ALGEBRA QUALIFYING EXAMINATION

RICE UNIVERSITY, SPRING 2016

January 12, 2016

Instructions:

- (1) You have 4 hours to complete this exam. Attempt all six problems
- (2) The use of books, notes, calculators, or other aids is **not** permitted.
- (3) Justify your answers in full, carefully state results you use, and include relevant computations where appropriate.
- (4) Write and sign the Honor Code pledge at the end of your exam.

Problem 1. A group G is called *special* if for any pair $x, y \in G$ of its elements either $y \in \langle x \rangle$ or $x \in \langle y \rangle$ (or both). (Here $\langle x \rangle$ stands for the subgroup of G generated by x).

- (1A) List all special groups of orders ≤ 30 . (full credit)
- (1B) Do there exist infinite special groups? (extra credit)
- **Problem** 2. Find the number of non-isomorphic finite fields F of orders at most 50 which have a non-trivial 7th root of 1_F . (That is, the equation $x^7 = 1_F$ has a root $x \in F$, $x \neq 1_F$).

Problem 3. Let $K \subset \mathbb{C}$ be a subfield such that $1 \leq [K : \mathbb{Q}] = n < \infty$. Denote

$$K' = \{\bar{k} \mid k \in K\} \subset \mathbb{C}, \qquad K_2 = \{|k|^2 \mid k \in K \subset \mathbb{R}\}$$

(where \bar{k} stands for the complex conjugate of k).

- (3A) Provide an example of such K with $K \neq K'$.
- (3B) Prove or disprove: K' and K must be isomorphic fields.
- (3C) Prove that $m = [\mathbb{Q}(K_2) : \mathbb{Q}]$ must be finite where $\mathbb{Q}(K_2)$ denotes the field generated by the set K_2 . Find an upper estimate on m in terms of $n = [K : \mathbb{Q}]$.

Problem 4. Prove that the polynomial $x^4 + nx + 1$ is irreducible over \mathbb{Q} for every integer $n \neq \pm 2$.

- **Problem** 5. Denote by M the set of 7×7 matrices over \mathbb{C} . Find the number of non-equivalent nilpotent matrices in M of rank 5. (Two matrices $A, B \in M$ are called equivalent if there exists an invertible matrix $C \in M$ such that AC = CB).
- **Problem** 6. Let $\phi: R \to S$ be a surjective homomorphism of commutative rings with unity. Prove that $\phi(\operatorname{Jac}(R)) \subseteq \operatorname{Jac}(S)$ where $\operatorname{Jac}(\cdot)$ is the Jacobson radical (the intersection of all maximal ideals of the corresponding ring).