ALGEBRA QUALIFYING EXAMINATION

RICE UNIVERSITY, SPRING 2017

Instructions:

- You have four hours to complete this exam. Attempt all six problems.
- The use of books, notes, calculators, or other aids is not permitted.
- Justify your answers in full, carefully state results you use, and include relevant computations where appropriate.
- Write and sign the Honor Code pledge at the end of your exam.
(1) Consider the following matrices

$$
M_{1}=\left(\begin{array}{ll}
2 & 1 \\
0 & 3
\end{array}\right), \text { and } M_{2}=\left(\begin{array}{cc}
1 & 2 \\
-1 & 4
\end{array}\right)
$$

Are the \mathbb{Z}-modules $R_{1}=\mathbb{Z}^{2} / M_{1} \cdot \mathbb{Z}^{2}$ and $R_{2}=\mathbb{Z}^{2} / M_{2} \cdot \mathbb{Z}^{2}$ isomorphic? If so, explain why and describe an isomorphism. If not, explain why not.
(2) Let K / F be a field extension, and $\alpha \in K$ an element which is algebraic and of odd degree over F. Show that $F\left(\alpha^{2}\right)=F(\alpha)$.
(3) Give an example of a pair of square matrices A, B with \mathbb{C}-coefficients such that the minimal polynomials $m_{A}(x)$ and $m_{B}(x)$ are equal, the characteristic polynomials $c_{A}(x)$ and $c_{B}(x)$ are equal, but the matrices A and B are not conjugate.
(4) Let R be a ring with a unique prime ideal and $\operatorname{nil}(R)=(0)$. Prove that R is a field. [Here $\operatorname{nil}(R)$ stands for the nilradical of $R]$
(5) Let $p \in \mathbb{Z}_{>0}$ be a prime and $R=\mathbb{F}_{p}[x] \otimes_{\mathbb{F}_{p}\left[x^{p}\right]} \mathbb{F}_{p}[x]$.
(a) Prove that $x \otimes 1-1 \otimes x \in \operatorname{nil}(R)$.
(b) Prove that $\operatorname{nil}(R)=(x \otimes 1-1 \otimes x)$. [Hint: Consider the ring $R /(x \otimes 1-1 \otimes x)$.]
(6) Let ζ be a primitive $7^{\text {th }}$ root of unity, considered as a complex number, and let $F=\mathbb{Q}(\zeta)$ be the extension of the rational numbers obtained by adjoining ζ. Find, with proof, a primitive element that generates a subfield of F of degree 2 over \mathbb{Q}.

