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Abstract 

The ( n )-solvable filtration of the link concordance group and 

Milnor's {l-invariants 

by 

Carolyn Otto 

We establish several new results about the ( n )-solvable filtration, { ~}, of the 

string link concordance group em. We first establish a relationship between ( n )

solvability of a link and its Milnor's p,-invariants. We study the effects of the Bing 

doubling operator on (n)-solvability. Using this results, we show that the "other 

half'' of the filtration, namely F;;:5/ ~1 , is nontrivial and contains an infinite cyclic 

subgroup for links with sufficiently many components. We will also show that links 

modulo (!)-solvability is a nonabelian group. Lastly, we prove that the Grope filtra

tion, g: of em is not the same as the ( n )-solvable filtration. 
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Chapter 1 

Introduction 

1.1 Background 

A link L (with m components) is an embedding L: 11m 8 1 ~ 8 3 . A link with one 

component is called a knot. In the late 1950's, Fox and Milnor introduced the idea 

that the concordance classes of links and that these classes were an obstruction to 

the removal of a link singularity. In doing so, they investigated the notion of a knot 

being slice. In other words, whether or not a knot bounds a smooth disk in B 4 • If 

the link of a singularity is slice, then we can replace this singularity with a smooth 

disk. 

An equivalence relation on knots in 8 3 can be defined by using slice knots: K "' J 

if K # - J is slice. The knot concordance group C was introduced by Fox and Milnor 

in 1966 [FM66] using this equivalence on the set of knots. Two knots, K and J are 

said to be concordant if K x {0} and J x {1} cobound a smoothly embedded annulus 

in 8 3 x [0, 1]. If a knot is slice, it is in the identity class of this group. This abelian 

1 
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group is a well studied object in low-dimensional topology, however there is much 

that is still unknown about the structure of C. Thus C has remained an active object 

of study since its introduction. 

Here we are particularly interested in the group of concordance classes of string 

links called the string link concordances group, which is denoted em. 

In order to investigate the structure of this group, Cochran, Orr and Teichner 

introduced two filtrations of this group: the (n)-solvable filtration, {~} and the 

Grope filtration, {Q~} [COT03]. The notion of (n)-solvability can be thought of as 

an algebraic approximation to a link being slice (or "0" in em). Gropes, on the other 

hand, are more geometric in nature and can be thought of as geometric approxima

tions to slicing disks. In [ COT03], it was shown that these two filtrations are related 

for all n EN and m ~ 1 by Q~+2 ~ F;:". 

Much work has been done in the quest of understanding the ( n )-solvable filtration. 

In particular, many have studied successive quotients of this filtration and some of 

their contributions can be found in [ChalO], [CH08], [CHL09], [Har08]. 

For example, Harvey first showed that F;:" I F;:"+l is a nontrivial group that con

tains an infinitely generated subgroup [Har08]. She also showed that this subgroup 

is generated by boundary links (links with components that bound disjoint Seifert 

surfaces). Cochran and Harvey generalized this result by showing that ~I F.;:5 con

tains an infinitely generated subgroup [CH08]. Again, this subgroup consists entirely 

of boundary links. 

Since em is a nonabelian group for m ~ 2 [LD88], questions were raised about 

whether or not successive quotients of { F;:"} would be abelian. Let ~0.5 denote the 
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set of (string) links that have all pairwise linking numbers equal to zero. It is known 

that F:!!'o.s/ Po is an abelian group while em I Po is nonabelian. For quotients of the 

higher terms in the filtration, it is unknown whether or not they are abelian. 

1.2 Summary of Results 

Let L be an m-component link in 8 3 and G = 1r1 (S3 - L). The nth term of the 

lower central series of a group G, denoted Gn, is inductively defined by G 1 = G and 

Gn = [Gn-b G], where the latter group is generated by elements of the form aba-1b-1 

for a E Gn_1 and bE G. Milnor invariants, denoted jl, can be thought of as "higher

order" linking numbers between components of a link ( [Mil54], [Mil57]). These are 

known to be invariant under concordance and measure how deeply the longitudes of 

each component of a link L lie in the lower central series of the link group G. 

Up to this point, little has been known about the relationship of Milnor's invariants 

and ( n )-solvability. We establish the following relationship. 

Theorem 3.7. If L is an (n)-solvable link with m components, then JlL(I) = 0 for 

III ~ 2n+2 - 1. 

In other words, if a link is (n)-solvable, then all of its jl-invariants will vanish for 

lengths less than or equal to 2n+2 - 1. Moreover, this theorem is sharp in the sense 

that we exhibit (n)-solvable links with p,(I) =/:. 0 for III = 2n+2. 

A common "doubling operation" of links is Bing doubling, depicted in Figure 1.1. 

This operator doubles the number of components of the original link. 
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Figure 1.1: The Bing double of a knot K, BD(K) 

To Bing double a link, we perform this operation on each component. Bing dou

bling a knot always gives a boundary link so the Milnor's invariants vanish for all 

lengths. On the contrary, Bing doubling a link with nonvanishing fl will never give a 

boundary link. We study the effects of Bing doubling on ( n )-solvability. We show that 

solvability is not only preserved under this operator, but it increases the solvability 

by one. 

Proposition 4.11. If L is an (n)-solvable link, then BD(L) is (n + I)-solvable. 

Moreover, if Lis an (n.5)-solvable link, then BD(L) is ((n + 1).5)-solvable. 

Until this point, nothing was known about the "other half'' of the filtration, 

F;:':5 / F::;-+1 . Using the above results, we show that the "other half'' of the ( n )-solvable 

filtration is nontrivial. 

Theorem 5.1. F:;,':5 / F~1 contains an infinite cyclic subgroup form 2:: 3 * 2n+l. 

The examples used come from iterated Bing doubles of links with nonvanishing 

jl-invariants. Thus, our examples are not concordant to boundary links, so the sub

groups that they will generate will be different than those previously detected. The 

result of Theorem 5.1 is still unknown for knots. 
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Since the knot concordance group, C, is abelian, all successive quotients of the 

( n )-solvable filtration are abelian. However, it is known that em is nonabelian for 

m 2: 2 [LD88]. We have have shown that certain successive quotients are not abelian. 

Theorem 5.3. F'!!-0.5 / F[ is nonabelian form 2: 3. 

Similar to the relationship between (n)-solvability and p,-invariants, we establish 

a relationship between p,-invariants and a link in which all of its components bound 

disjoint gropes of height n. This relationship says that if all components of a link 

bound disjoint gropes of a certain height, then its P, invariants vanish for certain 

lengths. 

Corollary 6. 7. A link L with components that bound disjoint Gropes of height n has 

PL(I) = 0 for III < 2n. 

A result of Lin [Lin91] states that k-cobordant links will have the same p-invariants. 

Using this result, the proof of this proposition relies on showing that L is 2n+1_ 

cobordant to a slice link. 

The two filtrations are related by the fact that 9~+2 ~ F;:: for all n E N and 

m 2: 1 [COT03]. A natural question is whether or not these filtrations are actually 

the same. We show that these filtrations differ at each stage. 

Corollary 6.9. F;:: /9~+2 is nontrivial form 2: 2n+2 . Moreover, Z C .r;:" /9~+2 • 
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1. 3 Outline of Thesis 

In Chapter 2 we review the string link concordance group, em and the (n)-solvable 

filtration, {.t=;;} defined by Cochran, Orr and Teichner. This filtration is very alge

braic in nature. We also demonstrate properties of links in this filtration, known as 

( n )-solvable links. 

In Chapter 3 we give the definition of Milnor's .U-invariants of links. We discuss 

when these invariants vanish and when they are additive. We establish a relationship 

between .U-invariants and ( n )-solvability. 

In Chapter 4 we examine the definition of Bing doubling using infection by a 

string link. We investigate the effects of Bing doubling on links in various levels of 

the ( n )-solvable filtration. 

In Chapter 5 we give applications of the relationship between .U and { .t=;;} found 

in Chapter 3. This chapter focuses on the structure of successive quotients of {.t=;;}. 

We show nontriviality in one such quotient and investigate the commutivity in other 

quotients using results from previous chapters. 

In Chapter 6 we define another filtration of em know as the Grope filtration, {9:} 

which is more geometric than {.t=;;}. We establish a relationship between .U-invariants 

and links in this filtration. Finally, we showed that these two filtrations are different 

by showing that the quotient F{;' / g: is nontrivial for certain m. 



Chapter 2 

( n )-Solvable Filtration 

2.1 String Link Concordance Group 

A knot is an embedding 8 1 Y 8 3 . Two knots, K and J are said to be concordant if 

K x {0} and J x {1} cobound a smoothly embedded annulus in 8 3 x [0, 1]. The set 

of knots modulo concordance forms a group under the operation of connected sum, 

known as the knot concordance group C. This group is known to be an abelian group. 

A link is a generalization of a knot in which it may have more components. More 

specifically, an m-component link is an embedding llm 8 1 Y 8 3 • It is apparent 

that a link of one component is precisely a knot. The connected sum operation is not 

well defined for links. Therefore, in order to define a group structure on links, it is 

necessary to study string links. We will give the definition of string links stated by 

Habeggar and Lin in [HL90]. 

Definition 2.1. Let D be the unit disk, I the unit interval and {p~,p2 , ••• ,pk} be 

k points in the interior of D. A k-component string link is a smooth proper 

7 



embedding u : IJ~=l Ii ~ D x I such that 

(]"I Ji ( 0) = {Pi} X { 0}; 

ui1J1) = {pi} x {1}. 

8 

The image of Ii is called the ith string of the string link. An orientation on u is 

induced by the orientation of I. Two string links u and u' are said to be equivalent 

or isotopic if there is an isotopy h : D 2 x I ~ D 2 x I such that h fixes the boundary 

and h( u) = u'. 

Figure 2.1: An example of a three component string link 

The operation on string links is the stacking operation seen in the braid group. If 

L1 and L2 are in em, then L1L2 is the string link obtained by stacking L 1 on top of 

L2. 

The notion of concordance can be generalized for string links, see Figure 2.2. 

Definition 2.2. Two string links, u1 , u2 (m-component) are concordant if there 

exists a smooth embedding H : llm (I x I) ~ B 3 x I that is transverse to the 

boundary and such that Hlum Jx{o} = 0"1, Hlum Jx{l} = u2, and Hlum aixi = io X id1 

where io : llm 8I ~ S 2
. 
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Figure 2.2: String link concordance 

Under the operation of stacking, the concordance classes of m-component string 

links form a group, denoted em' and is known as the string link concordance group. 

The identity class of this group is the class of slice string links (string links which 

are string link concordant to the trivial string link). The inverses are the string links 

obtained by reflecting the string link about D x {1/2} and reversing the orientation. 

When m = 1, em is the knot concordance group. Form 2: 2, it has been shown that 

em is not abelian [LD88]. 

If Lis a string link, the closure of L, denoted L, is the ordered, oriented link in 8 3 

obtained by gluing 8D2 xI to 8D2 xI of the standard trivial string link. This gives 

a canonical way to obtain a link from a string link. If two string links are concordant, 

then their closures are concordant as links. This means that the closure of a slice 

string link is a slice link, or that it bounds a smooth disk in D 4
. 

Every link has a string link representative, as seen in the following lemma by 

Habegger and Lin [HL90]. 

Lemma 2.3 (Habegger-Lin). Given any link, L in 8 3 , there exists a string link O" 

such that a- is isotopic to L. 

The terminology given by Habegger and Lin in their work [HL90] will be followed 
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in order to prove the lemma. 

Definition 2.4. Ad-base for a link is a disk embedded in S 3 such that it intersects 

each link component transversly exactly once with consistent intersection numbers 

(see Figure 2.3(b) for example). 

Proof. Given a link L, find any d-base for the link (the choice of d-base is not unique). 

By taking a neighborhood of this disk, we obtain a D 2 xI that contains a trivial string 

link. The exterior of the trivial string link, say O", will then be a string link such that 

a is isotopic to L. D 

The following example in Figure 2.3 illustrates the procedure in the proof of the 

lemma. 

(a) The link L (b) L with d-base D 

(c) Repositioning D (d) String link a 

Figure 2.3: An illustration of the procedure of obtaining a string link representative 
of a link 
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2.2 The ( n )-Solvable Filtration 

A filtration of a group is a nested sequence of normal subgroups. Often, filtrations of 

a group are used to study the structure of that group. In order to study the structure 

of em, Cochran, Orr and Teichner (COT03] defined the (n)-solvable filtration, {.F:}, 

{0} c ... c F:+l c n.-5 c F: c ... c F!:5 c F({" c em. 

Before the definition of (n)-solvability is given, we recall a few definitions. 

Definition 2.5. Let G(i) denote the ith term of the derived series of a group G 

that is inductively defined by G(o) := G and G(i+l) := [G(i), G(i)]. The latter group is 

generated by elements of the form aba-1b-1 for a, bE G(i). 

Definition 2.6. Let L be a link an m-component link in S 3 . The zero-framed 

surgery of L, denoted ML is given by 

where h : U 8(S1 x D 2 ) --1- 8(S3 - N(L)) is the map which sends the meridian 

J-li = {pt} x D 2 to the ith longitude li of S 3 - N ( L). 

Definition 2. 7. An m-component link L is ( n )-solvable if the zero-framed surgery, 

ML, bounds a compact, smooth 4-manifold, W 4 , such that the following hold: 

i) H1(ML; Z) rv zm and H1(ML) --1- H1(W; Z) is an isomorphism induced by the 

inclusion map; 



12 

ii) H2(W; Z) has a basis consisting of connected, compact, oriented surfaces, 

{Li, Di}~=1 , embedded in W with trivial normal bundles, wherein the surfaces are 

pairwise disjoint except that, for each i, Li intersects Di transversely once with posi

tive sign; 

The manifold W is called an ( n )-solution for L and a string link is ( n )-solvable 

if its closure in 8 3 is an ( n )-solvable link. 

A link is (n.5)-solvable if, in addition to the above, n 1 (Li) C n1 (W)(n+l) for all 

i. In this instance, W is called an (n.5)-solution for L. 

The notion of (n)-solvability can be thought of as an algebraic approximation to 

a link being slice, or the identity in em. 

For all m 2:: 1, the (n)-solvable filtration of the string link concordance group 

is defined by setting F.;;' to be the set of (n)-solvable links, L in 8 3 for n E ~N0 . 

It is known that F.;;' is a normal subgroup of em for all m 2:: 1 and n E ~N0 . For 

convenience's sake, ~0.5 will denoted the set of links with all pairwise linking numbers 

equal to zero. It is worth noting that if L E em, then L and L have all the same 

pairwise linking numbers. 

2.3 Properties of ( n )-Solvable Links 

In this section, we will give two properties of ( n )-solvable links that will be used in 

later chapters. 

Proposition 2.8. If L zs an (n)-solvable link, then every sublink of L zs an (n)-
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solvable link. 

Proof. Suppose L = L1 U L2 U · · · U Lm is an (n)-solvable, m-component link and let 

W be its (n)-solution. Consider the sublink of L, J = L2 U · · · U Lm, obtained by 

omitting the L1 component. We will create a cobordism, X, between MJ and ML 

such that XU W is an (n)-solution for J. 

Consider a new link, L', obtained from L by performing a zero-framed surgery on 

the meridian, J-1 of L1 , which we will refer to as a "helper circle" (see Figure 2.4(a)). 

By performing handle slides, we see that the new 3-manifold is the same as the on 

in Figure 2.4(b). Since zero-framed surgery on the Hopf link is homeomorphic to 8 3 , 

zero-framed surgery on L' is in fact the manifold M J. 

(a) Adding a "helper circle" 1-t (b) Separation of link compo
nents 

Figure 2.4: A "helper circle" added to L and the separation of the components 
resulting in a new link J 

By adding the "helper circle" to L', we are adding a 2-handle, D = D 2 x D 2 , onto 

the boundary of ML x [0, 1]. The 4-manifold obtained by attaching D to ML x [0, 1] 

is a cobordism between MJ and ML. We notice that WU (ML x [0, 1]) UD"' WUD. 

We aim to show that W U Dis an (n)-solution for J. To see this, consider the effect 

on homology and 1r1 of adding D to ML x [0, 1]. 

Following the definition, we must first check that H 1(MJ) is isomorphic to H 1 (WU 
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D) rv zm-1 induced by inclusion. Since W is an (n)-solution for L, H1(ML) is 

isomorphic to H 1 (W) rv zm which is induced by inclusion. Adding a 2-handle to 

W kills off a generator of H 1 (W) since we are attaching along an element of infinite 

order. Thus H 1(WUD) rv zm-1. 

The manifold WUD is obtained (up to homotopy equivalence) by adding a 2-cell to 

W along f-l· The meridian f-l has infinite order in H 1(W) and so H 2 (WUD) "'Hz(W). 

Since W is an (n)-solution for L, an appropriate basis for H 2(W U D) is obtained. 

Lastly, the inclusion map i: W Y WUD gives i*(1r1(W)(n)) ~ 1r1(WUD)(n). Since 

no elements were added to the basis of H 2(W U D), it has the same basis as Hz(W). 

Thus 1r1 (Li) C 1r1(W)(n) ~ 1r1(X U W)(n) and similarly for 1r1(Di), where {Li, Di} is 

a basis for H 2 (W). Thus W U D is an (n)-solution for J and J is (n)-solvable. 

To obtain that any sublink is ( n )-solvable, we continue this procedure to remove 

all components not in the desired sublink. D 

Remark 2.9. The converse of this proposition is not true. For example, each com

ponent of the Hopf link is trivial and thus (D)-solvable, but MHopf link rv S 3 . Since 

H 1(S3 ) = D, this link cannot be (D)-solvable. 

Again, assume that Lis a link in 8 3 with m components, £ 1 , ... , Lm. Denote by 

bij(L) the band connect sum (or band sum) of Li and Lj, where i =J. j. In other words, 

bij(L) denotes the resulting link from connect summing the ith and lh components 

of L. 

Proposition 2.10. If L is an (n)-solvable link, then bij(L) is (n)-solvable. 

Proof. We will construct an (n)-solution for bij(L). To do this, we form a cobordism 



-
Li Li 

(a) 1 and a with 
Li and Lj 

- 0 

Li Li 
(b) The zero surg
eries of/, Li, and 
Lj 

Figure 2.5: Band summing two link components 
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between ML and Mbij(L)· First, consider the zero-framed surgery on L, denoted ML· 

Let a be a band connecting Li and Lj. This band indicates where the band sum will 

be performed (see Figure 2.5(a)). 

Let W be the 4-manifold obtained by taking ML x [0, 1) and adding a zero-framed 

2-handle along"'(, the curve indicated in Figure 2.5(a). Before we proceed, we need 

the following lemma. 

Lemma 2.11. aw = ML 11 Mbij(L) 

Proof. It is apparent that ML is part of the boundary. To see the other element of 

the boundary, consider Figure 2.5(b) as a 4-manifold diagram. We perform a handle 

slide by taking Li and sliding it along Lj using the arc a. As a result of this handle 

slide, we created a "helper circle" around Lj and thus can unknot and separate Lj 

from L (see Figure 2.6). This creates, as a 3-manifold, the zero-framed surgery on the 

Hopf link, which is homeomorphic to S 3 . As a 3-manifold, we are left with Mbij(L). 

D 
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Lj 

Figure 2.6: Performing a handle slide 

We now continue with the proof of the proposition. Let X be an ( n )-solution 

for L. Then H1 (ML) is isomorphic to H1 (X) "'7/r, induced by the inclusion map. 

Consider the manifold XUW. This manifold is obtained (up to homotopy equivalence) 

by adding a 2-cell to X along '"Y· Since '"'I has infinite order in H 1(8X) "' H 1(X), 

H1(X U W) "' zm-l and i : Mbij(L) -+ XU W induces an isomorphism on H1. 

Moreover, H 2 (X) "'H2 (XUW). By assumption, H 2 (X) has a basis {Li, Di}i=1 with 

Li m Di = 8ii· Since H 2 is unchanged under this handle addition, H 2 (X U W) has 

the same basis. 

Finally, note that the condition on 1r1 is met by a completely analogous argument 

to the one in Proposition 2.8. Thus XU W is an (n)-solution for bij(L) and band 

summing preserves ( n )-solvability. D 

Remark 2.12. The arguments in Propositions 2.8 and 2.10 can easily be generalized 

to give analogous results for (n.5)-solvable links. 



Chapter 3 

Milnor's jj-lnvariants 

3.1 Definition 

In this section, we recall the definition of Milnor's p,-invariants. In the early 1950's, 

John Milnor defined a family of higher order linking numbers known as p,-invariants for 

oriented, ordered links in 8 3 [Mil54], [Mil57]. These numbers are not link invariants 

in the typical sense since there is some indetermincy due to the choice of meridians of 

a link; however, as invariants of string links they are well defined [HL90]. In general, 

Milnor's invariants determine how deep the longitudes of each component lie in the 

lower central series of the link group. While Milnor's p,-invariants can be defined in 

several ways, we will focus on the definition centered around the Magnus expansion. 

Suppose L is an m-component link in 8 3 • Let G = 1r1 ( 8 3 - L) be the fundamental 

group of the complement of L in 8 3 • The lower central series of G, denoted Gi 

is recursively defined by G1 := G and Gi := [Gi-l, G], where the latter group is 

generated by elements of the form aba- 1b-1 for a E Gi-l and bE G. 

17 
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Remark 3.1. The derived series and the lower central series of a group G are related 

by c<n) c G2n. Since [Gn Gs] ~ Gr+s, it is a straight forward computation to achieve 

the relation. 

Consider the nilpotent quotient group G/Gk. A presentation of this group, given 

by Milnor [Mil57], can be written 

(3.1) 

where o:1, ... , O:m are a choice of m meridians for L, Fk is the kth term of the lower 

central series ofF= F(o:1, ... , o:m), the free group on m generators and li is the ith 

longitude of L written as a product of the o:/s. 

With this presentation of G / G k, the ji-invariants of a link L can be easily defined. 

Let Z[[X1 , ... , Xm]] be the ring of power series in m noncommuting variables. The 

Magnus expansion, or embedding, is a map E : ZF --+ Z[[X1, ... , Xm]] defined by 

sending o:i f--7 1 +Xi and o:i1 f--7 1 - Xi + Xl - Xl + · · · for 1 < i < m. Let 

I = i 1 i 2 ... ik-1 ik be a string of integers amongst { 1, ... , m} with possible repeats. 

The Magnus expansion of the longitude lik written as an element ofF (modulo Gk) 

has the form 

Milnor's invariant JiL(I) is defined as the residue class of !-LL(I) modulo the greatest 

common divisor of /-LL(i) where i is any string of integers obtained from I by deleting 

at least one integer (excluding ik) and cyclically permuting the rest. It is useful to note 
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that the first non vanishing p,-invariant, p, L ( L) will be f.-L L (I) since it is well-defined. 

For p,-invariants of length two, the calculation measures the linking between two 

components, i.e. JlL(ij) is the linking number between the ith and lh components of 

L. It is also worth noting, even though we will not use this fact, that if all of the 

i 1 , i 2 , ... , ik-b ik are distinct, then p, is a link homotopy invariant [Mil54], [Mil57]. 

Example 3.2. Let BR = Borromean Rings, and ai be the meridian of Li, the ith 

component (see Figure 3.1), and li the respective longitude. Let G = 1r1 (S3 - BR). 

A presentation of G/Gk is given by 

tudes are independent of k. 

Figure 3.1: The Borromean Rings with meridians for each component 
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Now consider the Magnus expansion of h, E(h). 

E(h) = E(a1a;-1a1"1a2) 

= E(a1)E(a21 )E(a11 )E(a2) 

The invariant .UBR(123) will be the coefficient of X 1X 2 . Since there are no lower 

order terms besides 1, this is the first nonvanishing ,a-invariant and .UBR(123) = -1 

is well-defined. Also, .UBR(213) = 1. Changing the orientation on a component will 

change the invariant by a sign. 

3.2 Properties of Milnor's )]-Invariants 

An important property of ,a-invariants is that they are concordance invariants [Cas75] 

and thus make Milnor's invariants a valuable invariant for us. 

The following is a classical and well-known result of Milnor [Mil57]. 

Theorem 3.3 (Milnor). The longitudes of L lie in Gk-1 if and only if Fj Fk ""'G/Gk· 

In other words, .UL(I) = 0 for III::; k -1 if and only if F/Fk rv G/Gk· 

The following corollary allows us to detect whether certain Milnor's invariants are 

zero using the fundamental group of ML, the zero-framed surgery on L. 

Corollary 3.4. F/Fk+l rv G/Gk+l if and only if F/Fk rv JfJk, where J = 1r1(ML). 
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Proof. The group GIGk has presentation given by 

where .Xi is the longitude of the ith component of L, Li, and Xi is a meridian of Li· 

Consider zero-framed surgery on L. The inclusion of S 3 - L into ML induces an epi

morphism on fundamental groups that has kernel normally generated by >.1o ... , Am· 

The fundamental group J is obtained from G by setting the longitudes >.i to zero. 

This gives the presentation Jl Jk rv (x1, ... , xmi.Xi, Fk+l)· 

Suppose that the map induced from inclusion from GIGk+l to Fl Fk+1 is an iso

morphism. Then [xi, Ai] E Fk+l, and thus Ai E Fk since xi is a generator of F. 

Taking this information and looking at the presentation of J I Jk it is apparent that 

JIJkrvFIFk. 

Conversely, if J I Jk rv F I Fk then the relations show that .Xi E Fk and thus [xi, >.i] E 

Fk+l· This gives that GIGk+l rv Fl Fk+l· 

D 

Remark 3.5. If follows that JlL(I) = 0 for III::; kif and only if FIFk"' JIJk. 

The following property of jl-invariants will be very useful in Chapter 5. The first 

nonvanishing jl-invariants are additive. This was first established by Orr [Orr89], but 

more geometric arguments can be found in [Coc90], [Ste90]. We will give a general 

idea of the proof for your convenience. 

Theorem 3.6 (Orr). Let Lo and Ll be in em. If flti(I) = 0 for all III < k and 
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Proof. Let Lo and Ll be two m-com ponent links in S 3 . Let s be a 2-sphere in S 3 such 

-that Swill separate S 3 - L0 L1 into two components Y0 and Y1 with (S3 - Li) - int(Yi) 

is the complement of a trivial string link (see Figure 3.2). 

Yo 

-Figure 3.2: The sphereS separating S 3 - L0 L 1 

Consider the following diagram of groups and maps. 

n1 (S3 -Yo) n1(S3 - La) 
~ 

n1 (S3 - Yo)k+l n1 (S3 
- Lo)k+l 

F 

/ j 
1r1 (S3 - r;;L;_) 

Fk+l -
~S

3

- rL1h+1 

n1 (S3 
- Yi) n1(S3 - f;) 
~ 

n1 (S3 - Yl)k+l n1 (S3 - f;)k+l 

The left most isomorphisms are induced by the meridinal map. With some work, it 

can be shown that all the other maps are isomorphisms. The jth longitude in Li, l), 

- -can be expressed as the same product of meridians in n 1 (S3 - L0 L 1 ) /n1 (S3 - L0 L 1 )k+l 
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as in 1r1(S3 - Li)j1r1(S3 - Lh+I fori= 0, 1. Looking at the Magnus expansion, we 

have the following equality. 

We can also consider the Magnus expansion of ZJi] as a product, E(ZJ)E(l}). 

E(ZJij) = E(ZJ)E(lj) 

Combining the equalities gives the following 

Comparing the coefficients, we see that for s::; 2k- 1, 

---Since j:i-invariants of length k + 1 for L0L1 have no indeterminacy, 

0 
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3.3 Relationship between f1 and ( n )-Solvability 

Before now, little has been known about the relationship between Milnor's invariants 

and ( n )-solvability. The following theorem demonstrates a relationship between the 

two concepts. Applications of this result will be seen in Chapter 5. 

Theorem 3.7. If L is an (n)-solvable link with m components, then fh(I) = 0 for 

III ~ 2n+2- 1. 

Proof. As mentioned in the previous section, a classical result of Milnor, given in 

Theorem 3.3 states that JlL(I)=O for all III ~ k (for any link L in 8 3 ) if and only if 

Fl Fk+I rv GIGk+l, where F = F(x1 , · · · , xm) and G = 1r1 (83 -L). Using Lemma 3.4, 

this is equivalent to F I Fk being isomorphic to J I Jk where J = 1r1 ( ML). 

Suppose L is an ( n )-solvable link with m components. By definition, there exists 

an (n)-solution, W, for L. Consider the following sequence of maps on 1r1 induced by 

inclusion (We are viewing F as the fundamental group of a wedge of m circles) 

F ~ G ~ J ~ E=1r1(W). 

The map ¢2 is the surjection induced by the inclusion of 83 - L into ML and has 

kernel normally generated by the longitudes. The quotients of all of these groups by 

the kth terms of their lower central series gives another sequence of maps 
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Consider the following diagram 

G~J 

where l and p are the canonical quotient maps. If [j] E J / Jk, then, since ¢2 is 

a surjection, there exists g E G such that ¢2 (g) = J. Now l(g) = [g] and thus 

¢2([g]) = [j]. In turn, this gives that ¢2: G/Gk-+ JjJk is a surjection for all values 

of k. 

To proceed, it is useful to know how to translate group theoretic results into results 

about topological spaces. If X is a connected complex then H 1 (X; Z) "'H1 (1r1 (X);.Z) 

and H2 (1r1(X); Z) is a quotient of H2 (X; Z). In fact, the Hurewicz map induces an 

exact sequence 

(3.2) 

Dwyer's Theorem [Dwy75] is of particular importance and is stated below. 

Theorem 3.8 (Dwyer's Integral Theorem). Let¢: A-+ B be a homomorphism that 

induces an isomorphism on H 1(-;Z). Then for any positive integer k, the following 

are equivalent: 

i. ¢ induces an isomorphism A/ Ak+l rv B I Bk+l 

ii. ¢ induces an epimorphism H2(A; Z)/<Pk(A) -+ H2(B; Z)/<Pk(B). 
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Consider the map induced by ¢3 o ¢2 o ¢1 

(3.3) 

where E = 1r1(W). Thus showing (3.3) is a surjection is equivalent to showing 

¢ := ¢3 o ¢2 o ¢1 : F I Fk+1 --+ E I Ek+l being an isomorphism. 

Since F is the free group on m generators, H2 (F; .Z) = 0. The map of (3.3) is a 

surjection precisely when <I>k(E) = H2 (E, .Z). We need to determine for which k we 

have <I>k(E) = H 2 (E, .Z). 

Since W is an (n)-solution for L, there is a basis of H 2 (W) consists of pairs of 

surfaces, {Li, Di}r=1 such that Li rh Di = 8i,j· By the exact sequence 3.2, H2 (W)--+ 

H2(E) is a surjection and is induced by the inclusion map. Thus H2(E) is generated 

by the images of the Li and Di. 

A reformulation of <I>k(E) given by Cochran and Harvey [CH08] is of use and will 

be stated here. For any space X, <I>k(X) is the subgroup of H 2(X) consisting of those 

elements that can be represented by an oriented surface f : E --+ X such that for 

some symplectic basis of curves {ai, bill ::::; i ~ genus(E)} of E, f*([ai]) C 1r1 (X)k· 

In other words, one half of a symplectic basis of curves map into 1r1(X)k· Note that 

<I>n(E) is the same as <I>n(K(E, 1)) in the sense of this reformulation. Recall that a 

space X is K(G, n) if 7rn(X) rv G and 1ri(X) = 0 fori =1- n. 

We consider <I>k(E) in terms of this reformulation. We know that H 2 (E) is gen

erated by the images of Li and Di. A symplectic basis for each of these surfaces lie 

in 1r1 (W)(n) since 1r1(Li),1r1(Di) E 1r1(W)(n). We recall that the derived series and 
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lower central series are related by G(n) ~ G2n. Thus, every element of H 2 (E) can be 

represented by oriented surfaces with basis curves in E 2n. Hence i!!k(E) = H 2 (E) for 

Using Dwyer's Theorem 3.8, we have that ¢3 o ¢2 o ¢ 1 induces an epimorphism 

for k ::; 2n and in turn gives an isomorphism 

Thus ¢ := c/Jz o cP1 : F I Fzn+l --+ J I ]zn+l is a monomorphism. Since ¢ is a map 

FIFk--+ Fl(relations,Fk), by Milnor's presentation (3.1), ¢is a surjection and thus 

an isomorphism. 

By Lemmas 3.3 and 3.4, the ,a-invariants of length less than or equal to 2n + 1 

vanish for ( n )-solvable links. 

We can better this result. By considering the following diagram. 

~ Hz(W) 

1 

where Wk is the covering space of W that corresponds with the kth term of the 
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lower central series of 1r1(W). The vertical maps are surjections obtained from the 

exact sequence induced by the Hurewicz map. The maps p*, i* and 1r* are the maps 

induced by the covering map p, inclusion and projection respectively. 

The images of the basis {Li,Di} of H2(W) will generate H2(E) since H2(W)--+ 

H2(E) is a surjection. We claim that the map i* is a surjection. This can be seen 

by viewing H 2(Ek) as the second homology group for the covering space, K(Ek, 1) of 

the Eilenberg-Maclane space K(E, 1). Note that K(EK, 1) is the covering space of 

K(E, 1) corresponding to the subgroup EK of E. When k = 2n the images of {Li, Di} 

in H2(E) will lift to H2(Ek) so i* : H2(Ek) --+ H2(E) is surjective. 

Cochran and Harvey [CH10] showed that the composition of the following maps 

is the zero map for all k. Since i* is surjective, this implies that 1r * is the zero map. 

Hence ~2k_1 (E) = H2(E) and Dwyer's theorem gives an isomorphism Fl F2k rv El E2k 

and thus an isomorphism F I F2k """ J I J2k when k = 2n using a similar argument as 

above. Therefore the j:t-invariants of length less than or equal to 2n+1 vanish. 

This result can be improved slightly. Let g : J I J2n+1 --+ F I F2n+1 be a specified 

isomorphism. Let f be the composite of the following maps 
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where 1r J is the canonical quotient map. Consider the following diagram of maps 

where c/> is the isomorphism between J I J2n+1 and E I E 2n+1 established earlier in the 

proof and 'IrE is the canonical quotient map. Thus we have an extension of j, namely 

f = g o ¢-1 o 'IrE : E -+ F I F2n+l. This gives the following commutative diagram. 

The commutative diagram below on homology is achieved by the induced maps ob-

tained from the above maps. 

The images of H3(ML) in H3(W) will be zero since aw = ML, and since the diagram 

commutes, the image of H3(ML) in H3(F I F2n+I) will be zero. In other words, [ML] -+ 

0 E H3 (F I F2n+1 ). Consider the following sequence of maps 
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where hi : H3(F I Fk+i) --+ H3(F I Fk+i-1) and k = 2n+1 . The image of the fundamental 

class under the map H3(ML) --+ H3(FI Fm) will be denoted by Bm(ML, f). 

We will use the following two results of Cochran, Gerges and Orr [CG001]. They 

will be stated without proof. It is worth noting that these results rely heavily on deep 

work of Igusa and Orr [1001]. 

Lemma 3.9 (Cochran-Gerges-Orr). Bm(ML, f) E Image(1r*: H3(FI Fm+1 )--+ H3(FI Fm)) 

if and only if there is some isomorphism j : Jl Jm+1 --+ Fl Fm+l extending f such 

that 1r*(Bm+l(ML, ])) = Bm(ML, f). 

Corollary 3.10 (Cochran-Gerges-Orr). The map H3(F I Fzm-d --+ H3(FI Fm) is the 

zero map. Any element in the kernel of H3(FIFm+i)--+ H3(FIFm), j::; m -1, lies 

in the image of H3(FIFzm-1)--+ H3(FIFm+i)· 

Since B2n+l (ML, f) =[0] and [OJ is always in the image of a homomorphism, there 

is an extension off to an isomorphism j: Jl Jk+l--+ Fl Fk+l with h1(Bk+1(ML, ])) = 

()k(ML, f)= 0 by Lemma 3.9. This means that ()k+l(ML, ]) is in the kernel of h1. So 

()k+l(ML, ]) lies in the image of H3(FI Fzk-1) --+ H3(FI Fk+l) by Corollary 3.10. In 

other words, it lies in the image of the map h2 o h3 o · · · o hk_1 and in turn lies in 

the image of h2 . By Lemma 3.9, there is an extension off that is an isomorphism 

between J I Jk+Z and F I Fk+Z· By continuing this process, an isomorphism between 

J I Jzk- 1 and F I Fzk-1 with k = 2n+1 is obtained. Thus we have that the P,-invariants 

of lengths less than or equal to 2n+Z- 1 of our ( n )-solvable link vanish. This concludes 

the proof of Theorem 3.7. 0 

Example 3.11. Consider the Borromean Rings= BR. In Example 3.1 it was shown 
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that PBR(123) = ±1, depending on the orientation of BR. As Theorem 3.7 states, all 

,U-invariants vanish for lengths less than or equal to three for (G)-solvable links. Thus 

BR cannot be (G)-solvable, and BR is nontrivial in F~0. 5 /FJ. 

Remark 3.12. The converse of Theorem 3. 7 is false. Consider the Whitehead link 

= W in Figure 3. 3. The first non vanishing ,U-invariant occurs at length four. One 

of these invariants is ,Uw(1122) = ±1 7 depending on orientation. To see this7 note 

that the figure eight knot7 417 maybe obtained as the result of band summing the two 

components ofW. It is known that this knot is not (G)-solvable since its Arf invariant 

is nonzero {COT03}. By Proposition 2.107 the Whitehead link is not (G)-solvable. 

Figure 3.3: The Whitehead Link and then-twisted Whitehead link 

Remark 3.13. The result of Theorem 3. 7 is sharp in the sense that we cannot in

crease the length of vanishing ,U-invariants. Consider the n-twisted Whitehead link 

in Figure 3.3. The number n represents the number of full twists. When n is even, 

this link is band pass equivalent to the trivial link. As we will see in Chapter 4, this 

link is (G)-solvable since the trivial link is (G)-solvable. However, ,U(1122) = -n and 

,U(1212) = 2n are the first nonvanishing ,U-invariants. 



Chapter 4 

Bing Doubling 

4.1 Introduction 

The goal of this chapter is to investigate the effect of Bing doubling on ( n )-solvable 

links. We begin with the definition of this operation. Bing doubling is a doubling 

operator performed on knots and links. If K is a knot, then the two-component link 

in Figure 4.1 is the Bing double of K, denoted BD(K). If L is an m-component 

link, BD(L) denotes be the 2m-component link obtained by Bing doubling every 

component of L. 

Figure 4.1: The Bing double of a knot K, BD(K) 

Most constructions of Bing doubling involve a type of satellite construction called 

32 
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genetic infection. This construction is as follows. Let M = 8 3 - N(L) where Lis an 

m-component link in 8 3 and T/ is a curve in 8 3 - N(L). Let K be a knot in 8 3 . Then 

M(T/, K) := (M- N('r!)) UJ (83 - N(K)) 

Note that /-lK is the meridian of 8(N(K)) and lK is the longitude of 8(N(K)) and 

similar definitions for /-try and lTJ. 

The manifold M(T/, K) is homeomorphic to 8 3 - N(L('r!, K)) where L('fl, K) is 

another m-component link. We say L(T/, K) is the result of infecting L along Tl by 

K. Milnor's p,-invariants are, however, unchanging under this construction. The 

following lemma will be of use in the proof. 

Lemma 4.1. Iff: X-+ Y and f* : H2 (X) -+ H2(Y) is surjective, then there is an 

Proof. We will prove the special case when X= M(T/, K) andY= M. The general 

case of this lemma, with arbitrary spaces X and Y can be proven in a similar manner. 

Let A= 1r1(M(T/, K)) and B = 1r1(M) Consider the following diagram of maps. 

M --- K(B,1) 

/1 
M(T/, K) ~ K(A, 1) 

Notice that K (A, 1) = M ( T/, K) U 3 - cells U 4 - cells U · · · and K ( B, 1) = M U 3 -

cells U 4- cells U · · · . The map f can be extended to h to give a commutative diagram, 
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where h1M(7J,K) is precisely the map f, since 1ri(K(B, 1)) = 1 for n > 2. Taking the 

diagram from above and applying the hom functor gives the following commutative 

diagram. 

Hn(M) -- Hn(K(B, 1)) 

f·1 1 •. 
Hn(M(ry, K)) _____.. Hn(K(A, 1)) 

Since only 3 dimensional and higher cells are being added toM to obtain K(B, 1)), 

we have that the map Hn(M) --7 Hn(K(B, 1)) is surjective for n = 1, 2. Similarly, 

Hn(M(ry, K)) --7 Hn(K(A, 1)) is surjective for n = 1, 2. Since all other maps in the 

diagram are surjective and the diagram commutes, h* is also surjective. 

D 

Proposition 4.2. Milnor's p,-invariants are unchanged by infection by a knot along 

a curve. 

Proof. For any knot K in 8 3 , there exists a map h : 8 3 - K --7 8 3 - U where U 

is the unknot and the map fixes the boundary. This map will induce an isomor-

phism on homology. This in turn gives a map h : M(ry, K) --7 M that induces an 

isomorphism on homology. We can see by Lemma 4.1, there is an epimorphism in-

duced by h* on H2 (1r1 (M(ry, K))) to H2 (1r1(M)). We can now apply Stallings' Integral 

Theorem [Sta65]. 

Theorem 4.3 (Stallings' Integral Theorem). Let¢ : A --7 B be a homomorphism 

that induces an isomorphism on H1 (-; Z) and an epimorphism on H2 (-; 7!..). Then, 

for each n, ¢induces an isomorphism A/Ak rv B/Bk· 
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We have that 1r1 (M(ry, K))/rr1 (M(ry, K))k rv 1r1 (M)j1r1 (M)k for all k. This means 

precisely that the two links, L and L(TJ, K) have the same ,U-invariants. D 

4.2 Construction 

Bing doubling can also be viewed as multi-infection by a string link. Let L = L1 U 

L2 U · · · U Lm in 5 3 be an m component link in 5 3
. Let LBn be the 2m-component 

link pictured in Figure 4.2 that is isotopic to the 2m-component trivial link. Then 

there is a handlebody, H, in 5 3 
- LBn which is the exterior of a trivial string link 

with m components(see Figure 4.3 for an example). The TJi are curves in 5 3 - LED 

and are the canonical meridians of the trivial string link. 

Take a string link J, such that J is isotopic to L. Recall that in doing so, our 

choice of d-base is not unique so there will be an infinite number of string links that 

meet this criterion. Then 

BD(L) =((53
- LBn)- H) U¢ (D2 xI- J) 

where¢ maps li H 'Yi and J-li H TJi 1 and the Zi, "fi, J-li and 'T/i are depicted in Figure 4.4. 

Figure 4.2: The trivial link LBn 



Figure 4.3: A handlebody in 8 3 - LsD 

(a) Exterior of the triv
ial string link, the handle
body H 

(b) Exterior of the string 
link J 

Figure 4.4: The longitudes li, 'Yi and meridians J..Li, 'r/i 

To help illustrate this construction, consider the following example. 
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'Yn 

Example 4.4. Let H be the Hopf link. The string link J (see Figure 4.5(a) for the 

complement of J) is one in which when closed it is isotopic to H. The resulting link 

obtained after replacing the handlebody with the exterior of J is BD(H). 

4.3 Effects of Bing Doubling on (n)-Solvability 

The goal of this section is to understand the effect that Bing doubling will have on 

solvability. In order to do this, we first look at other geometric moves similar to the 

idea of Reidemeister moves that can be performed on knots and links and see their 
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(a) Exterior of J (b) HBD with a handlebody 

(c) Replacing exteriors of (d) BD(H) 
string links 

Figure 4.5: Illustration of the Bing Doubling of the Hopf link using infection by a 
string link 

effects on solvability. 

Remark 4.5. Lemmas 4.6 and 4.9 are results of Taylor Martin [Mar}. At the current 

time, these results and proofs are not in print. We will state the results and give an 

idea of both proofs. 

Lemma 4.6 (Martin). A band pass move preserves (D)-solvability. 

Proof. Suppose that L is (0)-solvable and is band pass equivalent to J. Suppose 

further that Lis obtained from J by one band pass move and L locally has Position 

A in its diagram (see Figure 4.6). 

We will create a cobordism between ML and MJ. We add two 2-handles, D 1 , D 2 

to ML x I along the curves ry1 and ry2 with framing 0. Call the resulting space X, 

which will be our cobordism. Then ax = ML u MJ since performing zero-framed 

surgery to 1'i and ry2 will give the link in Figure 4.6 (b). This can be seen by simple 
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(a) Position A (b) Position B 

Figure 4.6: Band pass move 

Figure 4.7: The addition of two components, 11 and 12 , that when we take the zero 
surgery we obtain Position B in Figure 4.6 

handle slides. 

Let S = B 4
-]]] be a slice disk complement where]]] are disks with boundary L. 

Now consider the manifold XU S. Since the curves 11 and 12 (again, see Figure 4. 7) 

are of finite order, H 1(XUS) rv H1 (S). Adding the handles D 1 and D 2 creates a pair 

of surfaces ~1 and ~2 (see Figure 4.8 for ~1 ) to the basis of H2(S) to create a basis 

for H2(X US), namely { Li, Di}i=1 U {~1 , ~2 }. The third condition of (G)-solvability 

is vacuous since G(o) =G. Thus (G)-solvability is preserved under band pass moves. 

0 

Figure 4.8: Zero surgery with added link components and the surfaces that are added 
as a result of adding the link components 
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Proposition 4.7. If Lis any link ofm components, then BD(L) is (D)-solvable. 

Proof. Let L be an m-component link in S 3
• The Bing double, BD(L) is band pass 

equivalent to the trivial link of m components (arising from the fact that any link 

can be transformed into the trivial link by a finite number of crossing changes). Since 

the trivial link is (0)-solvable and band pass moves preserve (D)-solvability, BD(L) is 

(0)-solvable. D 

We will also consider two other geometric moves. 

Figure 4.9: The delta move and the half-clasp move 

(a) Position A (b) Position B 

Figure 4.10: The double delta move and the double half-clasp move 

Lemma 4.8. The delta move can be realized as a half-clasp move. Moreover, the 

double delta move can be realized by a double half- clasp move. 

Proof. The images in Figure 4.11 illustrate how to use isotopy and a half-clasp move 

to achieve the delta move. This result is easily adaptable for the double of the moves. 



half 
~ 

clasp 

isotopy ~ / 

~ ~ 

I w---
1\ 

!\ 
~ I 
~ 
!\ 
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Figure 4.11: Sequence of isotopy and half-clasp moves to achieve the delta move. 

0 

Lemma 4.9 (Martin). The double half-clasp move preserves (0.5)-solvability. 

Proof. Suppose L and J are related by a double half-clasp move depicted in Fig-

ure 4.10. Moreover, suppose L is (0.5)-solvable with a (0.5)-solution W. Assume 

further that L has Position B somewhere in its diagram. 

As in the proof of Lemma 4.6, we will create a cobordism between ML and MJ 

by adding two 2-handles D 1 and D 2 to M L x I along the curves 1 1 and 12 with zero 

framing. Call the resulting cobordism X. Then ax = ML u MJ since zero-framed 

surgery on 1 1 and 1 2 gives the link in Position A of Figure 4.10(a), which can be seen 

by handle slides. 

We focus on the third criteria for (0.5)-solvability. Adding D 1 and D 2 creates the 

pair of surfaces ~1 and ~2 as seen in Figure 4.12 that will be added basis elements of 

H 2 (W U X). The curves a and j3 in ~ 1 are null homologous in ML, i.e. a, j3 E [0] E 

H 1 (ML)· Since the inclusion i: ML---+ W induces an isomorphism in homology, a, j3 
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----------~==:>- {2 I I 

II 
fl 

II 
Figure 4.12: Zero surgery with added link components and the surfaces that are added 
as a result of adding the link components 

Lemma 4.6, this proves that the double half-clasp moves preserve (0.5)-solvability. 

D 

Proposition 4.10. If L E F~0.5 , then BD(L) is (0.5)-solvable. 

Proof. Suppose L has all pairwise linking numbers equal to zero. It was shown 

( [MN89], and [Mat87]) that two links are equivalent by delta moves if and only 

if they have the same pairwise linking numbers. This result was generalized for string 

links [NS03]. Recall that in our construction of Bing doubling of a link, we chose a 

string link J such that J is isotopic to L. Since J has all pairwise linking numbers 

equal to zero by assumption, J can be chosen to have all pairwise linking numbers 

equal to zero as a string link. 

In the construction of Bing doubling we can see that the handlebody H was 

replaced with the exterior of J. As a result of this replacement, we have a new string 

link J (see Figure 4.5(c) for example). Using double delta moves, we are able to get 

the trivial link (delta moves on J will be double delta moves on ]) . Since the double 
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half-clasp move preserves (0.5)-solvability, the double delta move will also preserve 

(0.5)-solvability. Thus BD(L) is (0.5)-solvable. D 

Proposition 4.11. If L is an (n)-solvable link, then BD(L) is (n + I)-solvable. 

Moreover, if Lis an (n.5)-solvable link, then BD(L) is ((n + I).5)-solvable. 

Proof. Suppose L is an ( n )-solvable link with m components. From the beginning of 

this section, we can construct BD(L) by infection by a string link on a trivial link. 

We will construct an (n +I)-solution for BD(L) and begin by finding a cobordism 

between ML and MBD(L). Suppose J is a string link such that J is isotopic to L. 

Then ML = (D2 x I - J) U (D2 x I -trivial string link). Consider ML x [0, I] 

and MLBn x [0, I]. Recall that LBD was isotopic to the 2m component trivial link. 

Let H be the handle body D 2 x I. Glue ML x {I} to MLBn x {I} by identifying 

H c ML x {I} with H C MLBn x {I}. Call the resulting space X (see Figure 4.I3). 

Then ax = ML u MLBD u-MBD(L). 

Figure 4.I3: The space X 

To proceed, we need the following lemma. 

Lemma 4.12. With X as above, the inclusion maps induce the following 
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Proof. Consider the following diagram of inclusion maps. 

H 

y~ 
MLBD X [0, 1] ML X [0, 1] 

~A 
X 

Using Mayer Vietoris, the maps above induce the following long exact sequence (in 

reduced homology), where I*= (ih, i2*) and J* = Jh- j 2* (the homology groups are 

with Z coefficients). 

The homology group H1 (H) "' zm is generated by the meridians, f.-ti of the trivial 

string link. Recall that the 1Ji's were defined in the construction of Bing doubling. 

Now ih(J.-ti) = 0 in 8 3 - LBv C MLBv since J.li rv "li and "li is in a commutator 

subgroup. Also, i 2*(J.Li) is of infinite order in 8 3 - L C ML since J.Li is identified with 

a meridian of L. Hence I* is a monomorphism. Thus the map 8*: H2(X)-+ H1(H) 
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is the zero map. By the properties of a long exact sequence, 

For the other part of the lemma, consider the first isomorphism theorem. This 

gives 

H1(MBD(L)) is generated by the meridians of BD(L) which are isotopic (in X) to the 

meridians of LBD· This means that H1(X) f'oJ H1(MBD(L)) which is the desired result. 

0 

We now continue with the proof of the proposition. Let S = B4 - J[} be a slice 

disk complement where J[} C B 4 is a collection of disks with boundary LBD· Let W 

be an ( n )-solution for L and let E be the space obtained by attaching W and S to 

X along MLx{o} and MLBvx{o} respectively. Thus Eisa 4-manifold with boundary 

We claim that E is actually an (n + 1)-solution for BD(L). We start first by 

showing E is an ( n )-solution. Let E = X U W. Consider the following long exact 

sequence (with Z-coeffi.cients in reduced homology) obtained by Mayer Vietoris. 
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We have that inclusion induces an isomorphism H 1 (ML) ~ H 1(W). This together 

with the fact that J2 on H1 is surjective and H1(ML)-+ H1(X) is the zero map, gives 

that H1(E) "'H1(X). From Lemma 4.12, the inclusion maps induce an isomorphism 

H2(X) rv H2(MLBD EB H2(M£). Thus, by the first isomorphism theorem, we obtain 

the following. 

H2(E) "' H2(X) EB H2(W) 
ker(J2 : H2(X) EB H2(W)-+ H2(E)) 

~ H2(X) EB H2(W) 
image(J1 : H2(ML)-+ H2(X) EB H2(W)) 

Notice that E = E US. Consider the following long exact sequence on homology 

given by Mayer Vietoris. 

Using the facts, H1(MLBv) "'H1(X) induced by inclusion (Lemma 4.12), H2(S) = 

0, and H1(X) "' H 1(E), we can again use the first isomorphism theorem to attain 

the following. 
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c::: H2(MLBv) EB H2(W) 
image(pl : H2(MLBv) --7 H2(E) EB H2(S)) 

This shows that the second condition of ( n )-solvability is satisfied for the 4-

manifold E. Using the same arguments found in Proposition 2.8, the third condition 

is also met. 

To check the first condition, consider again the long exact sequence ( 4.3). The 

first isomorphism theorem tells us the following. 

Since the ker(p1) = {0}, we have that image(p1) ,......, H1(MLBv)· Now, S is an 

(n)-solution for MLBv' thus H1(MLBv),......, H1(S) induced by inclusion. Using the first 

isomorphism a final time gives that H 1 (E) ,......, H( E). 

By Lemma 4.12 and the above results, the first condition to being (n)-solvable is 

met and E is an (n)-solution for BD(L). 

We claim further that E is actually an (n + 1)-solution. Showing that 1r1 (W) c 

Consider the following commutative diagram of maps where i* is induced by in-
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elusion and both p1• and p2• are the canonical quotient maps. 

1r1(W) ___ i. ___ 1r1(E) 

"'·l ~ !~· 

Showing that h- 0 is equivalent to showing that 1r1(W) C 1r1(E)(1). Examining 

this further shows that h = 0 if and only if i* : H 1 (W) -+ H1 (E) is the zero map, 

since our diagram commutes. Consider the following commutative diagram. 

To show that i* = 0 is equivalent to showing that the map p: H 1(ML)-+ H 1(E) 

is the zero map. Consider [JLi] E H1(ML) where Jli generate H1(ML)· Under the map 

lie in a commutator subgroup and thus ['Tli] = 0 in homology, and pis the zero map. 

Thus E is an ( n + 1 )-solution and the desired result is achieved. 

The case when Lis (n.5)-solvable is similar. D 



Chapter 5 

Applications to {F~} 

In studying the ( n )-solvable filtration, we often look at successive quotients of the 

filtration. Recently, progress has been made towards understanding the structure of 

its quotients (see [ChalO], [CH08], [CHL09], [Har08]). We will mostly focus on the 

filtration of em when m ~ 2. 

Most of the previous work studies the filtration of boundary links. Harvey first 

showed that F: I F:;'-+1 is a nontrivial group that contains an infinitely generated 

subgroup [Har08]. She showed that this subgroup is generated by boundary links 

(links with components that bound disjoint Seifert surfaces). Boundary links have 

vanishing ,U-invariants at all lengths. Cochran and Harvey improved this result by 

showing that F: I F;:':5 contains an infinitely generated subgroup [CH08]. Again, this 

subgroup consists entirely of boundary links. 

Using the relationship between Milnor's ,U-invariants and (n)-solvability, given in 

Theorem 3. 7, we are able to establish new results that are disjoint from previous 

work. In addition, we will also investigate the commutivity of these quotient groups. 

48 
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Until now, nothing has been known about the "other half' of the (n)-solvable 

filtration, F;{':5 / F:+1 . 

Theorem 5.1. F;{':5 / F;;+l contains an infinite cyclic subgroup form 2: 3 * 2n+l. 

Proof. Let BR =the Borromean Rings, as seen in Example 3.2. We have shown that 

BR is a nontrivial link in F~0.5/FJ. When we take the Bing double of BR, BD(BR) 

(see Figure 5.l(a)), this new link is in Po.s by Proposition 4.10. However, the first 

nonvanishing p,-invariant is .UBD(BR)(I) = ±1 for a certain I with III= 6 (see Chapter 

8 in [Coc90] for more details), so BD(BR) is not (I)-solvable by Theorem 3.7. Then 

BD(BR) is nontrivial in Po.5 / Ff since it has a nonvanishing p,-invariant. 

We can perform the Bing doubling operation on this new link to form BD(BD(BR)), 

or more simply, BD2 (BR) (see Figure 5.l(b)). Using Proposition 4.11, we see 

that BD2 (BR) is nontrivial in Ff.~. Looking at its p,-invariants, we will have that 

.UBv2 (BR) (I) = ±1 for a certain I of length 12 and our link cannot be (2)-solvable by 

Theorem 3.7. Therefore BD2(BR) is nontrivial in Ff.VF};.2 . We can continue this 

process to have BDn+l(BR) nontrivial in F:;':5/F~1 form 2: 3 * 2n+1. 

We claim that BDn+l(BR) will have infinite order in F;{':5/F~1 . Recall that 

Orr showed the first nonvanishing p,-invariant is additive, see Theorem 3.6. We will 

look at an arbitrary string link L with the following properties instead of the specific 

link BDn+l(BR) for the moment. Suppose that p,L(I) = 0 and that .UL(J) =/= 0 for 

IJI = III + 1. Then 

If we were to take the closure of the stack of n copies of L, denoted :;;L, we would 
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obtain 

fl;;L ( J) = n[l L· 

Thus L generates an infinite cyclic subgroup Z. In our case, since BDn+l (BR) has 

a nonzero p-invariant, we can use the same reasoning to show that it generates an 

infinite cyclic subgroup. D 

(a) BD(BR) (b) BD(BD(BR)) = BD2(BR) 

Figure 5.1: Examples of iterated Bing doubles of the Borromean Rings 

The example exhibited in the above proof came from iterated Bing doubles of a 

link with nonvanishing p-invariants. These iterated Bing doubles will always have 

a nonzero p-invariant [Coc90]. Thus the above example is also not concordant to a 

boundary link. 

Since the knot concordance group C is abelian, all successive quotients of the ( n )

solvable filtration are abelian. It is known, however) that em is a nonabelian group 

for m ~ 2 [LD88]. We briefly recall some facts known about certain quotient groups 

of {P}. 

The quotient F'!!!0_5 / F 0 is abelian for all m ~ 2. This arises from the fact there 
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exists a monomorphism 

where Diin is the 3-dimensional spin bordism group. This group is known to be 

abelian, giving us that F~_5/ Po is abelian. 

We also know that the quotient em I F'Q is a nonabelian group for m ~ 2. We will 

give an example for m ~ 3. 

Example 5.2. Consider the pure braids in Figure 5.2(a) and 5.2(b). A pure braid 

is a string link with all the strings strictly descending. We build the commutator 

ABA-1B-1 seen in Figure 5.2(c) and check whether or not it is (G)-solvable. Now 

-ABA-1 B-1 is isotopic to the Borromean Rings that were shown in Example 3.2 not 

to be (G)-solvable. 

(a) A (b) B 

(c) Pure braid ABA - 1 B-1 

Figure 5.2: Example of pure braids with their commutator not (G)-solvable 

We continue on with our investigation of quotients of { F::"}. Again using Theo-

rem 3. 7, we will show that F"!!-0_5 / Ff" is nonabelian. 
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Theorem 5.3. F"!!0.5 / Fr is nonabelian form 2: 3. 

In order to prove this theorem, we need to demonstrate that there exists two string 

links with pairwise linking numbers equal to zero such that when we construct the 

commutator we get a string link that is not (I)-solvable. 

Proof. The Borromean Rings, BR, can be written as a pure braid, specifically, 

Borromean Rings conjugated by 0"1 (see Figure 5.3(b)). We look at the commutator 

For braids, the canonical meridians, mi, will freely generate the fundamental group 

and any other meridian of Li (the ith string of L) in n 1 will be a conjugate of mi. This 

allows us to write Zi of L as a product of the m/s using an algorithmic procedure. 

(a) BR as a pure braid 

Figure 5.3: Borromean Rings as a pure braid and a conjugate of them 

Christopher Davis wrote a computer program that does exactly that [Dav]. In 

addition to writing the Zi's as products of meridians, this program also computes the 

Magnus expansion of li. Using this program, we found that there is a ,U-invariant of 

length six that does not vanish. More specifically, P£(313323) = -1. By Theorem 3.7, 

L is not (1 )-solvable. Therefore F"!}'0_5 / Fr is nonabelian. D 



Chapter 6 

Grope Filtration 

6.1 Grope Filtration 

In addition to defining the (n)-solvable filtration, Cochran, Orr, and Teichner [COT03] 

also defined the Grope filtration, {9:} of the (string) link concordance group, 

The Grope filtration is more geometric than the ( n )-solvable filtration. Gropes can 

be thought of as geometric approximations of slicing disks. 

Definition 6.1. A grope is a special pair (2-complex, base circle) which has a height 

n E !N assigned to it. A grope of height 1 is precisely a compact, oriented surface L: 

with a single boundary component, which is the base circle (see Figure 6.1). 

A grope of height n + 1 can be defined recursively by the following construction. 

Let {ai, (3i: i = 1, ... , 2(g -1)} be a symplectic basis of curves for H 1 (L:), where L: is 
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the first stage grope. Then a grope of height n + .1 is formed by attaching gropes of 

height n to each ai and f3i along the base circles (see Figure 6.1). A grope of height 

1.5 is a surface with surfaces attached to 'half' of the basis curves (say the ai)· A 

grope of height n + 1.5 is obtained by gluing gropes of height n to the ai and gropes 

of height n + 1 to the f3i. 

Figure 6.1: A height 1 and height 2 grope 

Given a 4-manifold, W, with boundary M and a framed circle 1 c M, we say 

that 1 bounds a Grope in W if 1 extends to a smooth embedding of a grope with 

its untwisting framing (parallel push offs of Gropes can be taken in W). 

We denoted g;;- to be the subset of em defined by the following. A link L is in 

g;;- if the components of L bound disjoint Gropes of height n in D 4
. It can be shown 

that these subsets are actually normal subgroups of em. Harvey showed [CH08] that 

this filtration is nontrivial by looking at the filtration of boundary string links. 

A useful property of Gropes is demonstrated in the following lemma. 

Lemma 6.2. If a curve P bounds a (map of a) grope of height n in a space X, then 

[P] E 1r1 (X)Cn). 

Proof. Suppose that n = 1. Let ~be a grope of height 1 that the curve P bounds in 

some space X. Then f can be written as a commutator of a and /3, see Figure 6.2. 

Thus P = af3a-1 /3-1 and [£] E 1r1 (X)(l). 
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Now suppose that if I! bounds a grope of height k then [I!] E 1r1 (X)(k) for all k < n. 

Assume that I! bounds a height n grope. Then I!= [a1 , /)1] ... [an, tJn] where ai and ;Ji 

form a symplectic basis of~' the first stage grope. Since ai and tJi bound (n-1)-stage 

gropes, by the induction hypothesis, ai, f3i E 1r1 (X)<n-l). Thus [/!] E 1r
1 
(X)(n). 

D 

Figure 6.2: Basis curves a and f3 

There is also a notion of Grope concordance. To define this, the following definition 

is needed. 

Definition 6.3. An annular grope of height n is a grope of height n that has an 

extra boundary component on its first stage. 

The two boundary components of an annular grope are said to cobound an annular 

grope. Two links, L0 and L1 , are height n Grope concordant if their components 

cobound disjoint height n annular Gropes, Gi, in S3 x [0, 1] such that Gin(S3 x {j}) = 

the ith component of Li where j = 0, 1. 

6.2 Relationship between Filtrations 

Thus far, two filtrations of the string link concordance group em have been defined. 

Recall that the ( n )-solvable filtration is an algebraic approximation while the Grope 
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filtration is a geometric approximation. It is a natural question to ask whether these 

two filtrations are related. Before answering this question, we need to look at the rela

tionship between a link bounding disjoint gropes and the link's Milnor's ,U-invariants. 

Definition 6.4. Let L = £ 1 U £ 2 U · · · U Lm and L' = L~ U L~ U · · · U L'm be ordered, 

oriented links in 8 3 . We say that L is k-cobordant to L', where k E z+, if there are 

disjointly embedded compact, connected, oriented surfaces V1, v;, ... , Vm in 8 3 x [0, 1] 

with 8"\!i = 8o Vi u 81 Vi such that for all i = 1' ... ' m, we have 

i. Vi n ( 8 3 X { 0}) = 8o Vi = Li and Vi n ( 8 3 X { 1}) = 81 Vi = L~; 

ii. there is a tubular neighborhood Vi x D 2 of Vi in 8 3 x [0, 1] which extends the 

"longitudinal" ones of 8"\!i = Li U L~ in 8 3 x { 0} and 8 3 x { 1} resp such that 

the image of the homomorphism 

lies in the kth term of the lower central series of G. 

A link that is k-cobordant to a slice link is called null k-cobordant. 

Links that bound disjoint Gropes of height n will be k-cobordant to a slice link 

for certain k dependent on n. 

Proposition 6.5. If L E g;;t, then it is 2n-1-cobordant to a slice link. 

Proof. Suppose L E g:+2 . Then the components of L, say f.i, bound disjoint Gropes 

of height n in D 4 rv 8 3 x [0, 1]. Moreover, the f.is extend to smooth embeddings of 
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gropes with their untwisting framing. Also, Lis Grope concordant to a slice link L'. 

Let Vi be the first stage Grope bounded by fi and £~ (ie. the annular Grope in the 

concordance). Let V = IJ:1 "\li. 

Now consider the homomorphism 

that is induced by pushing Vi off itself in the normal direction. Let { ai, ,Bi} be a 

sympletic basis for Vi (see Figure 6.3). The parallel push-offs of Gropes can be taken 

in 8 3 x [0, 1] and thus are now in 8 3 x [0, 1] - V. We seek to find the images of the 

basis elements under the above homomorphism. By the construction of the Gropes, 

each of the ais and ,Bis bound Gropes of height n- 1 in the exterior of V. Thus 

by Lemma 6.2 and this concludes the proof. D 

Figure 6.3: The first stage grope, Vi with symplectic basis { ai, ,Bi}i=1,2 . 

The following corollary of Lin [Lin91] can be applied to give a nice result. 
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Corollary 6.6 (Lin). If L and L' are k-cobordant, then Milnor's jl-invariants of L 

and L' with lengths less than or equal to 2k are the same. In particular, if L is null 

k-cobordant, then JlL(I) = 0 for III :::; 2k. 

Corollary 6.7. A link L with components that bound disjoint Gropes of height n has 

Jh(I) = 0 for III :::; 2n. 

Proof. The proof of this is immediate from the previous two results. 0 

Cochran, Orr and Teichner [COT03] showed that these two filtrations are related. 

More specifically, that we have inclusion in one direction. 

Theorem 6.8 (Cochran-Orr-Teichner). If a link L bounds a grope of height n + 2 in 

D4 , then L is (n)-solvable, i.e. 9~+2 ~F.;: for all m and n. 

The natural question is whether or not the inclusion goes in the other direction. 

In other words, if a link is ( n )-solvable, do the components bound disjoint Gropes 

of height n + 2? Recall from Theorem 3. 7 that an ( n )-solvable link has vanishing 

jl-invariants for lengths less than or equal to 2n+2 - 1, while above we see that a 

link in 9~2 has vanishing jl-invariants for lengths less than or equal to 2n+2 . This 

difference of one gives motivation to try to find a nontrivial element in F.;: /9~+2 • 

Corollary 6.9. F.;: /9~+2 is nontrivial form~ 2n+2 . Moreover, Z C F.;: /9~+2 • 

Proof. Let L be the Hopf link. By Proposition 4.7, BD(L) E F 0 , where BD(L) is 

the Bing double L (see Figure 4.5(d)). The invariant Jl£(12) = ±1 depending on 

orientation, as it is just the linking number between the two components. Again, by 

work Cochran given in Chapter 8 of [Coc90], (Theorem??), JlBD(L)(I) = ±1 for some 
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I of length 4. Using iterated Bing doubling we achieve BDn+1 (L) is nontrivial in Fn 

by Proposition 4.11, and JlBDn+I(L)(I) = ±1 for some I of length 2n+2 . BDn+I(L) is 

(n)-solvable, but since some JlBDn+I(L) does not vanish for a length of 2n+2 it cannot 

bound a Grope of height n + 2. 

To show that there is an infinite cyclic subgroup contained within this quotient, 

we look to the proof in Theorem 5.1 for a completely analogous argument. D 

This tells us that the Grope filtration and (n)-solvable filtration of em are not the 

same (form~ 2n+2). 
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