ALGEBRA QUALIFYING EXAMINATION

RICE UNIVERSITY, SPRING 2020

Instructions:

- You should complete this exam in a single **four** block of time. Attempt all **six** problems.
- The use of books, notes, calculators, or other aids is **not** permitted.
- Justify your answers in full, carefully state results you use, and include relevant computations where appropriate.
- Write and sign the Honor Code pledge at the end of your exam.

Date: May 11th, 2020.

- (1) Let p be a prime number.
 - (a) Classify groups of order p^2 .
 - (b) Prove that there exists a nonabelian group of order 75.
- (2) Let M be a finite-dimensional \mathbb{R} -vector space, and let $T: M \to M$ be a linear map. Consider M as an $\mathbb{R}[t]$ -module, where $t \cdot v := T(v)$ for $v \in M$. Suppose that M is generated, as an $\mathbb{R}[t]$ -module, by two elements v_1 and v_2 that are subject to the relations

$$(t^{2} - t - 2)v_{1} + (-t^{2} - 2t + 8)v_{2} = 0,$$

$$(t^{2} - 2t)v_{1} + (-t^{2} + 4)v_{2} = 0.$$

- (a) Determine the dimension of M as an \mathbb{R} -vector space.
- (b) Compute the rational canonical form associated to T.
- (3) Let k[x] be a polynomial ring over a field k, and let $f(x) = x^4 + 8x + 12$.
 - (a) Determine the Galois group of f(x) when $k = \mathbb{Q}$.
 - (b) Determine the Galois group of f(x) when $k = \mathbb{F}_{17}$ (the finite field with 17 elements).
- (4) Let k be a field, and consider k[x] as a k[y]-module via the k-homomorphism

$$f \colon k[y] \to k[x],$$
$$y \mapsto x^2.$$

Is the ring $k[x] \otimes_{k[y]} k[x]$ a domain? Justify your answer.

(5) Let A be a commutative ring with unit. Endow the prime spectrum Spec(A) with its usual Zariski topology, whose closed sets are of the form

$$V(I) = \{ \mathfrak{p} \in \operatorname{Spec} A : I \subseteq \mathfrak{p} \},\$$

where $I \subseteq A$ is any ideal. Prove that Spec(A) is disconnected if and only if A is isomorphic to a direct product $A_1 \times A_2$ of two nonzero rings.

(6) Let A be a commutative ring with unit, and let $S \subseteq A$ be a multiplicatively closed subset. Let M and N be A-modules. Prove that $S^{-1}(M \otimes_A N)$ and $S^{-1}M \otimes_{S^{-1}A} S^{-1}N$ are isomorphic as $S^{-1}A$ -modules.