Theorem. Given a smooth function \(\tau(s) \) and a positive smooth function \(\kappa(s) \) on an interval \(I \) containing 0, a point \(\alpha_0 \in \mathbb{R}^3 \), and two unit vectors \(T_0 \) and \(N_0 \) in \(\mathbb{R}^3 \), there exists a unique unit-speed curve \(\alpha(s) \) on \(I \) with curvature \(\kappa(s) \), torsion \(\tau(s) \), initial position, \(\alpha(0) = \alpha_0 \), initial velocity \(\alpha'(s) = T_0 \), and initial acceleration \(\alpha''(s) = \kappa(0)N_0 \).

Proof. For the vector-valued function \(u \equiv (T,N,B) : I \to \mathbb{R}^3 \times \mathbb{R}^3 \times \mathbb{R}^3 \), we may solve the O.D.E.

\[
\begin{align*}
T' &= \kappa N , \\
N' &= -\kappa T + \tau B , \\
B' &= -\tau N
\end{align*}
\]

with initial conditions \(T(0) = T_0 \), \(N(0) = N_0 \), \(B(0) = T_0 \wedge N_0 \).

We claim that \((T,N,B) \) is then automatically an orthonormal frame. To see this, note that vector-valued function

\[
v = (v_1, v_2, v_3, v_4, v_5, v_6) \equiv (T \cdot T, T \cdot N, T \cdot B, N \cdot N, N \cdot B, B \cdot B)
\]

then satisfies the O.D.E.

\[
\begin{align*}
v'_1 &= -2\kappa v_2 , \\
v'_2 &= -\kappa v_4 - \kappa v_1 + \tau v_3 , \\
v'_3 &= \kappa v_5 - \tau v_3 , \\
v'_4 &= -2\kappa v_2 + 2\tau v_6 \\
v'_5 &= -\kappa v_3 + \tau v_6 - \tau v_4 , \\
v'_6 &= -2\tau v_5
\end{align*}
\]

with \(v(0) = (1,0,0,1,0,1) \). But since the constant function \((1,0,0,1,0,1) \) also satisfies the above O.D.E. with the same initial data, we conclude that \(v \equiv (1,0,0,1,0,1) \), so that \((T,N,B) \) is indeed an orthonormal frame.

Also since the length of the vector function \(u = (T,N,B) \) remains bounded, in fact identically \(\sqrt{3} \), we see, by continuation, that the solution \((T,N,B) \) exists not only near \(s = 0 \) but even over the whole interval \(I \).

We conclude that

\[
\alpha(s) = \alpha_0 + \int_0^s T(t) \, dt
\]

has \(\alpha(0) = \alpha_0 \) and is unit-speed with tangent \(T \) because \(\alpha'(s) = T(s) \). Also

\[
\alpha''(s) = T'(s) = \kappa N(s)
\]

so that \(\alpha \) has curvature \(\kappa \) and principal normal \(N \). Moreover,

\[
(T \wedge N)'(s) = (T' \wedge N)(s) + (T \wedge N')(s) = \tau(s)N(s)
\]
so that α also has torsion τ.

Finally, if $\overline{\alpha}$ is another unit-speed curve with curvature κ and torsion τ, $\overline{\alpha}(0) = \alpha_0$, $\overline{\alpha}'(0) = T_0$, and $\overline{\alpha}''(0) = \kappa(0) N_0$, then the function $f(s) = T \cdot \overline{T} + N \cdot \overline{N} + B \cdot \overline{B}$ satisfies $f(0) = 3$ and, by the Frenet formulas, $f' \equiv 0$. Thus f is the constant function 3, and each of the at most unit-sized terms $T \cdot \overline{T}$, $N \cdot \overline{N}$, $B \cdot \overline{B}$ must be the constant 1. Being unit vectors, $T \equiv \overline{T}$, $N \equiv \overline{N}$, $B \equiv \overline{B}$. In particular,

$$\overline{\alpha}(s) = \alpha_0 + \int_0^s \overline{T}(t) \, dt = \alpha_0 + \int_0^s T(t) \, dt = \alpha(s).$$

\blacksquare