1. (1) False, because dimension of \mathbb{R}^3 is three.
(2) False, because dimension of \mathbb{R}^2 should equal to dimension of null space + dimension of image space, therefore dimension of image space can not be three.
(3) True.

2. (a) Since $\vec{v} = 7(1) + (-3)(t) + 4(t^2),
C_B(\vec{v}) = \begin{pmatrix} 7 \\ -3 \\ 4 \end{pmatrix}.

(b)
\begin{align*}
1 + t &= 1(1) + 1(t) + 0(t^2), \\
1 - t &= 1(1) + (-1)(t) + 0(t^2), \\
1 + t^2 &= 1(1) + (0)(t) + 1(t^2),
\end{align*}
Therefore,
\[M = \begin{pmatrix} 1 & 1 & 1 \\ 1 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \]
Using the method of multiple-augmented matrix, we can find the inverse of M,
\[M^{-1} = \begin{pmatrix} 1/2 & 1/2 & -1/2 \\ 1/2 & -1/2 & -1/2 \\ 0 & 0 & 1 \end{pmatrix} \]
(c) By Theorem 5.43,
\[C_B'(\vec{v}) = M^{-1}C_B(\vec{v}) = \begin{pmatrix} 1/2 & 1/2 & -1/2 \\ 1/2 & -1/2 & -1/2 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 7 \\ -3 \\ 4 \end{pmatrix} = \begin{pmatrix} 0 \\ 3 \\ 4 \end{pmatrix} \]

3. Let
\[A = \begin{pmatrix} 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 0 & 2 & -2 & 1 \end{pmatrix} \]
Doing elementary row operations on A gives us
\[G = \begin{pmatrix} 1 & 1 & 0 & 1 \\ 0 & 1 & -1 & 1/2 \\ 0 & 0 & 1 & 1 \end{pmatrix} \]
The first three columns of G are leading columns. Therefore
\[\{ \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ -2 \end{pmatrix} \} \]
is a basis of V_0.

4. The equation $x_1 + x_2 = x_3 + x_4$ is equivalent to $x_1 + x_2 - x_3 - x_4 = 0$, which has three free variables. Let's assign

$$x_4 = k, x_3 = l, x_2 = m,$$

which gives $x_1 = k + l - m$.

Hence the general vectors in V_0 are

$$\begin{pmatrix} k + l - m \\ m \\ l \\ k \end{pmatrix} = k \begin{pmatrix} 1 \\ 0 \\ 0 \\ 1 \end{pmatrix} + l \begin{pmatrix} 1 \\ 0 \\ 1 \\ 0 \end{pmatrix} + m \begin{pmatrix} -1 \\ 1 \\ 0 \\ 0 \end{pmatrix}$$

Therefore

$$\{ \begin{pmatrix} 1 \\ 0 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} -1 \\ 1 \\ 0 \\ 0 \end{pmatrix} \}$$

spans V_0. It is also quite easy to show it is also linear independent. Hence it is a basis of V_0.

Now we form a matrix

$$A = \begin{pmatrix} 1 & 1 & 1 & 1 & -1 \\ 2 & 1 & 0 & 0 & 1 \\ 2 & 1 & 0 & 1 & 0 \\ 1 & 1 & 1 & 0 & 0 \end{pmatrix}$$

Doing elementary row operations to A gives us

$$G = \begin{pmatrix} 1 & 1 & 1 & 1 & -1 \\ 0 & 1 & 2 & 2 & -3 \\ 0 & 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix},$$

whose first, second and forth columns are leading columns. Therefore

$$\{ \begin{pmatrix} 1 \\ 2 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} \}$$

is a basis for V_0.

5. Let

$$A_1 = \begin{pmatrix} 2 & -1 & 1 \\ 1 & 2 & -3 \end{pmatrix}, A_2 = \begin{pmatrix} 3 & 1 & -2 \\ -1 & 3 & -4 \end{pmatrix}$$
Doing elementary row operations to A_1 and A_2 gives us

$$R_1 = R_2 = \begin{pmatrix} 1 & 0 & -1/5 \\ 0 & 1 & -7/5 \end{pmatrix}$$

Hence S_1 and S_2 span the same subspace of \mathbb{R}^3.

6. (a) For any two polynomials f, g in V, $\Gamma(f + g) = (f + g) \cdot t = f \cdot t + g \cdot t = \Gamma(f) + \Gamma(g)$. For any real number α, $\Gamma(\alpha f) = (\alpha f) \cdot t = \alpha (f \cdot t) = \alpha \Gamma(f)$. Hence by definition, Γ is a linear transformation from V to W. (b) $\Gamma(f) = f \cdot t$ equals zero polynomials in W if and only if f equals zero polynomials in V. Hence the null space of Γ is $\{ \vec{0} \}$, which has dimension zero. By the equality

$$\dim(V) = \dim(\text{null space of } \Gamma) + \dim(\text{image space of } \Gamma),$$

we know that the dimension of the image space of Γ is the same as dimension of V, which is 2. (c)

$$\Gamma(1) = 1 \cdot t = t = 0(1) + 1(t) + 0(t^2),$$

$$\Gamma(t) = t \cdot t = t^2 = 0(1) + 0(t) + 1(t^2)$$

Therefore the matrix representation of Γ is the matrix

$$A = \begin{pmatrix} 0 & 0 \\ 1 & 0 \\ 0 & 1 \end{pmatrix}$$

(d) The matrix P relating B with B' is found by the following way:

$$1 + t = 1(1) + 1(t), 1 - t = 1(1) + (-1)(t),$$

hence

$$P = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$$

Similary, for the matrix S relating C with C',

$$1 = 1(1) + 0(t) + 0(t^2), 1 + t = 1(1) + 1(t) + 0(t^2), 1 + t^2 = 1(1) + 0(t) + 1(t^2),$$

hence

$$S = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

By the method of multiple-augmented matrix, we find the inverse of S:

$$S^{-1} = \begin{pmatrix} 1 & -1 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

By Theorem 6.17,

$$A' = S^{-1}AP = \begin{pmatrix} -2 & 0 \\ 1 & 1 \\ 1 & -1 \end{pmatrix}$$