Analysis Exam, January 2007

- 1. (a) Give an example of a pointwise convergent sequence of smooth real-valued functions $g_n : [-1,1] \to [-1,1]$ whose derivatives g'_n do not converge at almost every point of [-1,1].
- (b) Suppose $D = \{z \in \mathbf{C} : |z| < 1\}$. Prove that if $f_n : D \to D$ is a pointwise convergent sequence of holomorphic functions, then the derivatives f'_n converge at every point of D.
- **2.** Suppose $1 \le p < q < \infty$
- (a) Either prove $L^q([0,1]) \subset L^p([0,1])$ or find a specific function $g \in L^q([0,1]) \setminus L^p([0,1])$.
- (b) Either prove $L^q(\mathbf{R}) \subset L^p(\mathbf{R})$ or find a specific function $g \in L^q(\mathbf{R}) \setminus L^p(\mathbf{R})$.
- **3.** (a) Given distinct complex numbers a, b, c, d, find a holomorphic $f : \mathbf{C} \to \mathbf{C}$ such that f(a) = b and f(c) = d.
- (b) Assuming moreover that a, b, c, d lie in the unit disk D find, if possible, a holomorphic $f: D \to D$ such that f(a) = b and f(c) = d.
- (c) Find, if possible, a nonconstant holomorphic $f: \mathbf{C} \setminus \{0\} \to \mathbf{C}$ with f(1/j) = 0 for $j = 1, 2, \cdots$.
- (d) Find, if possible, a nonconstant holomorphic $f:D\to D$ with f(1/j)=0 for $j=1,2,\cdots$.
- **4.** Suppose that $g:[0,1] \to [0,10]$ is an increasing function.
- (a) Show that $g_{-}(a) = \lim_{t \uparrow a} g(t)$ and $g_{+}(a) = \lim_{t \downarrow a} g(t)$ exist for all $a \in (0,1)$ and that the set of discontinuities $E = \{a : g_{-}(a) \neq g_{+}(a)\}$ is at most countable.
- (b) Try to find a good upper bound for $\sum_{a \in E} g_+^2(a) g_-^2(a)$.
- **5.** Suppose $f: \mathbf{C} \to \mathbf{C}$ is a holomorphic function with zeros a_1, a_2, \dots, a_k in the unit disk of multiplicities respectively m_1, m_2, \dots, m_k .
- (a) Find the poles, with their orders, and the residues of the meromorphic function f'/f.
- (b) Describe the quantity $\sum_{j=1}^{k} m_j a_j^3$ as an integral over the unit circle of some expression involving f and its derivatives.
- **6.** Let λ_n denote *n* dimensional Lebesgue measure.
- (a) Suppose that $A \subset [0,1] \times [0,1]$ is a Lebesgue measurable with $\lambda_2(A) \geq 1/3$. Show that

$$B = \{x \in [0,1] : \lambda_1\{y : (x,y) \in A\} \ge 1/4\} \text{ has } \lambda_1(B) \ge 1/9.$$

(b) Suppose that $\alpha:[0,1]\to \mathbf{R}$ and $\beta:[0,1]\to \mathbf{R}$ are continuous. Together these define the curve $\gamma(t)=(\alpha(t),\beta(t))$ in \mathbf{R}^2 . Recall that the length of γ is given by

$$L = \sup \{ \sum_{i=1}^{j} |\gamma(t_i) - \gamma(t_{i-1})| : 0 = t_0 < t_1 < \dots < t_{j-1} < t_j = 1 \} .$$

Prove that

$$L \le \int \#(\{t: \alpha(t) = x\}) dx + \int \#(\{t: \beta(t) = y\}) dy \le 2L,$$

(where #(E) is number of points, possibly infinite, in E).