Algebra Qualifying Exam

Rice University Mathematics Department

August 21, 2008

- 1. Let $R\psi$ an integral domain with fraction field K.
 - a. Assume $R\psi$ is a unique factorization domain. Suppose that the monic polynomial

$$p(x) = x^{n} \psi + a_{n-1} x^{n} \psi^{-1} + \ldots + a_0 \in R[x]$$

has a root $\alpha \notin K$. Show that $\alpha \in R$.

- b. If $R \not\models \mathbb{R}[u, v] / \langle v^2 u^3 \rangle$ show that $p(x) = x^2 u \not\models$ as a root over $K \not\models$ but not over R.
- 2. Consider a group homomorphism $: \mathbb{Z}^n \to \mathbb{Z}^m . \psi$
 - a. Show that kernel() = 0 or is isomorphic to \mathbb{Z}^k where $n m\psi \leq k\psi \leq n$.
 - b. For the specific homomorphism $: \mathbb{Z}^3 \to \mathbb{Z}^3$ given by

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 2 & -1 & 3 \\ 4 & 1 & 9 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}, \psi$$

show that the cokernel $\mathbb{Z}^3/\psi(\mathbb{Z}^3)$ is a cyclic group of order 12.

- 3. Show there exists a nonabelian group $G\psi$ of order 21. Which Sylow subgroups of $G\psi$ are normal? How many elements of order three does $G\psi$ have?
- 4. Let A\u03cbe an $n \times n\psi$ omplex matrix. Show there exist $n \times n\psi$ natrices $D\psi$ and $N\psi$ such that $A = D + N\psi$ and the following conditions are satisfied:

- $D\psi$ is diagonalizable, i.e., it can be diagonalized after a suitable change of basis;
- $N\psi$ is nilpotent, i.e., some power of $N\psi$ is zero;
- Duand Nuccommute.

Hint: An example of such a decomposition is

$$\begin{pmatrix} \lambda \psi \ 1 \\ 0 \ \lambda \psi \end{pmatrix} = \begin{pmatrix} \lambda \psi \ 0 \\ 0 \ \lambda \psi \end{pmatrix} + \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} . \psi$$

- 5. Let $K\psi$ denote the splitting field of the polynomial $x^5 2$ over \mathbb{Q} .
 - a. Show that $x^5 1$ splits over K.
 - b. Compute the degree $[K\psi \mathbb{Q}]$.
 - c. Show that $\operatorname{Gal}(K/\mathbb{Q})$ is not abelian.
- 6. Consider the ideal

$$J \not = x - t^2, y \not \psi - t^3 \rangle \subset \mathbb{Q}[x, y, t]. \psi$$

Show that the intersection

$$J\psi \cap \mathbb{Q}[x,y]$$

is generated by $x^3 - y^4$ as an ideal over $\mathbb{Q}[x, y]$.