ALGEBRA QUALIFYING EXAMINATION

RICE UNIVERSITY, FALL 2020

Instructions:

- You should complete this exam in a single four block of time. Attempt all six problems.
- The use of books, notes, calculators, or other aids is not permitted.
- Justify your answers in full, carefully state results you use, and include relevant computations where appropriate.
- Write and sign the Honor Code pledge at the end of your exam.
(1) Let $G:=\mathrm{SL}_{2}\left(\mathbb{F}_{3}\right)$ be the group of 2×2 matrices of determinant 1 over the field with three elements.
(a) Determine the order of G.
(b) Prove that the subgroup $H<G$ generated by

$$
\left(\begin{array}{ll}
0 & 2 \\
1 & 0
\end{array}\right) \text { and }\left(\begin{array}{ll}
1 & 1 \\
1 & 2
\end{array}\right)
$$

is a 2-Sylow subgroup of G.
(c) Is the subgroup H normal in G ? Justify your answer.
(2) Let M be an $n \times n$ matrix with entries in \mathbb{C}, and let $\lambda_{1}, \ldots, \lambda_{m}$ be the distinct eigenvalues of M. Prove that $\lambda_{1}^{k}, \ldots, \lambda_{m}^{k}$ are eigenvalues of M^{k}. Can the matrix M^{k} have an eigenvalue $\lambda \notin\left\{\lambda_{1}^{k}, \ldots, \lambda_{m}^{k}\right\}$?
(3) Let $\zeta_{13}=e^{2 \pi i / 13} \in \mathbb{C}$ be a primitive 13 -th root of unity, and let $K=\mathbb{Q}\left(\zeta_{13}\right)$.
(a) Determine the order of 2 as an element of the multiplicative group of units of $\mathbb{Z} / 13 \mathbb{Z}$.
(b) Determine the lattice of proper subfield extensions for K / \mathbb{Q}, i.e., determine all the proper intermediate extensions between \mathbb{Q} and K by giving a primitive element for each extension, as well as any inclusions between these subfields.
(4) Let $\mathfrak{p} \subset \mathbb{Z}[x]$ be a nonzero prime ideal.
(a) Show that $\mathfrak{p} \cap \mathbb{Z}$ is a prime ideal of \mathbb{Z}.
(b) Suppose that $\mathfrak{p} \cap \mathbb{Z}=(0)$. Prove that \mathfrak{p} is a principal ideal. [Hint: consider the localization $S^{-1} \mathfrak{p}$, where $S=\mathbb{Z} \backslash\{0\}$.]
(c) Now suppose that $\mathfrak{p} \cap \mathbb{Z}=(p)$ for a prime number p. Prove that $\mathfrak{p}=(p)$ or $(p, f(x))$, where $f(x)$ is irreducible.
(5) A division ring is a nonzero ring A with unit 1_{A} (not necessarily commutative) such that every nonzero element has a (necessarily) two-sided multiplicative inverse, i.e., for $0 \neq a \in A$, there exists $b \in A$ such that $a \cdot b=b \cdot a=1_{A}$.

Let R be a commutative ring. Recall that an R-module M is said to be simple if it is nonzero and its only R-submodules are 0 and itself. Show that the endomorphism ring, $\operatorname{End}_{R}(M)$, of a simple R-module is a division ring.
(6) Find fields K_{1} and K_{2} such that

$$
\mathbb{Q}(\sqrt{3}) \otimes_{\mathbb{Q}} \mathbb{Q}(\sqrt[4]{3}) \simeq K_{1} \times K_{2}
$$

Justify your answer.

