# ALGEBRA QUALIFYING EXAMINATION 

RICE UNIVERSITY, FALL 2015

## Instructions:

- You have 4 hours to complete this exam. Attempt all six problems.
- The use of books, notes, calculators, or other aids is not permitted.
- Justify your answers in full, carefully state results you use, and include relevant computations where appropriate.
- Write and sign the Honor Code pledge at the end of your exam.
(1) Let $F_{n}$ be the free group on $\left\{x_{1}, \ldots, x_{n}\right\}$, and let $(\mathbb{Z} / 2 \mathbb{Z})^{n}=\mathbb{Z} / 2 \mathbb{Z} \times \cdots \times \mathbb{Z} / 2 \mathbb{Z}$, where $\mathbb{Z} / 2 \mathbb{Z}=\{0,1\}$.
(a) Denote by $K$ the kernel of the surjection $\phi$ that maps

$$
x_{i} \mapsto(0, \ldots 0,1,0, \ldots 0), \quad i=1, \ldots, n
$$

with 1 being the $i$ th entry. Show that any automorphism of $F_{n}$ preserves $K$. Prove that any automorphism of $F_{n}$ induces an automorphism of $(\mathbb{Z} / 2 \mathbb{Z})^{n}$ via $\phi$.
(b) For $n=3$, determine the automorphism $f:(\mathbb{Z} / 2 \mathbb{Z})^{3} \rightarrow(\mathbb{Z} / 2 \mathbb{Z})^{3}$, as a $3 \times 3$ matrix, induced by the automorphism $x_{1} \mapsto x_{1} x_{3} x_{2}^{2} x_{1}^{-1}, x_{2} \mapsto x_{1} x_{3} x_{2}, x_{3} \mapsto x_{3} x_{2}$ of $F_{n}$.
(2) Consider the polynomials $f(x)=x^{2}+x+2$ and $g(x)=x^{2}+2 x+2$ in $\mathbb{F}_{3}[x]$.
(a) Show that both $f$ and $g$ are irreducible.
(b) Are the fields $\mathbb{F}_{3}[x] /(f(x))$ and $\mathbb{F}_{3}[x] /(g(x))$ isomorphic? If so, exhibit an isomorphism between them. If not, prove so. Justify your claims.
(3) Let $a=\cos (2 \pi / 9)$.
(a) Compute the minimal polynomial $P(x)$ of $a$ over $\mathbb{Q}$.
(b) Is $\mathbb{Q}(a) / \mathbb{Q}$ separable? Is it a splitting field for $P(x)$ ?
(c) Compute $\operatorname{Aut}(\mathbb{Q}(a) / \mathbb{Q})$.

Carefully justify your answers.
(4) Let $R$ be a ring and let $M$ be an $R$-module. The support of $M$ is the set

$$
\operatorname{Supp}(M)=\left\{\mathfrak{p} \in \operatorname{Spec} R: M_{\mathfrak{p}} \neq 0\right\}
$$

where $M_{\mathfrak{p}}$ denotes the localization of $M$ at $\mathfrak{p}$.
(a) Let $0 \rightarrow L \rightarrow M \rightarrow N \rightarrow 0$ be an exact sequence of $R$-modules. Prove that

$$
\operatorname{Supp}(L) \cup \operatorname{Supp}(N)=\operatorname{Supp}(M) .
$$

(b) Let $\left\{M_{i}\right\}$ be a collection of submodules of $M$ with $M=\sum_{i} M_{i}$. Prove that

$$
\operatorname{Supp}(M)=\bigcup_{i} \operatorname{Supp}\left(M_{i}\right)
$$

[Hint: Consider the map $\bigoplus_{i} M_{i} \rightarrow M$.]
(c) Let $M$ and $N$ be $R$-modules. Show that $\operatorname{Supp}\left(M \otimes_{R} N\right) \subseteq \operatorname{Supp}(M) \cap \operatorname{Supp}(N)$.
(5) Find fields $K_{1}$ and $K_{2}$ such that

$$
\mathbb{Q}(\sqrt{3}) \otimes_{\mathbb{Q}} \mathbb{Q}(\sqrt[4]{3}) \simeq K_{1} \times K_{2}
$$

Carefully justify your answer.
(6) Consider the ideal $I=\left(t^{2}+t-x, t-1-y\right)$ in $\mathbb{Q}[t, x, y]$.
(a) Show that $\left\{t-y-1, x-y^{2}-3 y-2\right\}$ is a Gröbner basis for $I$ for the lexicographic order $t>x>y$.
(b) Compute a set of generators for the kernel of the ring homomorphism $\mathbb{Q}[x, y] \rightarrow \mathbb{Q}[t]$ given by

$$
x \mapsto t^{2}+t, \quad y \mapsto t-1 .
$$

