ALGEBRA QUALIFYING EXAMINATION

RICE UNIVERSITY, FALL 2015

Instructions:

- You have 4 hours to complete this exam. Attempt all six problems.
- The use of books, notes, calculators, or other aids is **not** permitted.
- Justify your answers in full, carefully state results you use, and include relevant computations where appropriate.
- Write and sign the Honor Code pledge at the end of your exam.

Date: August 21st, 2015.

- (1) Let F_n be the free group on $\{x_1, \ldots, x_n\}$, and let $(\mathbb{Z}/2\mathbb{Z})^n = \mathbb{Z}/2\mathbb{Z} \times \cdots \times \mathbb{Z}/2\mathbb{Z}$, where $\mathbb{Z}/2\mathbb{Z} = \{0, 1\}.$
 - (a) Denote by K the kernel of the surjection ϕ that maps

 $x_i \mapsto (0, \dots, 0, 1, 0, \dots, 0), \qquad i = 1, \dots, n$

with 1 being the *i*th entry. Show that any automorphism of F_n preserves K. Prove that any automorphism of F_n induces an automorphism of $(\mathbb{Z}/2\mathbb{Z})^n$ via ϕ .

- (b) For n = 3, determine the automorphism $f: (\mathbb{Z}/2\mathbb{Z})^3 \to (\mathbb{Z}/2\mathbb{Z})^3$, as a 3×3 matrix, induced by the automorphism $x_1 \mapsto x_1 x_3 x_2^2 x_1^{-1}$, $x_2 \mapsto x_1 x_3 x_2$, $x_3 \mapsto x_3 x_2$ of F_n .
- (2) Consider the polynomials $f(x) = x^2 + x + 2$ and $g(x) = x^2 + 2x + 2$ in $\mathbb{F}_3[x]$.
 - (a) Show that both f and g are irreducible.
 - (b) Are the fields $\mathbb{F}_3[x]/(f(x))$ and $\mathbb{F}_3[x]/(g(x))$ isomorphic? If so, exhibit an isomorphism between them. If not, prove so. Justify your claims.
- (3) Let $a = \cos(2\pi/9)$.
 - (a) Compute the minimal polynomial P(x) of a over \mathbb{Q} .
 - (b) Is $\mathbb{Q}(a)/\mathbb{Q}$ separable? Is it a splitting field for P(x)?
 - (c) Compute $\operatorname{Aut}(\mathbb{Q}(a)/\mathbb{Q})$.

Carefully justify your answers.

(4) Let R be a ring and let M be an R-module. The support of M is the set

 $\operatorname{Supp}(M) = \{ \mathfrak{p} \in \operatorname{Spec} R : M_{\mathfrak{p}} \neq 0 \},\$

where $M_{\mathfrak{p}}$ denotes the localization of M at \mathfrak{p} .

(a) Let $0 \to L \to M \to N \to 0$ be an exact sequence of R-modules. Prove that

 $\operatorname{Supp}(L) \cup \operatorname{Supp}(N) = \operatorname{Supp}(M).$

(b) Let $\{M_i\}$ be a collection of submodules of M with $M = \sum_i M_i$. Prove that

$$\operatorname{Supp}(M) = \bigcup_{i} \operatorname{Supp}(M_i).$$

[Hint: Consider the map $\bigoplus_i M_i \to M$.]

- (c) Let M and N be R-modules. Show that $\operatorname{Supp}(M \otimes_R N) \subseteq \operatorname{Supp}(M) \cap \operatorname{Supp}(N)$.
- (5) Find fields K_1 and K_2 such that

$$\mathbb{Q}(\sqrt{3}) \otimes_{\mathbb{Q}} \mathbb{Q}(\sqrt[4]{3}) \simeq K_1 \times K_2.$$

Carefully justify your answer.

- (6) Consider the ideal $I = (t^2 + t x, t 1 y)$ in $\mathbb{Q}[t, x, y]$.
 - (a) Show that $\{t y 1, x y^2 3y 2\}$ is a Gröbner basis for I for the lexicographic order t > x > y.
 - (b) Compute a set of generators for the kernel of the ring homomorphism $\mathbb{Q}[x, y] \to \mathbb{Q}[t]$ given by

$$x \mapsto t^2 + t, \qquad y \mapsto t - 1.$$