ALGEBRA QUALIFYING EXAMINATION

RICE UNIVERSITY, WINTER 2018

Instructions:

- You have four hours to complete this exam. Attempt all six problems.
- The use of books, notes, calculators, or other aids is not permitted.
- Justify your answers in full, carefully state results you use, and include relevant computations where appropriate.
- Write and sign the Honor Code pledge at the end of your exam.
(1) Let S_{n} denote the symmetric group on n elements.
(a) Show that S_{5} has six 5 -Sylow subgroups.
(b) Prove that S_{6} contains a subgroup isomorphic S_{5} that acts transitively on the set $\{1,2,3,4,5,6\}$.
(2) Let $\phi: \mathbb{Z}^{n} \rightarrow \mathbb{Z}^{m}$ be a homomorphism of abelian groups.
(a) Show that ker $\phi=0$ or is isomorphic to \mathbb{Z}^{k} where $n-m \leq k \leq n$.
(b) For the homomorphism $\phi: \mathbb{Z}^{3} \rightarrow \mathbb{Z}^{3}$ given by

$$
\phi\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{ccc}
1 & 2 & 5 \\
-1 & 0 & -3 \\
2 & 4 & 14
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right),
$$

show that the cokernel is a group of order 4 . Is this group cyclic?
(3) Let $K=\mathbb{Q}\left(e^{2 \pi i / 5}\right) \subset \mathbb{C}$. Show that $K \cap \mathbb{Q}(i)=\mathbb{Q}$.
(4) Let V be a finite-dimensional complex vector space, and let $T: V \rightarrow V$ be a linear operator. Suppose that $T^{n}=\mathrm{Id}$ for some positive integer n.
(a) Let λ be an eigenvalue of T. Suppose that $v \neq 0$ satisfies $(T-\lambda \mathrm{Id})^{2} v=0$. Show that v is an eigenvector of T.
(b) Prove that T is diagonalizable, i.e., there exists a basis of V with respect to which the matrix of T is diagonal.
(5) Let V be an n-dimensional vector space over \mathbb{Q}, and let $T: V \rightarrow V$ be a linear operator. For each $m=1, \ldots, n$, let

$$
\bigwedge^{m}(f): \bigwedge^{m} V \rightarrow \bigwedge^{m} V
$$

denote the induced linear operator on the m-th exterior power of V.
(a) Assume that $n \geq 2$. Show that $\bigwedge^{2}(f)=0$ if and only if the rank of f is ≤ 1.
(b) Show that $\Lambda^{n}(f)$ is equal to scalar multiplication by the $\operatorname{determinant} \operatorname{det}(f)$.
(6) Let R be a commutative ring with unit, and let M be a finitely generated R-module. Let $f: M \rightarrow M$ be a surjective homomorphism of R-modules. Prove that f is injective.

