Algebra Qualifying Exam

Rice University Mathematics Department

August 21, 2008

1. Let R łbe an integral domain with fraction field K.
a. Assume $R\langle$ is a unique factorization domain. Suppose that the monic polynomial

$$
p(x)=x \psi+a_{n-1} x \psi^{n-1}+\ldots+a_{0} \in R[x]
$$

has a root $\alpha \geq K$. Show that $\alpha \in R$.
b. If $R \psi \neq \mathbb{R}[u, v] /\left\langle v^{2}-u^{3}\right\rangle$ show that $p(x)=x^{2}-u \nmid$ has a root over K lbut not over R.
2. Consider a group homomorphism $: \mathbb{Z}^{n} \rightarrow \mathbb{Z}^{m} . \psi$
a. Show that $\operatorname{kernel}()=0$ or is isomorphic to \mathbb{Z}^{k} where $n-m \not \leq$ $k \psi n$.
b. For the specific homomorphism $: \mathbb{Z}^{3} \rightarrow \mathbb{Z}^{3}$ given by

$$
\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{ccc}
1 & 1 & 1 \\
2 & -1 & 3 \\
4 & 1 & 9
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right), \psi
$$

show that the cokernel $\mathbb{Z}^{3} / \psi\left(\mathbb{Z}^{3}\right)$ is a cyclic group of order 12.
3. Show there exists a nonabelian group Gyof order 21. Which Sylow subgroups of Gqare normal? How many elements of order three does $G \psi$ have?
4. Let $A \not \psi e$ an $n \times n \psi$ omplex matrix. Show there exist $n \times n \psi$ natrices $D \psi$ and $N \psi s u c h$ that $A=D+N \psi$ and the following conditions are satisfied:

- $D \psi$ is diagonalizable, i.e., it can be diagonalized after a suitable change of basis;
- $N \psi$ is nilpotent, i.e., some power of $N \psi$ is zero;
- Dyand Nycommute.

Hint: An example of such a decomposition is

$$
\left(\begin{array}{cc}
\lambda \psi & 1 \\
0 & \lambda \psi
\end{array}\right)=\left(\begin{array}{cc}
\lambda \psi & 0 \\
0 & \lambda \psi
\end{array}\right)+\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right) \cdot \psi
$$

5. Let K delenote the splitting field of the polynomial $x^{5}-2$ over \mathbb{Q}.
a. Show that $x^{5}-1$ splits over K.
b. Compute the degree $[K \psi \mathbb{Q}]$.
c. Show that $\operatorname{Gal}(K / \mathbb{Q})$ is not abelian.
6. Consider the ideal

$$
\left.J \psi \neq x-t^{2}, y^{2} \psi-t^{3}\right\rangle \subset \mathbb{Q}[x, y, t] \cdot \psi
$$

Show that the intersection

$$
J \not \subset \mathbb{Q}[x, y]
$$

is generated by $x^{3}-y^{4}$ as an ideal over $\mathbb{Q}[x, y]$.

