ALGEBRA QUALIFYING EXAMINATION

RICE UNIVERSITY, FALL 2016

Instructions:

- You have **four** hours to complete this exam. Attempt all **six** problems.
- The use of books, notes, calculators, or other aids is **not** permitted.
- Justify your answers in full, carefully state results you use, and include relevant computations where appropriate.
- Write and sign the Honor Code pledge at the end of your exam.

Date: August 17th, 2016.

- (1) (a) Prove that any group of order 1225 is abelian.
 - (b) Find all isomorphism classes of groups of order 1225.
- (2) Determine the eigenvalues (with their algebraic multiplicity) of the following 8×8 matrix over the finite field \mathbb{F}_5

	$\left(0 \right)$	1	0	0	0	0	0	$0\rangle$	
A :=	0	0	1	0	0	0	0	0	
	0	0	0	1	0	0	0	0	
	0	0	0	0	1	0	0	0	
	0	0	0	0	0	1	0	0	
	1	4	0	0	0	1	0	0	
	0	0	0	0	0	0	2	3	
	$\setminus 0$	0	0	0	0	0	3	$_2$	

(3) Consider the polynomial in $\mathbb{F}_2[x]$

$$f(x) = x^5 + x^3 + 1.$$

- (a) Show that f(x) is irreducible.
- (b) Let $K = \mathbb{F}_2[x]/(f(x))$ and set w = x + (f(x)). Express each of the roots of f(x) in K as an \mathbb{F}_2 -linear combination of $\{1, w, w^2, w^3, w^4\}$.
- (c) Prove or Disprove: Any polynomial g(x) in $\mathbb{F}_2[x]$ of degree five splits completely in K.
- (4) Let p be a prime number, and let be n a positive integer.
 - (a) Let G be group of order p^n . Prove that a subgroup H < G of index p is normal.
 - (b) Let L/K be a Galois extension of fields of degree p^n . Show there exists a Galois extension of K of degree p contained in L.
- (5) Let $f: R \to S$ be a surjective homomorphism of rings (commutative, with unit). Let M and N be S-modules. Viewing M and N as R-modules via f, prove that $M \otimes_R N$ and $M \otimes_S N$ are isomorphic as R-modules.
- (6) Let F be a field, $R \subset F$ be a subring, and let $\alpha \in F$ be a nonzero element such that $F = R[\alpha] = R[1/\alpha].$
 - (a) Prove that F is integral over R.
 - (b) Prove that R is a field.