ALGEBRA QUALIFYING EXAMINATION

RICE UNIVERSITY, FALL 2018

Instructions:

- You have four hours to complete this exam. Attempt all six problems.
- The use of books, notes, calculators, or other aids is not permitted.
- Justify your answers in full, carefully state results you use, and include relevant computations where appropriate.
- Write and sign the Honor Code pledge at the end of your exam.
(1) Let p be a prime number and suppose that G and H are groups of order p^{2}. Suppose that G and H have the same number of subgroups of order p. Show that G and H are isomorphic.
(2) Let $G:=\mathrm{GL}_{3}\left(\mathbb{F}_{2}\right)$ be the group of invertible 3×3 matrices over the field with two elements. Determine, up to similarity, all elements of G of order 7.
(3) Can $\sqrt{2+\sqrt{2}}$ be written in the form $\sqrt{a}+\sqrt{b}$ for some rational numbers a and b ?
(4) Let $I=\left(x-y, y^{2}-y\right)$ and $J=\left(x^{2} y+x y^{2}-2 y, x y^{2}-x-y\right)$ be ideals in the polynomial ring $\mathbb{Q}[x, y]$. Is $I=J$? Justify.
(5) (a) Let $R=Z[\sqrt{-5}]$ and $I=(2,1+\sqrt{-5}) \subset R$. Is $\bigwedge^{2}(I)=0$? Justify.
(b) Let $R=Z[x, y]$ and $I=(x, y) \subset R$. Is $\bigwedge^{2}(I)=0$? Justify.
(6) Let R be a commutative ring with unit, and let M be an R-module. Prove that the following are equivalent:
(a) $M=0$.
(b) $M_{\mathfrak{p}}=0$ for all primes ideals \mathfrak{p} of R.
(c) $M_{\mathfrak{m}}=0$ for all maximal ideals \mathfrak{m} of R.

