k+1}^{\prime}}$ is injective. Hence if $\omega \neq \omega^{\prime}$ then $\left(1-x_{1}\right)\left(1-x_{2}\right) \omega \neq$ $\left(1-x_{1}\right)\left(1-x_{2}\right) \omega^{\prime}$. This fact will be employed in future Magnus homomorphism computations.

Chapter 5

Main Results

In this chapter we investigate properties of the higher-order Magnus subgroups. Section 5.1 develops a way of obtaining mapping classes in $M_{k}(S)$ from those in $J_{k}(D)$ and shows these mapping classes to be nontrivial. Given that it is known that $J_{k}(D)$ is nontrivial for all k, this shows that the higher dimensional analog $M_{k}(S)$ is nontrivial for all k for genus ≥ 3. In Section 5.2 we seek to strengthen this result. We will show that the Magnus homomorphisms are nontrivial on $M_{k}(S)$ given some conditions on $\tau_{k}\left(J_{k}(D)\right)$. Using these Magnus homomorphism computations we will exhibit a subgroup of $\frac{M_{k}}{M_{k+1}}$ isomorphic to a lower central series quotient of free groups. Finally, in Section 5.3 we will show that $\frac{M_{k}(S)}{M_{k+1}(S)}$ is infinite rank for all k.

5.1 Constructing elements of M_{k} via subsurfaces

Let S be a surface with genus $g \geq 2$ and 1 boundary component. Let D be a sphere with n disks removed, $n \geq 3$. We work to relate Johnson filtration on D to the

Magnus filtration on S by considering separating embeddings of D in S.

Definition 5.1. Let D have boundary components b_{0}, \ldots, b_{n}. The map $i: D \rightarrow S$ is a separating embedding if i is an embedding such that $i\left(b_{1}\right), \ldots, i\left(b_{n}\right)$ are separating curves in S and $i\left(b_{0}\right)$ is either a separating curve in S or is the boundary component of S.

Figure 5.1: To obtain examples of $f^{\prime} \in M_{k}(S)$ from $f \in J_{k}(D)$, we embed the disk, D into S such that each boundary component of D is either separating in S or is the boundary component of S. The above illustrates a possible separating embedding of D_{g} in S_{g}.

We first develop a relationship between the Johnson subgroups on a disk and the Magnus subgroups on a larger surface. For this we will employ a specific basis for F that is compatible with the arcs which generate $H_{1}(D, \partial D)$. Let $*$ be a basepoint for $F=\pi_{1}(S)$ located on the boundary of S. Let A_{i} be arcs connecting the $i^{t h}$ boundary component to p_{0} as in Definition 2.3. Let p_{i} be the terminal point of A_{i}. As the boundary components of $i(D)$ are separating in $S, S \backslash D$ is a disjoint union of at most $n+2$ surfaces, one of which is $i(D)$. Let us denote the other surfaces $\Sigma_{0}, \ldots, \Sigma_{n}$,
with Σ_{0} chosen such that Σ_{0} contains the boundary component of S (note that if i maps a boundary component of D to the boundary component of S, Σ_{0} is empty). Let Σ_{i} have genus g_{i}. Then $\pi_{1}\left(\Sigma_{i}, p_{i}\right)$ has a basis consisting of $2 g_{i}$ loops (given the extra boundary component, Σ_{0} will have a basis of $2 g_{0}+1$ loops, but we will only consider the $2 g_{0}$ loops which form a basis for the capped off surface). By the Seifert Van Kampen theorem, we can combine these bases to form a basis for F as follows: Let C be an arc joining $*$ to p_{0}. The elements of our basis for S are the homotopy classes of the loops $C A_{i} \beta \overline{A_{i}} \bar{C}$ (or $C \beta \bar{C}$ for $i=0$) where β is a generator of $\pi_{1}\left(\Sigma_{i}, p_{i}\right)$. This basis is illustrated in Figure 5.2 below. We denote the elements of this basis $\left\{\alpha_{1}, \gamma_{1}, \ldots, \alpha_{g}, \gamma_{g}\right\}$ where the curves $\alpha_{g_{0}+\cdots+g_{i-1}+1}, \gamma_{g_{0}+\cdots+g_{i-1}+1}, \ldots, \alpha_{g_{0}+\cdots+g_{i}}, \gamma_{g_{0}+\cdots+g_{i}}$ are those basis elements produced by the generators of $\pi_{1}\left(\Sigma_{i}, p_{i}\right)$.

Lemma 5.1. Let $i: D \rightarrow S$ be a separating embedding. Let $[f] \in \operatorname{Mod}(D)$ and let f be a representative homeomorphism of $[f]$. Let $f^{\prime}: S \rightarrow S$ be the homeomorphism defined by

$$
f^{\prime}(x)= \begin{cases}i(f(y)) & x=i(y) \\ x & x \in S \backslash i(D)\end{cases}
$$

then if $[f] \in J_{k}(D),\left[f^{\prime}\right] \in M_{k}(S)$.

Proof. Choose an ordering of the boundary components of D, points p_{i} on these boundary components and arcs A_{i} as in Definition 2.3 such that the boundary component of S is contained in the component of $S \backslash \operatorname{int} i(D)$ containing the $0^{t h}$ boundary component of D. Let $*$ be a basepoint for $\pi_{1}(S)$ which lies on ∂S and let c be an arc parametrized on $[0,1]$ such that $c(0)=*$ and $c(1)=p_{0} \in \partial D$. By construction of our basis for $\pi_{1}(S, *)$ in which each generator can be represented by a loop α which is

Figure 5.2: Pictured above is the chosen basis $\left\{\alpha_{1}, \gamma_{1}, \ldots, \alpha_{g}, \gamma_{g}\right\}$ of F, obtained by connecting the bases for $\pi_{1}\left(\Sigma_{i}, p_{i}\right)$ to the basepoint $*$ via the arcs A_{i}.
either disjoint from $i(D)$, or is of the form $\alpha=C A_{i} \beta \overline{A_{i}} \bar{C}$ with β a loop intersecting $i(D)$ only at its initial and terminal points.

For α disjoint from $i(D), f_{*}^{\prime}(\alpha)=\alpha$ and thus $f_{*}^{\prime}(\alpha) \alpha^{-1}=1$ is trivially contained in F_{k}.

For $\alpha=C A_{i} \beta \overline{A_{i}} \bar{C}$ we can perform the following computation.

$$
\begin{aligned}
f^{\prime}(\alpha) \bar{\alpha} & \simeq f^{\prime}\left(C A_{i} \beta \overline{A_{i}} \bar{C}\right) \overline{\left(C A_{i} \beta \overline{A_{i}} \bar{C}\right)} \\
& \simeq f^{\prime}(C) f^{\prime}\left(A_{i}\right) f^{\prime}(\beta) f^{\prime}\left(\overline{A_{i}}\right) f^{\prime}(\bar{C}) C A_{i} \bar{\beta} \overline{A_{i}} \bar{C} \\
& \simeq C i\left(f\left(A_{i}\right)\right) \beta i\left(f\left(\overline{A_{i}}\right)\right) \bar{C} C A_{i} \bar{\beta} \overline{A_{i}} \bar{C} \\
& \simeq\left(C i\left(f\left(A_{i}\right)\right) \overline{A_{i}} \bar{C}\right)\left(C A_{i} \beta \overline{A_{i}} \bar{C}\right)\left(C A_{i} i\left(f\left(\overline{A_{i}}\right)\right) \bar{C}\right)\left(C \bar{\beta} \overline{A_{i}} \bar{C}\right) \\
& \simeq i_{*}\left(f\left(A_{i}\right) \overline{A_{i}}\right)\left(C A_{i} \beta \overline{A_{i}} \bar{C}\right) i_{*}\left(A_{i} f\left(\overline{A_{i}}\right)\right)\left(C \bar{\beta} \overline{A_{i}} \bar{C}\right)
\end{aligned}
$$

Note that $\left(f\left(A_{i}\right) \overline{A_{i}}\right)^{-1}=A_{i} f\left(\overline{A_{i}}\right)$. As $f \in J_{k}(D)$, both $A_{i} f\left(\overline{A_{i}}\right)$ and $f\left(A_{i}\right) \overline{A_{i}}$ are contained in $\pi_{1}(D)_{k}$. Each boundary curve of $i(D)$ is the boundary of a subsurface of S and hence is contained in $[F, F]$. Since $\pi_{1}(D)$ is generated by the boundary curves of D, it follows that $i_{*}\left(\pi_{1}(D)\right) \subset F^{\prime}$, and hence $i_{*}\left(\pi_{1}(D)_{k}\right) \subset F_{k}^{\prime}$. Hence both $i_{*}\left(A_{i} f\left(\overline{A_{i}}\right)\right)$ and $i_{*}\left(f\left(A_{i}\right) \overline{A_{i}}\right)$ are contained in F_{k}^{\prime}. Considering the above expression modulo F_{k}^{\prime} we then achieve the following.

$$
\begin{aligned}
f^{\prime}(\alpha) \alpha^{-1} & =C A_{i} \beta \overline{\beta A_{i}} \bar{C} C A_{i} \overline{\beta A_{i}} \bar{C} & & \bmod F_{k}^{\prime} \\
& =\alpha \alpha^{-1}=1 & & \bmod F_{k}^{\prime}
\end{aligned}
$$

Therefore $f^{\prime} \in M_{k}(S)$.

Lemma 5.1 allows us to construct numerous examples of elements of $M_{k}(S)$ by extending homeomorphisms in J_{k} of embedded disks.

Proposition 5.2. Let $i: D \rightarrow S$ be a separating embedding. The map $i^{\prime}: \operatorname{Mod}(D) \rightarrow$ $\operatorname{Mod}(S)$ given by $i^{\prime}([f])=\left[f^{\prime}\right]$ is an injective homomorphism. This map induces a
homomorphism

$$
\bar{i}: \frac{J_{k}(D)}{J_{k+1}(D)} \rightarrow \frac{M_{k}(S)}{M_{k+1}(S)} .
$$

Proof. We begin by showing that i^{\prime} is multiplicative. Consider maps $\left[f_{1}\right],\left[f_{2}\right] \in$ $\operatorname{Mod}(D)$ and let f_{1}, f_{2} be corresponding homeomorphisms. Clearly as elements of $\operatorname{Mod}(D),\left[f_{1}\right]\left[f_{2}\right]=\left[f_{1} f_{2}\right]$. The composition $f_{1} f_{2}$ is a representative of the class [$\left.f_{1} f_{2}\right]$. We then have:

$$
\begin{aligned}
i^{\prime}\left(\left[f_{1}\right]\left[f_{2}\right]\right) & =i^{\prime}\left(\left[f_{1} f_{2}\right]\right) \\
& =\left[\left(f_{1} f_{2}\right)^{\prime}\right] .
\end{aligned}
$$

Note that by definition $\left(f_{1} f_{2}\right)^{\prime}$ is the homeomorphism $S \rightarrow S$ which extends $f_{1} f_{2}$ by the identity. We then have that $\left(f_{1} f_{2}\right)^{\prime}=f_{1}^{\prime} f_{2}^{\prime}$. By definition of multiplication in $\operatorname{Mod}(S),\left[f_{1}^{\prime} f_{2}^{\prime}\right]=\left[f_{1}^{\prime}\right]\left[f_{2}^{\prime}\right]$. Thus,

$$
\begin{aligned}
i^{\prime}\left(\left[f_{1}\right]\left[f_{2}\right]\right) & =\left[\left(f_{1} f_{2}\right)^{\prime}\right] \\
& =\left[f_{1}^{\prime} f_{2}^{\prime}\right] \\
& =\left[f_{1}^{\prime}\right]\left[f_{2}^{\prime}\right] \\
& =i^{\prime}\left(\left[f_{1}\right]\right) i^{\prime}\left(\left[f_{2}\right]\right)
\end{aligned}
$$

Thus i^{\prime} is multiplicative.
To show that i^{\prime} is injective, it then suffices to show that $\operatorname{ker} i^{\prime}=1$. This amounts to showing that beginning with a nontrivial mapping class $f \in M_{k}(D)$, the resulting mapping class $f^{\prime} \in M_{k}(S)$ is necessarily nontrivial. As no boundary component of
D is nullhomotopic in S, this follows directly from [5] Theorem 3.18. Hence i^{\prime} is a monomorphism.

We now address the second part of the proposition: that i^{\prime} induces a homomorphism $\bar{i}: \frac{J_{k}(D)}{J_{k+1}(D)} \rightarrow \frac{M_{k}(S)}{M_{k+1}(S)}$. By Lemma $5.1 i^{\prime}\left(J_{k+1}(D)\right) \subset M_{k+1}(S)$. Thus the map \bar{i} is well defined. It is clearly a homomorphism as i^{\prime} is a homomorphism. This completes the proof.

5.2 Magnus homomorphism computations

Having developed a relationship between Johnson subgroups on D and Magnus subgroups on S, we now seek to relate the Johnson homomorphisms on D to the Magnus homomorphisms on S. To do this we must first examine the relationship between the lower central series quotients of $\pi_{1}(D)$ and F^{\prime}.

Let G denote the fundamental group of D, the disk with n holes, and let y_{i} be the generators of G obtained by traveling along arc A_{i}, circling the corresponding boundary component in a counterclockwise direction, and returning to the basepoint along $\overline{A_{i}}$ as shown in Figure 5.3.

Lemma 5.3. Let $i: D \rightarrow S$ be a separating embedding. The induced map $i_{*}: \frac{G_{k}}{G_{k+1}} \rightarrow \frac{F_{k}^{\prime}}{F_{k+1}^{\prime}}$ is injective.

Proof. To show that the above map is an injection, we will employ Proposition 2.4. Hence we must show that the homomorphism $i_{*}: G \rightarrow F^{\prime}$ given by $y_{i} \mapsto\left[\alpha_{i}, \gamma_{i}\right]$ induces an injection $H_{1}(G ; \mathbb{Q}) \rightarrow H_{1}\left(F^{\prime} ; \mathbb{Q}\right)$. As G / G^{\prime} and $F^{\prime} / F^{\prime \prime}$ are torsion free abelian groups, it suffices to show there is an injection $H_{1}(G ; \mathbb{Z}) \rightarrow H_{1}\left(F^{\prime} ; \mathbb{Z}\right)$. Note

Figure 5.3: Pictured above are the generators y_{i} of G. A generator y_{i} is obtained by traveling along arc A_{i}, circling the corresponding boundary component in a counterclockwise direction, and returning to the basepoint along $\overline{A_{i}}$.
that by our previous construction of the basis for F^{\prime},

$$
i_{*}\left(y_{i}\right)=\left[\alpha_{g_{0}+\cdots+g_{i-1}+1}, \gamma_{g_{0}+\cdots+g_{i-1}+1}\right] \cdots\left[\alpha_{g_{0}+\cdots+g_{i}}, \gamma_{g_{0}+\cdots+g_{i}}\right] .
$$

Consider an element $\sum n_{i} y_{i}$ which is nonzero in G / G^{\prime}. We compute the image of this element by i_{*} as follows:

$$
\begin{aligned}
i_{*}\left(\sum n_{i} y_{i}\right) & =\sum n_{i} i_{*}\left(y_{i}\right) \\
& =\sum n_{i}\left[\alpha_{g_{0}+\cdots+g_{i-1}+1}, \gamma_{g_{0}+\cdots+g_{i-1}+1}\right] \cdots\left[\alpha_{g_{0}+\cdots+g_{i}}, \gamma_{g_{0}+\cdots+g_{i}}\right]
\end{aligned}
$$

Because $\sum n_{i} y_{i} \neq 0, n_{j} \neq 0$ for some j. Consider the map g_{j} which maps S to the punctured surface as shown in Figure 5.4.

Figure 5.4: Pictured above is the continuous map $g_{j}: S \rightarrow T$. Everything above and including the curve $i\left(b_{i}\right)$ for $i \neq j$ is collapsed to a point p_{i}.

We find that

$$
\begin{aligned}
g_{j *} i_{*}\left(\sum n_{i} y_{i}\right) & =\sum n_{i} i_{*}\left(y_{i}\right) \\
& =g_{j *}\left(\sum n_{i}\left[\alpha_{g_{0}+\cdots+g_{i-1}+1}, \gamma_{g_{0}+\cdots+g_{i-1}+1}\right] \cdots\left[\alpha_{g_{0}+\cdots+g_{i}}, \gamma_{g_{0}+\cdots+g_{i}}\right]\right) \\
& =\sum n_{i} g_{j *}\left(\left[\alpha_{g_{0}+\cdots+g_{i-1}+1}, \gamma_{g_{0}+\cdots+g_{i-1}+1}\right] \cdots\left[\alpha_{g_{0}+\cdots+g_{i}}, \gamma_{g_{0}+\cdots+g_{i}}\right]\right) \\
& =n_{j}\left[g_{j *}\left(\alpha_{g_{0}+\cdots+g_{j-1}+1}\right), g_{j *}\left(\gamma_{g_{0}+\cdots+g_{j-1}+1}\right)\right]
\end{aligned}
$$

$$
\cdots\left[g_{j *}\left(\alpha_{g_{0}+\cdots+g_{j}}\right), g_{j *}\left(\gamma_{g_{0}+\cdots+g_{j}}\right)\right] .
$$

Clearly $n_{j}\left[g_{j *}\left(\alpha_{g_{0}+\cdots+g_{j-1}+1}\right), g_{j *}\left(\gamma_{g_{0}+\cdots+g_{j-1}+1}\right)\right] \cdots\left[g_{j *}\left(\alpha_{g_{0}+\cdots+g_{j}}\right), g_{j *}\left(\gamma_{g_{0}+\cdots+g_{j}}\right)\right] \neq 0$ in $H_{1}(T)$. Hence $i_{*}\left(\sum n_{i} y_{i}\right) \neq 0$.

Let $f^{\prime}: S \rightarrow S$ be constructed by taking a map f in $J_{k}(D)$ and extending it to the whole surface by the identity, as in Lemma 5.1. We relate the $\tau_{k}(f)$ and $\tau_{k}^{\prime}\left(f^{\prime}\right)$ in the following lemma.

Lemma 5.4. Let S be a surface with genus $g \geq 2$ and 1 boundary component. Let D be a sphere with n disks removed, $n \geq 3$. Let $i: D \rightarrow S$ be a separating embedding. Let $f \in J_{k}(D)$ with $\tau_{k}(f)\left(A_{i}\right)=w_{i} \in \pi_{1}(D)_{k} / \pi_{1}(D)_{k+1}$ and let $f^{\prime}=i^{\prime}(f)$ be the element of $\operatorname{Mod}(S)$ given by Lemma 5.1. Let γ_{i} and γ_{j} be elements of F that intersect $i(D)$ along the arcs A_{i} and A_{j} respectively. Then $\tau_{k}^{\prime}\left(f^{\prime}\right)\left[\gamma_{i}, \gamma_{j}\right]=\left(1-\gamma_{i}\right)\left(1-\gamma_{j}\right)\left(i_{*}\left(w_{i}\right)-i_{*}\left(w_{j}\right)\right)$. Furthermore, if $w_{i} \neq w_{j}$ as elements of $\pi_{1}(D)_{k} / \pi_{1}(D)_{k+1}$ for some choice of i, j then $\tau_{k}^{\prime}\left(f^{\prime}\right) \neq 0$.

Proof. Let $w_{i}=\tau_{k}(f)\left(A_{i}\right)$. We wish to show that $\tau_{k}^{\prime}\left(f^{\prime}\right)\left[\gamma_{i}, \gamma_{j}\right] \neq 0$. We begin by computing $\tau_{k}^{\prime}\left(f^{\prime}\right)\left(\left[\gamma_{i}, \gamma_{j}\right]\right)$. By construction, $\gamma_{i}=C A_{i} \beta_{i} \overline{A_{i}} \bar{C}$ for some loop β_{i} in $S \backslash D$
by our construction of the basis for F. Then by definition

$$
\begin{aligned}
\tau_{k}^{\prime}\left(f^{\prime}\right)\left(\left[\gamma_{i}, \gamma_{j}\right]\right) & =f^{\prime}\left(\left[\gamma_{i}, \gamma_{j}\right]\right)\left[\gamma_{j}, \gamma_{i}\right] \\
& =\left[f^{\prime}\left(\gamma_{i}\right), f^{\prime}\left(\gamma_{j}\right)\right]\left[\gamma_{j}, \gamma_{i}\right] \\
& =\left[f^{\prime}\left(C A_{i} \beta_{i} \overline{A_{i}} \bar{C}\right), f^{\prime}\left(C A_{j} \beta_{j} \overline{A_{j} C}\right)\right]\left[\gamma_{j}, \gamma_{i}\right] \\
& =\left[C i f\left(A_{i}\right) \beta_{i} i f\left(\overline{A_{i}}\right) \bar{C}, C i f\left(A_{j}\right) \beta_{j} i f\left(\overline{A_{j}} \bar{C}\right]\left[\gamma_{j}, \gamma_{i}\right]\right. \\
& =\left[C i f\left(A_{i}\right) \beta_{i} \overline{i f\left(A_{i}\right)} \bar{C}, C i f\left(A_{j}\right) \beta_{j} \overline{i f\left(A_{j}\right)} \bar{C}\right]\left[\gamma_{j}, \gamma_{i}\right] \\
& =\left[C i\left(f\left(A_{i}\right) \bar{A}_{i}\right) A_{i} \beta_{i} \overline{A_{i}} i\left(A_{i} \overline{f\left(A_{i}\right)}\right) \bar{C}\right. \\
& \left.C i\left(f\left(A_{j}\right) \overline{A_{j}}\right) A_{j} \beta_{j} \overline{A_{j}} i\left(A_{j} \overline{f\left(A_{j}\right)}\right) \bar{C}\right]\left[\gamma_{j}, \gamma_{i}\right] \\
& =\left[\left(C i\left(f\left(A_{i}\right) \bar{A}_{i}\right) \bar{C}\right)\left(C A_{i} \beta_{i} \overline{A_{i}} \bar{C}\right)\left(C i\left(A_{i} \overline{f\left(A_{i}\right)}\right) \bar{C}\right),\right. \\
& \left.\left(C i\left(f\left(A_{j}\right) \overline{A_{j}}\right) \bar{C}\right)\left(C A_{j} \beta_{j} \overline{A_{j} C}\right)\left(C i\left(A_{j} \overline{f\left(A_{j}\right)}\right) \bar{C}\right)\right]\left[\gamma_{j}, \gamma_{i}\right] .
\end{aligned}
$$

Note that $i_{*}: \pi_{1}\left(D, p_{0}\right) \rightarrow \pi_{1}\left(S, i\left(p_{0}\right)\right)$. Allowing a change of basepoint from $\pi_{1}\left(S, i\left(p_{0}\right)\right)$ to $\pi_{1}(S, *)=F$, we may further reduce this expression as follows:

$$
\begin{aligned}
\tau_{k}^{\prime}\left(f^{\prime}\right)\left(\left[\gamma_{i}, \gamma_{j}\right]\right) & =\left[i_{*}\left(w_{i}\right) \gamma_{i} i_{*}\left(w_{i}^{-1}\right), i_{*}\left(w_{j}\right) \gamma_{j} i_{*}\left(w_{j}^{-1}\right)\right]\left[\gamma_{j}, \gamma_{j}\right] \\
& =\left[\left[i_{*}\left(w_{i}\right), \gamma_{i}\right] \gamma_{i},\left[i_{*}\left(w_{j}\right), \gamma_{j}\right] \gamma_{j}\right]\left[\gamma_{j}, \gamma_{i}\right]
\end{aligned}
$$

Using the commutator identities $[g a, b]={ }^{g}[a, b][g, b]$ and $[a, h b]=[a, h]^{h}[a, b]$ it is possible to reduce this expression to the following:

$$
\begin{array}{r}
\left.\left.\tau_{k}^{\prime}\left(f^{\prime}\right)\left(\left[\gamma_{i}, \gamma_{j}\right]\right)=\left[i_{*}\left(w_{i}\right), \gamma_{i}\right]\left[\gamma_{i},\left[i_{*}\left(w_{j}\right), \gamma_{j}\right]\right] \begin{array}{l}
{\left[i_{*}\left(w_{i}\right), \gamma_{i}\right]\left[i_{*}\left(w_{j}\right), \gamma_{j}\right]}
\end{array}\right] \gamma_{i}, \gamma_{j}\right]\left[\left[i_{*}\left(w_{i}\right), \gamma_{i}\right],\left[i_{*}\left(w_{j}\right), \gamma_{j}\right]\right] \\
\\
{\left[i_{*}\left(w_{j}\right), \gamma_{j}\right]\left[\left[i_{*}\left(w_{i}\right), \gamma_{i}\right], \gamma_{j}\right]\left[\gamma_{j}, \gamma_{i}\right] .}
\end{array}
$$

As $i_{*}(G) \subset F^{\prime}$ and $w_{i}, w_{j} \in G_{k}, i_{*}\left(w_{i}\right), i_{*}\left(w_{j}\right) \in F_{k}^{\prime}$. Thus the commutators $\left[i_{*}\left(w_{i}\right), \gamma_{i}\right],\left[i_{*}\left(w_{j}\right), \gamma_{j}\right]$ are elements of F_{k}^{\prime} and hence the conjugation in our expression is trivial modulo F_{k+1}^{\prime}. In addition $\left[\left[i_{*}\left(w_{i}\right), \gamma_{i}\right],\left[i_{*}\left(w_{j}\right), \gamma_{j}\right]\right] \in F_{k+1}^{\prime}$. Thus reducing $\bmod F_{k+1}^{\prime}$ we obtain:

$$
\begin{aligned}
\tau_{k}^{\prime}\left(f^{\prime}\right)\left(\left[\gamma_{i}, \gamma_{j}\right]\right) & =\left[\gamma_{i},\left[i_{*}\left(w_{j}\right), \gamma_{j}\right]\right]\left[\gamma_{i}, \gamma_{j}\right]\left[\left[i_{*}\left(w_{i}\right), \gamma_{i}\right], \gamma_{j}\right]\left[\gamma_{j}, \gamma_{i}\right] \\
& =\left[\gamma_{i},\left[i_{*}\left(w_{j}\right), \gamma_{j}\right]\right]\left[\left[i_{*}\left(w_{i}\right), \gamma_{i}\right], \gamma_{j}\right]
\end{aligned}
$$

Equivalently, viewing the $\tau_{k}^{\prime}\left(f^{\prime}\right)\left(\left[\gamma_{i}, \gamma_{j}\right]\right)$ as an element of the $\mathbb{Z}\left[F / F^{\prime}\right]$ module we can represent it as follows:

$$
\tau_{k}^{\prime}\left(f^{\prime}\right)\left[\gamma_{i}, \gamma_{j}\right]=\left(1-\gamma_{i}\right)\left(1-\gamma_{j}\right)\left(i_{*}\left(w_{i}\right)-i_{*}\left(w_{j}\right)\right)
$$

where $\left(1-\gamma_{i}\right),\left(1-\gamma_{j}\right) \in \mathbb{Z}[F / F]$ and $i_{*}\left(w_{i}\right), i_{*}\left(w_{j}\right) \in F_{k}^{\prime} / F_{k+1}^{\prime}$. This proves the first statement of the lemma.

To prove that $w_{i} w_{j}^{-1} \neq 0$ shows $\tau_{k}^{\prime}\left(f^{\prime}\right) \neq 0$, we find it advantageous to express the above computation as follows:

$$
\tau_{k}^{\prime}\left(f^{\prime}\right)\left[\gamma_{i}, \gamma_{j}\right]=\left(1-\gamma_{i}\right)\left(1-\gamma_{j}\right)\left(i_{*}\left(w_{i} w_{j}^{-1}\right)\right)
$$

By Lemma 4.5, $\tau_{k}^{\prime}\left(f^{\prime}\right)\left[\gamma_{i}, \gamma_{j}\right]$ is nonzero provided that $i_{*}\left(w_{i} w_{j}^{-1}\right)$ is nontrivial. This follows directly from Lemma 5.3.

Let D_{n} be the disk with n holes and let $G(n)=\pi_{1}\left(D_{n}\right)$. Let $E(n)$ denote the free group generated by $x_{1}, x_{2}, \ldots, x_{n}$. Let $P(n)$ denote the pure braid group on n strands. Consider the inclusion $\iota: E(n-1) \rightarrow P(n)$ obtained by mapping the generator x_{i} of
$E(n-1)=\left\langle x_{1}, \ldots, x_{n-1}\right\rangle$ by $x_{i} \mapsto A_{i, n}$ where $A_{i, n}$ is the generator of the pure braid group which clasps strands i and $n[2]$ as shown in Figure 5.5.

Forgetting to fix the boundary components in the interior of the disk, any mapping class in $\operatorname{Mod}(D)$ is isotopic to the identity. The trace of this isotopy permutes the boundary components on the interior of the disk to generate a pure braid. This correspondence is an isomorphism between $P(n)$ and $\operatorname{Mod}\left(D_{n}\right)$. We denote this natural map $\psi: P(n) \rightarrow \operatorname{Mod}\left(D_{n}\right)$. In particular it is important to note that the pure braid generator $A_{i, n}$ yields a mapping class $f_{i, n}$ on D_{n} given by a single dehn twist (twisting right) around the $i^{\text {th }}$ and $n^{\text {th }}$ punctures as shown in Figure 5.5. Note

Figure 5.5: Left: The generator $A_{i, n}$ of the pure braid group. Right: The Dehn twist $f_{i, n}$ corresponding to $A_{i, n}$
that as function composition is written right to left, the map ψ acts by reversing the order of pure braid generators: $\psi\left(A_{p_{1}, n}^{\epsilon_{1}} \cdots A_{p_{m}, n}^{\epsilon_{m}}\right)=f_{p_{m}, n}^{\epsilon_{m}} \cdots f_{p_{1}, n}^{\epsilon_{1}}$.

For a mapping class $f \in \operatorname{Mod}\left(D_{n}\right)$, let $\phi_{i}(f)$ be given by $\phi_{i}(f)=f\left(A_{i}\right) \overline{A_{i}}$.

Lemma 5.5. The map $\theta: E(n-1) \rightarrow G(n-1)$ given by the composition of maps

$$
E(n-1) \stackrel{\iota}{\hookrightarrow} P(n) \stackrel{\psi}{\hookrightarrow} \operatorname{Mod}\left(D_{n}\right) \xrightarrow{\phi_{n}} G(n) \xrightarrow{\pi} G(n-1)
$$

is the isomorphism induced by mapping $x_{i} \mapsto y_{i}$.
The map $\mu: E(n-1) \rightarrow G(n-1)$ given by the composition of maps

$$
E(n-1) \stackrel{\iota}{\hookrightarrow} P(n) \stackrel{\psi}{\hookrightarrow} \operatorname{Mod}\left(D_{n}\right) \xrightarrow{\phi} G(n) \rightarrow G(n-1)
$$

is the homomorphism given by $v \mapsto y_{1}^{\eta}$ where η is the sum of the x_{1} exponents in v.

Proof. To show this it suffices to trace $v \in E(n-1)$ through the above maps. By the above definitions it is clear that for $v=x_{p_{1}}^{\epsilon_{1}} \cdots x_{p_{m}}^{\epsilon_{m}}$ that $(\psi \circ \iota)(v)=f_{p_{m}, n}^{\epsilon_{m}} \cdots f_{p_{1}, n}^{\epsilon_{1}}$. Let $(\psi \circ \iota)(v)=f$.

To compute $\phi_{n}(f)$ and $\phi_{1}(f)$ we examine the image of the $\operatorname{arcs} A_{1}$ and A_{n}, and the generators of $G(n)$ under a map $f_{i, n}$. By direct computation we find that:

$$
\begin{aligned}
& f_{i, n}\left(A_{1}\right) \simeq \begin{cases}A_{1} & \text { if } 1<i \\
y_{n} y_{1} A_{1} & \text { if } i=1\end{cases} \\
& f_{i, n}\left(A_{n}\right) \simeq y_{n} y_{i} A_{n} \\
& f_{i, n}\left(y_{n}\right) \simeq y_{n} y_{i} y_{n} y_{i}^{-1} y_{n}^{-1} \simeq y_{n}\left[y_{i}, y_{n}\right]
\end{aligned} \begin{array}{ll}
f_{i, n}\left(y_{i}\right) \simeq y_{n} y_{i} y_{n}^{-1} \simeq y_{i}\left[y_{i}^{-1}, y_{n}\right] \\
f_{i, n}\left(y_{j}\right) \simeq \begin{cases}{\left[y_{i}, y_{n}\right]^{-1} y_{j}\left[y_{i}, y_{n}\right]} & \text { if } i<j, j \neq g \\
y_{j} & \text { if } i>j\end{cases}
\end{array}
$$

Similarly, we can compute the image of the arcs A_{1} and A_{n}, and the generators of $G(n)$ under the map $f_{i, n}^{-1}$, the left handed Dehn twist about the same simple closed curve.

$$
\begin{aligned}
& f_{i, n}^{-1}\left(A_{1}\right) \simeq \begin{cases}A_{1} & \text { if } 1<i \\
y_{1}^{-1} y_{n}^{-1} A_{1} & \text { if } i=1\end{cases} \\
& f_{i, n}^{-1}\left(A_{n}\right) \simeq y_{i}^{-1} y_{n}^{-1} A_{n} \\
& f_{i, n}^{-1}\left(y_{n}\right) \simeq y_{i} y_{n}^{-1} y_{n} y_{n} y_{i} \simeq\left[y_{i}^{-1}, y_{n}\right] y_{n} \\
& f_{i, n}^{-1}\left(y_{i}\right) \simeq y_{i}^{-1} y_{n}^{-1} y_{i} y_{n} y_{i} \simeq\left[y_{i}^{-1}, y_{n}^{-1}\right] y_{i} \\
& f_{i, n}^{-1}\left(y_{j}\right) \simeq \begin{cases}{\left[y_{i}^{-1}, y_{n}^{-1}\right] y_{j}\left[y_{i}^{-1}, y_{n}^{-1}\right]^{-1}} & \text { if } i<j, j \neq g \\
y_{j} & \text { if } i>j\end{cases}
\end{aligned}
$$

Let N be the normal subgroup of $G(n)$ normally generated by y_{n}. We can rewrite the above computations as follows. We use $f_{i, n}$ and $f_{i, n}^{-1}$ to denote both the mapping classes and their induced map on $G(n)$ for convenience of notation.

$$
\begin{aligned}
& f_{i, n}\left(A_{1}\right) \overline{A_{1}} \simeq \begin{cases}1 & \text { if } 1<i \\
y_{1} & \text { if } i=1\end{cases} \\
& f_{i, n}\left(A_{n}\right) \overline{A_{n}} \simeq y_{i} \\
& f_{i, n}\left(y_{n}\right) \simeq 1 \text { if } j \neq g
\end{aligned}
$$

For the inverse map $f_{i, n}^{-1}$ we compute:

$$
\begin{aligned}
& f_{i, n}^{-1}\left(A_{1}\right) \overline{A_{1}} \simeq \begin{cases}1 & \text { if } 1<i \\
y_{1}^{-1} & \text { if } i=1\end{cases} \\
& f_{i, n}^{-1}\left(A_{n}\right) \overline{A_{n}} \simeq y_{i}^{-1} \\
& f_{i, n}^{-1}\left(y_{n}\right) \simeq 1 \text { if } j \neq n
\end{aligned}
$$

From the above it is clear that $f_{i, n}$ and $f_{i, n}^{-1}$ act by the identity on the first $n-1$ generators of G, and sends y_{n} to an element of the subgroup N. Note that the map $G \mapsto G / N$ is the homomorphism of $\pi_{1}\left(D_{n}\right)$ induced by the map ℓ which caps the $n^{t h}$ boundary component of D_{n} as in Figure 5.6. As the mapping classes $f_{i, n}$ and $f_{i, n}^{-1}$ fix

Figure 5.6: Above is an illustration of the map $\ell: D_{n} \rightarrow D_{n-1}$ obtained by capping off the $n^{\text {th }}$ boundary component. From this one can see $\pi_{1}\left(D_{n-1}\right)=\left\langle y_{1}, \ldots y_{n-1}\right\rangle \cong G / N$. the $n^{\text {th }}$ boundary component and ℓ is an inclusion map, the map ℓ commutes with $f_{i, n}$ and $f_{i, n}^{-1}$. Hence $N=f_{i, n}(N)=f_{i, n}^{-1}(N)$. Thus, given a word in $v \in G, f_{i, n}$ and $f_{i, n}^{-1}$ each map v to a word of the same class in G / N.

We show by induction that for $f=f_{p_{m}, n}^{\epsilon_{m}} \cdots f_{p_{1}, n}^{\epsilon_{1}}$ the following computations hold
$\bmod N$:

$$
\begin{aligned}
& f\left(A_{1}\right) \overline{A_{1}}=y_{1}^{\eta} \\
& f\left(A_{n}\right) \overline{A_{n}}=y_{p_{1}}^{\epsilon_{1}} \cdots y_{p_{m}}^{\epsilon_{m}}
\end{aligned}
$$

where $\eta=\sum_{p_{i}=1} \epsilon_{i}$.
For simplicity of notation we rewrite these equalities as

$$
\begin{aligned}
& f\left(A_{1}\right) \overline{A_{1}}=y_{1}^{ \pm 1} \cdots y_{1}^{ \pm 1} \\
& f\left(A_{n}\right) \overline{A_{n}}=y_{l_{1}}^{ \pm 1} \cdots y_{l_{k}}^{ \pm 1}
\end{aligned}
$$

where indexes are allowed to repeat. The initial case of the induction was done by previous computations. Suppose that the above computations hold. Then it follows that

$$
\begin{aligned}
& f\left(A_{1}\right) \simeq a_{0} y_{1}^{ \pm 1} \cdots y_{1}^{ \pm 1} A_{1} \\
& f\left(A_{n}\right) \simeq a_{0}^{\prime} y_{l_{1}}^{ \pm 1} \cdots y_{l_{k}}^{ \pm 1} A_{n} .
\end{aligned}
$$

where $a_{0}, a_{0}^{\prime} \in N$. Consider $f_{p_{m+1}, n}^{ \pm 1} f_{p_{m}, n}^{\epsilon_{m}} \cdots f_{p_{1}, n}^{\epsilon_{1}}=f_{p_{m+1}, n}^{ \pm 1} f$. As $f_{p_{m+1}, n}^{ \pm 1}$ acts by the identity on G / N, we have that

$$
\begin{aligned}
& f_{p_{m+1}, n}\left(y_{i}\right)=a_{i}^{+} y_{i} \\
& f_{p_{m+1}, n}^{-1}\left(y_{i}\right)=a_{i}^{-} y_{i}
\end{aligned}
$$

for some $a_{i}^{+}, a_{i}^{-} \in N$, for all i. Hence we compute

$$
\left.\begin{array}{l}
f_{p_{m+1}, n} f\left(A_{1}\right) \simeq \begin{cases}f_{p_{m+1}, n}\left(a_{0}\right)\left(a_{1}^{+} y_{1}\right)^{ \pm 1} \cdots\left(a_{1}^{+} y_{1}\right)^{ \pm 1} A_{1} & \text { if } p_{m+1} \neq 1 \\
f_{p_{m+1}, n}\left(a_{0}\right)\left(a_{1}^{+} y_{1}\right)^{ \pm 1} \cdots\left(a_{1}^{+} y_{1}\right)^{ \pm 1} y_{n} y_{1} A_{1} & \text { if } p_{m+1}=1\end{cases} \\
f_{p_{m+1}, n}^{-1} f\left(A_{1}\right) \simeq \begin{cases}f_{p_{m+1}, n}^{-1}\left(a_{0}\right)\left(a_{1}^{-} y_{1}\right)^{ \pm 1} \cdots\left(a_{1}^{-} y_{1}\right)^{ \pm 1} A_{1} & \text { if } p_{m+1} \neq 1 \\
f_{p_{m+1}, n}^{-1}\left(a_{0}\right)\left(a_{1}^{-} y_{1}\right)^{ \pm 1} \cdots\left(a_{1}^{-} y_{1}\right)^{ \pm 1} y_{1}^{-1} y_{n}^{-1} A_{1} & \text { if } p_{m+1}=1\end{cases} \\
f_{p_{m+1}, n} f\left(A_{n}\right) \simeq f_{p_{m+1}, n}\left(a_{0}^{\prime}\right)\left(a_{l_{1}}^{+} y_{l_{1}}\right)^{ \pm 1} \cdots\left(a_{l_{k}}^{+} y_{l_{k}}\right)^{ \pm 1} y_{n} y_{p_{m+1}} A_{n}
\end{array}\right\} \begin{aligned}
& f_{p_{m+1}, n}^{-1} f\left(A_{n}\right) \simeq f_{p_{m+1}, n}\left(a_{0}^{\prime}\right)\left(a_{l_{1}}^{-} y_{l_{1}}\right)^{ \pm 1} \cdots\left(a_{l_{k}}^{-} y_{l_{k}}\right)^{ \pm 1} y_{p_{m+1}}^{-1} y_{n}^{-1} A_{n} .
\end{aligned}
$$

Therefore, as $f_{p_{m+1}, n}^{ \pm 1}\left(a_{0}\right), f_{p_{m+1}, n}^{ \pm 1}\left(a_{0}^{\prime}\right), a_{i}^{+}, a_{i}^{-}, y_{n}, y_{n}^{-1} \in N$, we can do the following computation $\bmod N$.

$$
\begin{aligned}
& f_{p_{m+1}, n}^{ \pm 1} f_{p_{m}, n}^{\epsilon_{m}} \cdots f_{p_{1}, n}^{\epsilon_{1}}\left(A_{1}\right) \overline{A_{1}}= \begin{cases}y_{1}^{\eta} y_{1}^{ \pm 1} & \text { if } p_{m+1}=1 \\
y_{1}^{\eta} & \text { if } p_{m+1} \neq 1\end{cases} \\
& f_{p_{m+1}, n}^{ \pm 1} f_{p_{m}, n}^{\epsilon_{m}} \cdots f_{p_{1}, n}^{\epsilon_{1}}\left(A_{n}\right) \overline{A_{n}}=y_{p_{1}}^{\epsilon_{1}} \cdots y_{p_{m}}^{\epsilon_{m_{m}}} y_{p_{m+1}}^{ \pm 1}
\end{aligned}
$$

This completes the induction.
Thus $\theta\left(x_{p_{1}}^{\epsilon_{1}} \cdots x_{p_{m}}^{\epsilon_{m}}\right)=y_{p_{1}}^{\epsilon_{1}} \cdots y_{p_{m}}^{\epsilon_{m}}$ and $\mu(w)=y_{1}^{\eta}$, as desired.

Note that for words $v \in[E(n-1), E(n-1)]$ the maps $f_{1, n}$ occur in pairs with opposite exponents. Hence for $v \in[E(n-1), E(n-1)], \mu(v)=1$.

5.3 Structure of the Magnus subgroup quotients

In Lemma 5.5 we considered compositions of maps which defined a correspondence between elements of the free group $E(n-1)$ and elements of $\operatorname{Mod}\left(D_{n}\right)$. Lemma 5.4 allows us to relate the Johnson homomorphism $J_{k}\left(D_{n}\right)$ to the Magnus homomorphism $M_{k}\left(S_{g}\right)$. We now combine these tools to construct families of mapping classes in $M_{k}\left(S_{g}\right)$ which have a desirable algebraic structure in the image of the Magnus homomorphism.

Let $i: D_{g} \rightarrow S_{g}$ be the separable embedding illustrated in Figure 5.1. Consider the following composition of maps:

$$
E(g-1) \stackrel{\iota}{\hookrightarrow} P(g) \stackrel{\psi}{\hookrightarrow} \operatorname{Mod}\left(D_{g}\right) \xrightarrow{i^{\prime}} \operatorname{Mod}\left(S_{g}\right)
$$

where $i^{\prime}: \operatorname{Mod}\left(D_{g}\right) \rightarrow \operatorname{Mod}\left(S_{g}\right)$ is the map described in Lemma 5.1. Let $\rho=i^{\prime} \circ \psi \circ \iota$. The following theorem illustrates that ρ retains the structure of the free group.

Theorem 5.6. Let S be an orientable surface with genus $g \geq 3$. Then the map $\rho: E(g-1) \rightarrow \operatorname{Mod}(S)$ induces a monomorphism on the quotients $\bar{\rho}: E(g-1)_{k} / E(g-$ $1)_{k+1} \rightarrow M_{k}(S) / M_{k_{1}}(S)$ for all k.

Proof. Let D_{g} be a disk with g punctures. To prove the theorem it suffices to show that mapping classes contained in the subgroup $\rho(E(g-1))$ satisfy the conditions of Lemma 5.4 and produce distinct images through the Magnus homomorphism. For this
we employ several results about the pure braid group, $P(g)$. Consider the following split exact sequence

$$
1 \rightarrow E(g-1) \rightarrow P(g) \rightarrow P(g-1) \rightarrow 1
$$

where the map $E(g-1) \rightarrow P(g)$ is as in Lemma 5.5 and $P(g) \rightarrow P(g-1)$ is given by forgetting the $g^{\text {th }}$ strand. This exact sequence induces an isomorphism as given in [6]:

$$
\frac{E(g-1)_{k}}{E(g-1)_{k+1}} \oplus \frac{P(g-1)_{k}}{P(g-1)_{k+1}} \cong \frac{P(g)_{k}}{P(g)_{k+1}}
$$

In particular, the map ι induces an injective map $\bar{\iota}$ on the lower central series quotients:

$$
\bar{\iota}: \frac{E(g-1)_{k}}{E(g-1)_{k+1}} \hookrightarrow \frac{P(g)_{k}}{P(g)_{k+1}}
$$

By direct analysis of the induced automorphisms on $G(g)$ [2] Corollary 1.8.3, it is clear that $\psi(P(g)) \subset J_{2}\left(D_{g}\right)$. Given this, Lemma 2.2 shows that $\psi(P(g))_{k} \subset J_{k}\left(D_{g}\right)$. Hence, we have a well defined map $\bar{\psi}: \frac{P(g)_{k}}{P(g) k+1} \rightarrow \frac{J_{k}\left(D_{g}\right)}{J_{k+1}\left(D_{g}\right)}$. By [7], Theorem 1.1 $\psi\left(P(g)_{k+1}\right)=\psi(P(g)) \cap J_{k+1}\left(D_{g}\right)$. Hence the map $\bar{\psi}$ is injective.

$$
\bar{\psi}: \frac{P(g)_{k}}{P(g) k+1} \hookrightarrow \frac{J_{k}\left(D_{g}\right)}{J_{k+1}\left(D_{g}\right)}
$$

By Proposition 5.2, the map i^{\prime} induces a monomorphism $\bar{i}: \frac{J_{k}\left(D_{g}\right)}{J_{k+1}\left(D_{g}\right)} \rightarrow \frac{J_{k}\left(D_{g}\right)}{J_{k+1}\left(D_{g}\right)}$. By Lemma 5.4, given $v \in \frac{E(g-1)_{k}}{E(g-1)_{k}}$ we have that

$$
\tau_{k}^{\prime}\left(i^{\prime} \psi \iota(v)\right)\left[\gamma_{1}, \gamma_{g}\right]=\left(1-\gamma_{1}\right)\left(1-\gamma_{g}\right) i_{*}\left(w_{1}\right) i_{*}\left(w_{g}\right)^{-1}
$$

written as an element of $\frac{F_{k}^{\prime}}{F_{k+1}^{\prime}}$ as a $\mathbb{Z}\left[\frac{F}{F^{\prime}}\right]$ module where $w_{i}=\tau_{k}(f)\left(A_{i}\right)$.
Note that we have traced $w \in E(g-1)_{k} / E(g-1)_{k+1}$ through the following composition of maps:

$$
\frac{E(g-1)_{k}}{E(g-1)_{k}} \stackrel{\bar{i}}{\hookrightarrow} \frac{P(g)_{k}}{P(g)_{k+1}} \stackrel{\bar{\psi}}{\hookrightarrow} \frac{J_{k}\left(D_{g}\right)}{J_{k+1}\left(D_{g}\right)} \overbrace{\dot{i}}^{\hookrightarrow} \frac{M_{k}\left(S_{g}\right)}{M_{k+1}\left(S_{g}\right)} \stackrel{\tau_{k}^{\prime}(-)\left[\gamma_{1}, \gamma_{g}\right]}{\longrightarrow} \frac{F_{k}^{\prime}}{F_{k+1}^{\prime}}
$$

By definition, the maps $\bar{\iota}$ and $\bar{\psi}$ are homomorphisms. Proposition 5.2 shows that \bar{i} is a homomorphism. The map $\tau_{k}^{\prime}(-)\left[\gamma_{1}, \gamma_{g}\right]: M_{k}(S) \rightarrow F_{k}^{\prime} / F_{k+1}^{\prime}$ is a homomorphism as τ_{k}^{\prime} is a homomorphism. As all maps in this composition are homomorphisms, the composition map is also a homomorphism.

As this composition is a homomorphism, in order to complete the proof it suffices to show that the image of v through this composition is not the identity. As shown in Lemma 4.5, this module has no torsion of the form $(1-\gamma) x=0$ where γ is a generator of F. Hence for $i_{*}\left(w_{1}\right) i_{*}\left(w_{g}\right)^{-1}=i_{*}\left(w_{1} w_{g}^{-1}\right) \neq 1$ as an element of $F_{k}^{\prime} / F_{k+1}^{\prime}$, we have that $\tau_{k}^{\prime}\left(i^{\prime} \psi \iota(w)\right)\left[\gamma_{1}, \gamma_{g}\right]=\left(1-\gamma_{1}\right)\left(1-\gamma_{g}\right) i_{*}\left(w_{1} w_{g}^{-1}\right) \neq 0$. By Lemma 5.3 the map i_{*} is injective, thus it suffices to show that $w_{1} w_{g}^{-1} \neq 1$ as an element of $\frac{G(g)_{k}}{G(g)_{k+1}}$. By Lemma 5.5,

$$
\begin{aligned}
\pi\left(w_{1} w_{g}^{-1}\right) & =\pi\left(w_{1}\right) \pi\left(w_{g}\right)^{-1} \\
& =\mu(v) \theta(v)^{-1}
\end{aligned}
$$

$$
=v^{-1} \quad \text { when written in the generators } y_{i} \text { of } G(g-1)
$$

Since π is a homomorphism we can conclude that $w_{1} w_{g}^{-1} \neq 1$ and hence
$\tau_{k}^{\prime}\left(i^{\prime} \psi \iota(w)\right)\left[\gamma_{1}, \gamma_{g}\right]=\left(1-\gamma_{1}\right)\left(1-\gamma_{g}\right) i_{*}\left(w_{1} w_{g}^{-1}\right) \neq 0$. This shows that $\operatorname{ker}(\bar{\rho})=0$ and hence $\bar{\rho}$ is injective.

Theorem 5.7. Let S be an orientable surface with genus $g \geq 3$. Then the successive quotients of the Magnus filtration $\frac{M_{k}(S)}{M_{k+1}(S)}$ surject onto an infinite rank torsion free abelian subgroup of $\frac{F_{k}^{\prime}}{F_{k+1}^{\prime}}$ via the map

$$
\frac{M_{k}(S)}{M_{k+1}(S)} \xrightarrow{\tau_{k}^{\prime}(-)\left[c_{0}, c_{2}\right]} \frac{F_{k}^{\prime}}{F_{k+1}^{\prime}}
$$

where c_{2} and c_{6} are the generators of F illustrated in Figure 5.8.

Proof. Let γ and δ_{n} be the simple closed curves on S shown in Figure 5.7. Let $i_{n}: D \rightarrow S$ be the embedding which sends the 3 holed disk D to a neighborhood $\gamma \cup \delta_{n}$. This set of embeddings of the disk onto S was used by Church and Farb in [3], Theorem 3.2 to produce an infinite family of mapping classes in $\operatorname{Mag}(S)$. We employ the same embeddings to produce an infinite family of mapping classes in $M_{k}(S)$.

Let the free group $E(2)$ be generated by $\left\{x_{1}, x_{2}\right\}$. Consider the commutator $c^{k}=\left[\cdots\left[\left[x_{2}, x_{1}\right], x_{1}\right], \cdots, x_{1}\right] \in E(2)_{k}$ (commutator with $x_{1} k-1$ times). By [7] Theorem 1.1, this commutator yields a nontrivial element of $\frac{J_{k}(D)}{J_{k+1}(D)}$ through the composition:

$$
E(2) \stackrel{\iota}{\hookrightarrow} P(3) \stackrel{\psi}{\hookrightarrow} \operatorname{Mod}\left(D_{3}\right)
$$

Let f_{k} be the mapping class in $\frac{J_{k}(D)}{J_{k+1}(D)}$ which arises from the commutator $c^{k}: f_{k}=$ $\iota \psi\left(c^{k}\right)$. Let $i_{n}^{\prime}\left(f_{k}\right)$ be the mapping class of S resulting from extending f_{k} by the identity on S using the embedding i_{n}.

Figure 5.7: Pictured above are two simple closed curves γ and δ_{3}. The curve δ_{n} wraps n times around the upper right handle. We consider disks with 3 holes embedded by maps i_{n} which send D to a neighborhood of $\gamma \cup \delta_{n}$.

Each embedding $i_{n}: D \rightarrow S$ yields an infinite family of elements $\tau_{k}^{\prime}\left(i_{n}^{\prime}\left(f_{k}\right)\right)\left[c_{6}, c_{2}\right]$. We will show that for each k the set $\left\{\tau_{k}^{\prime}\left(i_{n}^{\prime}\left(f_{k}\right)\right)\left[c_{6}, c_{2}\right] \mid n \in \mathbb{N}\right\}$ is independent in $\frac{F_{k}^{\prime}}{F_{k+1}^{\prime}}$ using the basis theorems developed in Section 4.1.

We begin by choosing a basis for F for our computations. Our chosen basis is illustrated in Figure 5.8. Note that the generators c_{2} and c_{6} intersect each embedding $i_{n}(D)$ along the $\operatorname{arcs} A_{1}$ and A_{3} respectively. Hence, we may compute $\tau_{k}^{\prime}\left(i_{n}^{\prime}\left(f_{k}\right)\right)\left[c_{6}, c_{2}\right]$ as in Lemma 5.4.

By Lemma 5.4,

$$
\tau_{k}^{\prime}\left(i_{n}^{\prime}\left(f_{k}\right)\right)\left[c_{6}, c_{2}\right]=\left(1-c_{6}\right)\left(1-c_{2}\right) i_{n *}\left(w_{3}^{k}\left(w_{1}^{k}\right)^{-1}\right)
$$

where $w_{i}^{k}=f_{k}\left(A_{i}\right) \overline{A_{i}}$. To show the set $\left\{\tau_{k}^{\prime}\left(i_{n}^{\prime}\left(f_{k}\right)\right)\left[c_{6}, c_{2}\right] \mid n \in \mathbb{N}\right\}$ is independent we

Figure 5.8: The subsurface $i_{3}(D) \subset S$ is shown in grey. The figure illustrates the basis $\left\{c_{1}, c_{2}, c_{3}, c_{4}, c_{5}, c_{6}, \ldots, c_{2 g}\right\}$ chosen for computation of the Magnus homomorphisms. Note that c_{2} and c_{6} intersect $i_{n}(D)$ along the $\operatorname{arcs} A_{i}$ as in Lemma 5.4.
must compute the elements $i_{n *}\left(w_{1}\right)$ and $i_{n *}\left(w_{3}\right)$. By Lemma 4.5 the set $\left.\left\{\tau_{k}^{\prime} i_{n}^{\prime}\left(f_{k}\right)\right)\left[c_{6}, c_{2}\right] \mid n \in \mathbb{N}\right\}$ is independent if $\left\{i_{n *}\left(w_{3}^{k}\left(w_{1}^{k}\right)^{-1}\right) \mid n \in \mathbb{N}\right\}$ is an independent set in $\frac{F_{k}^{\prime}}{F_{k+1}^{\prime}}$.

We impose the following ordering the elements of our basis for $F^{\prime}: c_{1}<c_{2}<c_{3}<$ $c_{4}<c_{5}<c_{6}$. Then by Lemma 4.4 the set $B=\left\{w_{i, j}\left[c_{i}, c_{j}\right] \mid w_{i, j} \in H_{1}\left(E\left(c_{1}, \ldots, c_{j}\right)\right)\right\}$ is a basis for F^{\prime}. By Corollary 4.4, for each $n \in N, i_{n *}\left(w_{3}^{k}\left(w_{1}^{k}\right)^{-1}\right)$ can be expressed as a product of basic commutators of weight k in the generators of B. To show that the set $\left\{i_{n *}\left(w_{3}^{k}\left(w_{1}^{k}\right)^{-1}\right)\right\}_{n \in \mathbb{N}}$ is independent we work towards expressing the elements
as basic commutators in our basis B.

We denote the generators of G which loop around the 3 interior boundary components of D counterclockwise by y_{1}, y_{2}, y_{3} as in Lemma 5.5. As shown in [3], Theorem 3.2, for the embedding $i_{n}: D \rightarrow S$ the generators of G map to the following elements of F written in terms of the basis chosen basis for $\pi_{1}(S)$:

$$
\begin{aligned}
i_{n *}\left(y_{1}\right) & =\left[c_{2}, c_{1}\right] \\
i_{n *}\left(y_{2}\right) & =\left[c_{5}, c_{6}\right]\left[c_{3}, c_{4}\right] c_{4}\left[c_{3} c_{4}^{-1} c_{3}^{-1} c_{6}, c_{5} c_{6}^{n}\right] \\
i_{n *}\left(y_{3}\right) & =\left[c_{4}, c_{5} c_{6}^{n} c_{3}\right] .
\end{aligned}
$$

Again, we have allowed a change of basepoint from $\pi_{1}\left(S, p_{0}\right)$ to $\pi_{1}(S, *)$ in this computation.

Recall that $\pi: G(3) \rightarrow G(2)$ is the map obtained by taking the quotient by the normal subgroup generated by y_{3}. The retract $\pi: G(3) \rightarrow G(2)$ induces a retract of the lower central series quotients $\bar{\pi}: \frac{G(3)_{k}}{G(3)_{k+1}} \rightarrow \frac{G(2)_{k}}{G(2)_{k+1}}$. Let $j: G(2) \rightarrow G(3)$ be the natural inclusion map. Thus $\bar{\pi} \bar{j}: \frac{G(2)_{k}}{G(2)_{k+1}} \rightarrow \frac{G(2)_{k}}{G(2)_{k+1}}$ is the identity map. By Lemma 5.5 we have $\pi\left(w_{1}^{k}\right)=1$ and $\pi\left(w_{3}^{k}\right)=\left[\cdots\left[\left[y_{2}, y_{1}\right], y_{1}\right] \cdots, y_{1}\right]$. Thus $\pi\left(w_{3}\left(w_{1}\right)^{-1}\right)=\pi\left(w_{3}\right)$. It then follows that $w_{3}^{k}\left(w_{1}^{k}\right)^{-1}=j \pi\left(w_{3}^{k}\right) \eta^{k}$ for some $\eta^{k} \in \operatorname{ker} \pi$.

We now compute the elements $i_{n *} j \pi\left(w_{3}^{k}\left(w_{1}^{k}\right)^{-1}\right)$ using the above expressions for
$i_{n *}\left(y_{1}\right)$ and $i_{n *}\left(y_{2}\right)$.

$$
\begin{aligned}
i_{n *} j \pi\left(w_{3}^{k}\left(w_{1}^{k}\right)^{-1}\right) & =i_{n *} j \pi\left(w_{3}^{k}\right) \\
& =\left(i_{n *}\left(\left[\cdots\left[\left[y_{2}, y_{1}\right], y_{1}\right], \cdots, y_{1}\right]\right)\right) \\
& =\left(\left[\cdots\left[\left[i_{n *}\left(y_{2}\right), i_{n *}\left(y_{1}\right)\right], i_{n *}\left(y_{1}\right)\right], \cdots, i_{n *}\left(y_{1}\right)\right]\right) \\
& =\left(\left[\cdots\left[\left[\left[c_{5}, c_{6}\right]\left[c_{3}, c_{4}\right] c_{4}\left[c_{3} c_{4}^{-1} c_{3}^{-1} c_{6}, c_{5} c_{6}^{n}\right],\left[c_{2}, c_{1}\right]\right],\left[c_{2}, c_{1}\right]\right], \cdots,\left[c_{2}, c_{1}\right]\right]\right)
\end{aligned}
$$

We will compute the elements $i_{n *} j \pi\left(w_{3}^{k}\left(w_{1}^{k}\right)^{-1}\right)$ explicitly in terms of this basis B. To do this we must reduce the expressions for $i_{n *}\left(y_{2}\right)$ to products of basis elements of $F^{\prime} / F^{\prime \prime}$. Employing the commutator identity $[g a, b]={ }^{g}[a, b][g, b]$ we can re-write the element $\left[c_{3} c_{4}^{-1} c_{3}^{-1} c_{6}, c_{5} c_{6}^{n}\right]$ as follows:

$$
\begin{aligned}
i_{n *}\left(y_{2}\right) & =\left[c_{3} c_{4}^{-1} c_{3}^{-1} c_{6}, c_{5} c_{6}^{n}\right] \\
& ={ }^{c_{3}}\left[c_{4}^{-1} c_{3}^{-1} c_{6}, c_{5} c_{6}^{n}\right]\left[c_{3}, c_{5} c_{6}^{n}\right] \\
& ={ }_{3} c_{4}^{-1}\left[c_{3}^{-1} c_{6}, c_{5} c_{6}^{n}\right]^{c_{3}}\left[c_{4}^{-1}, c_{5} c_{6}^{n}\right]\left[c_{3}, c_{5} c_{6}^{n}\right] \\
& ={ }_{3} c_{4}^{-1} c_{3}^{-1}\left[c_{6}, c_{5} c_{6}^{n}\right]{ }^{c_{3} c_{4}^{-1}}\left[c_{3}^{-1}, c_{5} c_{6}^{n}\right]^{c_{3}}\left[c_{4}^{-1}, c_{5} c_{6}^{n}\right]\left[c_{3}, c_{5} c_{6}^{n}\right]
\end{aligned}
$$

Using the commutator identity $[a, v b]=[a, v]^{v}[a, b]$, for any element c we have:

$$
\begin{aligned}
{\left[c, c_{5} c_{6}^{n}\right] } & =\left[c, c_{5}\right]^{c_{5}}\left[c, c_{6}^{n}\right] \\
& =\left[c, c_{5}\right]^{c_{5}}\left[c, c_{6}\right]^{c_{5} c_{6}}\left[c, c_{6}^{n-1}\right] \\
& =\left[c, c_{5}\right]^{c_{5}}\left[c, c_{6}\right]^{c_{5} c_{6}}\left[c, c_{6}\right] \ldots{ }^{c_{5} c_{6}^{n-1}}\left[c, c_{6}\right]
\end{aligned}
$$

Using this, our original expression becomes:

$$
\begin{aligned}
i_{n *}\left(y_{2}\right)= & { }_{3} c_{4}^{-1} c_{3}^{-1}\left[c_{6}, c_{5}\right]^{c_{3} c_{4}^{-1} c_{3}^{-1} c_{5}}\left[c_{6}, c_{6}\right]^{c_{3} c_{4}^{-1} c_{3}^{-1} c_{5} c_{6}}\left[c_{6}, c_{6}\right] \ldots{ }_{3} c_{4}^{-1} c_{3}^{-1} c_{5} c_{6}^{n-1}\left[c_{6}, c_{6}\right] \\
& c_{3} c_{4}^{-1}\left[c_{3}^{-1}, c_{5}\right]^{c_{3} c_{4}^{-1} c_{5}}\left[c_{3}^{-1}, c_{6}\right]^{c_{3} c_{4}^{-1} c_{5} c_{6}}\left[c_{3}^{-1}, c_{6}\right] \ldots c_{3} c_{4}^{-1} c_{5} c_{6}^{n-1}\left[c_{3}^{-1}, c_{6}\right] \\
& c_{3}\left[c_{4}^{-1}, c_{5}\right]^{c_{3} c_{5}}\left[c_{4}^{-1}, c_{6}\right]^{c_{3} c_{5} c_{6}}\left[c_{4}^{-1}, c_{6}\right] \ldots{ }^{c_{3} c_{5} c_{6}^{n-1}}\left[c_{4}^{-1}, c_{6}\right] \\
& {\left[c_{3}, c_{5}\right]^{c_{5}}\left[c_{3}, c_{6}\right]^{c_{5} c_{6}}\left[c_{3}, c_{6}\right] \ldots c_{5} c_{6}^{n-1}\left[c_{3}, c_{6}\right] . }
\end{aligned}
$$

As $\left[c_{6}, c_{6}\right]=1$ this expression automatically reduces. Using the identity $\left[a^{-1}, b\right]=$ ${ }^{a^{-1}}[b, a]$ we simplify further to the following expression

$$
\begin{aligned}
i_{n *}\left(y_{2}\right)= & c_{3} c_{4}^{-1} c_{3}^{-1}\left[c_{6}, c_{5}\right] \\
& c_{3} c_{4}^{-1} c_{3}^{-1}\left[c_{5}, c_{3}\right]^{c_{3} c_{4}^{-1} c_{5} c_{3}^{-1}}\left[c_{6}, c_{3}\right]^{c_{3} c_{4}^{-1} c_{5} c_{6} c_{3}^{-1}}\left[c_{6}, c_{3}\right] \ldots{ }_{3} c_{4}^{-1} c_{5} c_{6}^{n-1} c_{3}^{-1}\left[c_{6}, c_{3}\right] \\
& c_{3} c_{4}^{-1}\left[c_{5}, c_{4}\right]^{c_{3} c_{5} c_{4}^{-1}}\left[c_{6}, c_{4}\right]^{c_{3} c_{5} c_{6} c_{4}^{-1}}\left[c_{6}, c_{4}\right] \ldots{ }_{3} c_{5} c_{6}^{n-1} c_{4}^{-1}\left[c_{6}, c_{4}\right] \\
& {\left[c_{3}, c_{5}\right]^{c_{5}}\left[c_{3}, c_{6}\right]^{c_{5} c_{6}}\left[c_{3}, c_{6}\right] \ldots{ }^{c_{5} c_{6}^{n-1}}\left[c_{3}, c_{6}\right] . }
\end{aligned}
$$

Noting that $[a, b]=[b, a]^{-1}$ we can now write $i_{n *}\left(y_{2}\right)$ (additively) as follows:

$$
\begin{aligned}
i_{n *}\left(y_{2}\right)= & -{ }^{c_{3} c_{4}^{-1} c_{3}^{-1}}\left[c_{5}, c_{6}\right]-{ }_{3} c_{4}^{-1} c_{3}^{-1}\left[c_{3}, c_{5}\right]-\sum_{i=0}^{n-1} c_{3} c_{4}^{-1} c_{5} c_{6}^{i} c_{3}^{-1} \\
& -c_{3} c_{4}^{-1}\left[c_{4}, c_{5}\right]-\sum_{i=0}^{n-1} c_{3} c_{5} c_{6}^{i} c_{4}^{-1}\left[c_{4}, c_{6}\right]+\left[c_{3}, c_{5}\right]+\sum_{i=0}^{n-1}{ }_{c_{5} c_{6}^{i}}\left[c_{3}, c_{6}\right] .
\end{aligned}
$$

By Proposition 4.3, for a fixed n we may write $i_{n *}\left(j \pi w_{3}^{k}\right)$ in terms of basic com-
mutators in the generators of B as follows.

$$
\begin{aligned}
i_{n *}\left(j \pi w_{3}^{k}\right)= & -\left[\cdots\left[c_{3} c_{4}^{-1} c_{3}^{-1}\left[c_{5}, c_{6}\right],\left[c_{2} c_{1}\right]\right], \cdots\left[c_{2}, c_{1}\right]\right] \\
& -\left[\cdots\left[c_{3} c_{4}^{-1} c_{3}^{-1}\left[c_{3}, c_{5}\right],\left[c_{2} c_{1}\right]\right], \cdots\left[c_{2}, c_{1}\right]\right] \\
& -\sum_{i=0}^{n-1}\left[\cdots\left[c_{3} c_{4}^{-1} c_{5} c_{6}^{i} c_{3}^{-1}\left[c_{3}, c_{6}\right],\left[c_{2} c_{1}\right]\right], \cdots\left[c_{2}, c_{1}\right]\right] \\
& -\left[\cdots\left[c_{3} c_{4}^{-1}\left[c_{4}, c_{5}\right],\left[c_{2} c_{1}\right]\right], \cdots\left[c_{2}, c_{1}\right]\right] \\
& -\sum_{i=0}^{n-1}\left[\cdots\left[c_{3} c_{5} c_{6}^{i} c_{4}^{-1}\left[c_{4}, c_{6}\right],\left[c_{2} c_{1}\right]\right], \cdots\left[c_{2}, c_{1}\right]\right] \\
& +\left[\cdots\left[\left[c_{3}, c_{5}\right],\left[c_{2} c_{1}\right]\right], \cdots\left[c_{2}, c_{1}\right]\right] \\
& +\sum_{i=0}^{n-1}\left[\cdots\left[c_{5} c_{6}^{i}\left[c_{3}, c_{6}\right],\left[c_{2} c_{1}\right]\right], \cdots\left[c_{2}, c_{1}\right]\right] .
\end{aligned}
$$

By Proposition 4.3, ker $\bar{\pi}$ is generated by weight k basic commutators in the generators y_{1}, y_{2}, y_{3} with y_{3} in at least one entry. For convenience of notation, let us denote the elements of B by a_{i}. Let $A \subset B$ be the set of all elements a_{i} such that a_{i} appears with a nonzero coefficient in the expression for $i_{n *}\left(y_{3}\right)$ for some $n \in N$ when written in terms of the basis B. Let Y be the subgroup of $\frac{F_{k}^{\prime}}{F_{k+1}}$ generated by basic commutators with an entry from the set A. Note that by construction, $i_{n *}(\operatorname{ker} \bar{\pi}) \subset Y$ for each n. Hence if the elements $i_{n *}\left(w_{3}^{k}\left(w_{1}^{k}\right)^{-1}\right)$ are independent in $\frac{F_{k}^{\prime} / F_{k+1}^{\prime}}{Y}$ they are also independent in $F_{k}^{\prime} / F_{k+1}^{\prime}$. Also notice that by construction, the group $\frac{F_{k}^{\prime} / F_{k+1}^{\prime}}{Y}$ is a free abelian group generated by basic commutators in elements of $B \backslash A$. To consider whether the elements $i_{n *}\left(w_{3}^{k}\left(w_{1}^{k}\right)^{-1}\right)$ are independent in $\frac{F_{k}^{\prime} / F_{k+1}^{\prime}}{Y}$ we must first determine the set A.

We begin by simplifying the expression for $i_{n *}\left(y_{3}\right)$ using the commutator identity
$[a, v b]=[a, v]^{v}[a, b]$ as follows:

$$
\begin{aligned}
i_{n *}\left(y_{3}\right) & =\left[c_{4}, c_{5} c_{6}^{n} c_{3}\right] \\
& =\left[c_{4}, c_{5}\right]^{c_{5}}\left[c_{4}, c_{6}^{n} c_{3}\right] \\
& =\left[c_{4}, c_{5}\right]^{c_{5}}\left[c_{4}, c_{6}^{n}\right]^{c_{5} c_{6}^{n}}\left[c_{4}, c_{3}\right] \\
& =\left[c_{4}, c_{5}\right]^{c_{5}}\left[c_{4}, c_{6}\right]^{c_{5} c_{6}}\left[c_{4}, c_{6}^{n-1}\right]^{c_{5} c_{6}^{n}}\left[c_{4}, c_{3}\right] \\
& =\left[c_{4}, c_{5}\right]^{c_{5}}\left[c_{4}, c_{6}\right]^{c_{5} c_{6}}\left[c_{4}, c_{6}\right] \ldots{ }^{c_{5} c_{6}^{n-1}}\left[c_{4}, c_{6}\right]^{c_{5} c_{6}^{n}}\left[c_{4}, c_{3}\right] .
\end{aligned}
$$

Note that the term ${ }^{c_{5} c_{6}^{n}}\left[c_{4}, c_{3}\right]$ is not an element of our chosen basis for $H_{1}\left(F^{\prime}, \mathbb{Z}\right)$ as $c_{6}>c_{4}$. In order to express $i_{n *}\left(y_{3}\right)$ in terms of our basis for $H_{1}\left(F^{\prime}, \mathbb{Z}\right)$ we rewrite this term as follows:

$$
\begin{aligned}
{ }_{c_{5} c_{6}^{n}}^{n}\left[c_{4}, c_{3}\right]= & {\left[c_{3}, c_{4}\right]\left[c_{4}, c_{5}\right]\left[c_{3}, c_{5}\right]^{c_{4}}\left[c_{1}, c_{5}\right]^{c_{3}}\left[c_{4}, c_{5}\right] \prod_{i=0}^{n-1}{ }_{5}{ }_{5} c_{6}^{i}\left[c_{3}, c_{6}\right] \prod_{i=0}^{n-1}{ }^{c_{5} c_{6}^{i}}\left[c_{3}, c_{6}\right] } \\
& \prod_{i=0}^{n-1}{ }^{c_{5} c_{3} c_{6}^{i}}\left[c_{4}, c_{6}\right] \prod_{i=0}^{n-1}{ }^{c_{5} c_{4} c_{6}^{i}}\left[c_{3}, c_{6}\right] .
\end{aligned}
$$

Collecting the basis elements of B that occur in the above expressions for $i_{n *}\left(y_{3}\right), n \in$ N we find A to be the following set:

$$
A=\left\{\begin{array}{ll}
{\left[c_{4}, c_{5}\right],{ }^{c_{5}}\left[c_{4}, c_{6}\right],{ }^{c_{5} c_{6}^{i}}\left[c_{4}, c_{6}\right],\left[c_{3}, c_{4}\right],\left[c_{4}, c_{5}\right],\left[c_{3}, c_{5}\right],} & \\
c_{4}\left[c_{1}, c_{5}\right],{ }_{3}^{c_{3}}\left[c_{4}, c_{5}\right],{ }^{c_{5} c_{6}^{i}}\left[c_{3}, c_{6}\right], c_{5} c_{3} c_{6}^{i}\left[c_{4}, c_{6}\right],{ }_{5} c_{4} c_{6}^{i}\left[c_{3}, c_{6}\right] & i \in \mathbb{N}\}
\end{array}\right\}
$$

Note that by construction, when viewed as elements of $\frac{F^{\prime} / F^{\prime \prime}}{Y}$,

$$
\begin{aligned}
i_{n *}\left(w_{3}^{k}\left(w_{1}^{k}\right)^{-1}\right) & =i_{n *}\left(j \pi\left(w_{3}^{k}\right) \eta^{k}\right) \\
& =i_{n *}\left(j \pi\left(w_{3}^{k}\right)\right) .
\end{aligned}
$$

Thus the elements $i_{n *}\left(w_{3}^{k}\left(w_{1}^{k}\right)^{-1}\right)$ are independent in $F^{\prime} / F^{\prime \prime}$ if the elements $i_{n *}\left(j \pi\left(w_{3}^{k}\right)\right)$ are independent in $\frac{F^{\prime} / F^{\prime \prime}}{Y}$.

Modulo $Y, i_{n *}\left(j \pi\left(w_{3}^{k}\right)\right)$ can be written as follows:

$$
\begin{aligned}
i_{n *}\left(j \pi w_{3}^{k}\right)= & -\left[\cdots\left[c_{3} c_{4}^{-1} c_{3}^{-1}\left[c_{5}, c_{6}\right],\left[c_{2} c_{1}\right]\right], \cdots\left[c_{2}, c_{1}\right]\right] \\
& -\left[\cdots\left[c_{3} c_{4}^{-1} c_{3}^{-1}\left[c_{3}, c_{5}\right],\left[c_{2} c_{1}\right]\right], \cdots\left[c_{2}, c_{1}\right]\right] \\
& -\sum_{i=0}^{n-1}\left[\cdots\left[c_{3} c_{4}^{-1} c_{5} c_{6}^{i} c_{3}^{-1}\left[c_{3}, c_{6}\right],\left[c_{2} c_{1}\right]\right], \cdots\left[c_{2}, c_{1}\right]\right] \\
& -\left[\cdots\left[c_{3} c_{4}^{-1}\left[c_{4}, c_{5}\right],\left[c_{2} c_{1}\right]\right], \cdots\left[c_{2}, c_{1}\right]\right] \\
& -\sum_{i=0}^{n-1}\left[\cdots\left[c_{3} c_{5} c_{6}^{i} c_{4}^{-1}\left[c_{4}, c_{6}\right],\left[c_{2} c_{1}\right]\right], \cdots\left[c_{2}, c_{1}\right]\right] .
\end{aligned}
$$

Consider a finite sum of these elements. In $\frac{F_{k}^{\prime} / F_{k+1}^{\prime}}{Y}$, this sum can be written as $\sum_{m=1}^{M} \alpha_{m} i_{n_{m} *}\left(j \pi\left(w_{3}^{k}\right)\right)$ where $\alpha_{m} \neq 0$ and $n_{m}<n_{m+1}$ for all m. The $M^{t h}$ term of this product is the only term containing a multiple of the basis element $\left[\cdots\left[c_{3} c_{5} c_{6}^{M-1} c_{4}^{-1}\left[c_{6}, c_{4}\right],\left[c_{2} c_{1}\right]\right], \cdots\left[c_{2}, c_{1}\right]\right]$. Hence the sum cannot be trivial, and thus the elements $i_{n *}\left(j \pi\left(w_{3}^{k}\right)\right)$ must be independent in $\frac{F_{k}^{\prime} / F_{k+1}^{\prime}}{Y}$. Therefore the elements $i_{n *}\left(w_{3}^{k}\left(w_{1}^{k}\right)^{-1}\right)$ are independent in $\frac{F_{k}^{\prime}}{F_{k+1}^{\prime}}$.

As the set $\left\{i_{n *}\left(w_{3}^{k}\left(w_{1}^{k}\right)^{-1}\right)^{\alpha_{n}} \mid n \in \mathbb{N}\right\}$ is an independent set in $F_{k}^{\prime} / F_{k+1}^{\prime}$, the set $\left\{\left(1-c_{6}\right)\left(1-c_{2}\right) i_{n *}\left(w_{3}^{k}\left(w_{1}^{k}\right)^{-1}\right)\right\}$ is also an independent set. As $\tau_{k}^{\prime}\left(i_{n}^{\prime}\left(f_{k}\right)\right)\left[c_{6}, c_{2}\right]=$ $\left(1-c_{6}\right)\left(1-c_{2}\right) i_{n *}\left(w_{3}^{k}\left(w_{1}^{k}\right)^{-1}\right)$, this shows that $\frac{M_{k}(S)}{M_{k}(S)}$ surjects onto an infinite rank torsion free abelian subgroup of $F_{k}^{\prime} / F_{k+1}^{\prime}$ via the map $f \mapsto \tau_{k}^{\prime}(f)\left[c_{6}, c_{2}\right]$.

Bibliography

[1] S. Bachmuth, Automorphisms of free metabelian groups, Trans. Amer. Math. Soc., Vol. 118, 93-104 (1965).
[2] J. Birman, Braids, Links, and Mapping Class Groups, Ann. of Math. Stud., No. 82, Princeton Univ. Press, 1975.
[3] T. Church and B. Farb, Infinite Generation of the Kernels of the Magnus and Burau Representation, Alg. and Geom. Top. (AGT), Vol. 10, No. 2, 837-851, (2010).
[4] T. D. Cochran, S. Harvey, P. D. Horn, Higher-order signature cocycles for subgroups of mapping class groups and homology cylinders Int. Math. Res. Not. No. 14, 3311-3373 (2012).
[5] B. Farb and D. Margalit, A primer on mapping class groups, Princeton Mathematical Series (PMS-49), Princeton Univ. Press, 2011.
[6] M. Falk, R. Randall, The lower central series of a fiber-type arrangement Inventiones Mathematicae, Vol. 82, No. 1, 77-88, (1985).
[7] S. Gervais, N. Habegger, The topological IHX relation, pure braids, and the Torelli group, Journal of Knot Theory and Its Ramifications (JKTR), Vol. 10, No. 2, 309-329 (2001).
[8] E. Giroux, Géométrie de contact: de la dimension trois vers les simensions supérieures, Proc. ICM-Beijing, Vol. 2, 405-414 (2002).
[9] M. Hall, Theory of Groups, Chelsea Pub. Co., 1959
[10] D. Johnson, A survey of the Torelli group, Contemp. Math., Vol. 20, 165-179 (1983).
[11] D. Johnson, The structure of the Torelli group II Topology, Vol. 24, No. 2, 113144 (1985).
[12] W. B. R. Lickorish, A representation of orientable combinatorial 3-manifolds, Ann. of Math. Vol. 76, No. 2, 531-540 (1962).
[13] S. Morita, On the structure of the Torelli group and the Casson invariant, Topology , Vol. 30, No. 4, 603-621 (1991).
[14] S. Morita, Abelian quotients of subgroups of the mapping class group of surfaces, Duke Math J., Vol. 70, 699-726 (1993).
[15] A. Putman, Cutting and pasting in the Torelli group, Geom. Topol., Vol. 11, 829-865 (2007)
[16] A. Putman, The Johnson homomorphism and its kernel, arXiv:0904.0467v2
[17] J. Stallings, Homology and Central Series of Groups, Journal of Algebra Vol. 2, 170-181 (1965).
[18] M. Suzuki, The Magnus representation is not faithful for $g \geq 2$, Proc. Amer. Math. Soc. Vol. 130, No. 3, 909-914 (2001)
[19] W. P. Thurston, H. Winkelnkemper, On the existence of contact forms, Proc. Amer. Math. Soc. Vol.52, 345-347 (1975).
[20] H. V. Waldinger, A natural linear ordering of basic commutators, Proc. Amer. Math. Soc., Vol. 12, 140-147 (1961).

