Linear Algebra

1. Consider the following sentence:

The vector x is a linear combination of v_1 and v_2 .

Write an equivalent statement that uses the word "span" as a noun.

2. Let $\mathbf{v_1} = \begin{bmatrix} 1 \\ 5 \\ 3 \end{bmatrix}$. Find and draw five different vectors in the span of $\mathbf{v_1}$.

What does the span of $\mathbf{v_1}$ look like in \mathbb{R}^3 ?

Can a single vector span \mathbb{R}^3 ?

- 3. (a) Let $\mathbf{v_1}$ be as above and let $\mathbf{v_2} = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}$.
 - (b) Is $\mathbf{v_1}$ in the span of $\{\mathbf{v_1}; \mathbf{v_2}\}$?
 - (c) Is $\mathbf{v_2}$ in the span of $\{\mathbf{v_1}; \mathbf{v_2}\}$?
 - (d) Is $\mathbf{0}$ in the span of $\{\mathbf{v_1};\mathbf{v_2}\}?$
 - (e) Is $\begin{bmatrix} 3 \\ 0 \\ 1 \end{bmatrix}$ in the span of $\{\mathbf{v_1}; \mathbf{v_2}\}$?
 - (f) Write down five different vectors in the span of $\{v_1; v_2\}$.
 - (g) What does the entire span of $\{v_1; v_2\}$ look like?
 - (h) Does every pair of vectors in \mathbb{R}^3 span something similar?
 - (i) Can two vectors span \mathbb{R}^3 ?
- 4. Below are drawn vectors \mathbf{u}, \mathbf{v} , and \mathbf{w} in \mathbb{R}^2 .

[picture omitted]

Is \mathbf{w} in the span of \mathbf{u} , \mathbf{v} ?

Is every vector in \mathbb{R}^2 in the span of \mathbf{u}, \mathbf{v} ?