1. Describe, with proof, four mutually non-isomorphic groups of order 50. In particular, construct the groups clearly and show carefully that the resulting groups are non-isomorphic.

2. Let $\Phi_{90}(x)$ denote the monic polynomial whose roots are the primitive 90th roots of unity; it is irreducible.
 a. Show that $\Phi_{90}(x) \in \mathbb{Z}[x]$, i.e., the coefficients are integers.
 b. Determine the splitting field of Φ_{90} as a polynomial over the finite field $\mathbb{F}_{11} = \mathbb{Z}/11\mathbb{Z}$.
 c. Now regard Φ_{90} as a polynomial over \mathbb{Q}. Describe, in detail, its Galois group.

3. Let R be an integral domain. Assume that
 - $ab = cd$ holds, for some $a, b, c, d \in R$;
 - a and b are prime elements in R.

 Prove or disprove: The element c must be an associate of one of the following elements: $a, b, ab, 1_R$ (the identity in R).

4. Let A be a real 9×9 matrix with transpose B. Prove that the matrices A and B are real equivalent in the following sense: There exists a real
invertible 9×9 matrix H such that $AH = HB$. For partial credit: Establish the existence of a complex invertible matrix H with $AH = HB$.

5. Consider the rings

$$R := \mathbb{Z}[\sqrt{-3}] \subset S := \mathbb{Z}[\frac{1 + \sqrt{-3}}{2}] \subset \mathbb{C};$$

regard S as an R module.

a. Show that S is finitely generated as an R-module.

b. Let $p \neq 0$ be a prime ideal of R and consider the localizations

$$R_p \subset S_p.$$

Show these are equal if p does not contain 2.

c. Show that S is neither flat nor projective as an R module.

6. Let e_1, e_2, e_3, e_4 be a basis for \mathbb{R}^4 and

$$q = e_1e_2 + e_3e_4 \in \text{Sym}^2(\mathbb{R}^4),$$

i.e., an element of the symmetric algebra $\text{Sym}(\mathbb{R}^4)$. Show there do not exist elements $v, w \in \mathbb{R}^4$ such that $q = vw$ in $\text{Sym}(\mathbb{R}^4)$.

2