Syllabus for the Qualifying Exam in Algebra

Rice University Department of Mathematics

Spring 2008

I)Group theory

- 1. Definitions and basic properties
 - Subgroups
 - Homomorphisms
 - Direct and semidirect products
 - Normal subgroups and quotients
- 2. Examples of groups
 - Symmetry groups
 - Permutation groups
 - Cyclic and dihedral groups
 - Finite groups represented as matrices
 - Linear groups (SL₂, SO₂, etc.)
 - Finitely-generated abelian groups
 - Free groups
 - Presentations of groups via generators and relations
- 3. Groups acting on sets
 - Conjugacy classes
 - Sylow Theorem
 - Solvable groups

II)Elementary ring theory

- 1. Definitions and basic properties
 - $\bullet~$ Ideals
 - Homomorphisms
 - Quotient rings
 - Polynomials
 - Maximal and prime ideals
- 2. Factorization
 - Irreducible elements
 - UFD's and PID's
 - Factorization over rings of integers
- III)Advanced linear algebra
 - 1. Quadratic and bilinear forms
 - 2. Jordan and rational canonical form
 - 3. Finitely-generated modules over PID's
 - 4. Hom and dual spaces
 - 5. Tensor algebras, exterior algebras, symmetric algebras

IV)Field theory

- 1. Field extensions, algebraic and transcendental elements
- 2. Finite fields
- 3. Splitting fields
- 4. Constructible numbers
- 5. Galois groups
- 6. Cyclotomic extensions

- 7. Structure of quadratic, cubic, and quartic extensions
- 8. Solvability in radicals
- V)Commutative algebra
 - 1. Gröbner bases with application to elimination and ideal membership
 - 2. Hom and tensor products over general rings;
 - 3. Tensor, exterior and symmetric algebras over rings
 - 4. Noetherian and Artinian rings
 - 5. Integral extensions, rings of integers over number fields
 - 6. Nullstellensatz
 - 7. Local rings and localization of modules

VI)Homological algebra and structure of modules

- 1. Complexes and exact sequences
- 2. Free, projective, flat, and injective modules
- 3. Ext and Tor