1. Do exercise 15 and major exercise 6 from chapter 2 in the textbook.

Betweenness

2. Find (and explain) the flaw in the false “proof” that all triangles are isosceles on pages 25-27 in the textbook.

3. Do exercises 1, 8, and 15 from chapter 3 in the textbook. [Exercises 1 and 8 have been moved to the next homework.]

Combinatorics of plane tilings

4. Consider the standard tiling of the Euclidean plane by regular hexagons. Given two hexagons \(H \) and \(H' \) of the tiling, we can define the (combinatorial) distance between them to be the smallest number \(n \) so that there exist hexagons of the tiling \(H = H_0, H_1, \ldots, H_n = H' \) so that for each \(i = 1, \ldots, n \), the hexagons \(H_{i-1} \) and \(H_i \) share an edge. (See below figure.)

Fix a hexagon \(H \) of the tiling, and let \(a_n \) be the number of hexagons of the tiling whose distance from \(H \) is \(n \). Find (with proof\(^1\)) a formula for \(a_n \)\(^2\).

5. It turns out it is possible to tile the hyperbolic plane with regular heptagons, meeting three to a vertex\(^3\). As in the previous problem, fix a heptagon, and let \(b_n \) be the number of heptagons at distance \(n \) from it. Compute \(b_1, b_2, \) and \(b_3 \) and show that in general, \(b_{n+1} \geq 2b_n \)\(^4\).

\(^1\)Your proof should use the following axiom of induction, one of the standard axioms for the natural numbers \(\mathbb{N} \):

Suppose \(S \subseteq \mathbb{N} \) is a subset of the natural numbers such that

- \(1 \in S \), and
- for all natural numbers \(n \), if \(n \in S \) then \(n + 1 \in S \).

Then \(S = \mathbb{N} \).

Thus if we want to prove that our formula for \(a_n \) holds for all natural numbers \(n \), we can consider the set \(S \subseteq \mathbb{N} \) consisting of all \(n \) for which the formula is true. To show \(S = \mathbb{N} \), we need only show that \(1 \in S \), i.e. that the formula holds for \(n = 1 \), and that \(n \in S \Rightarrow (n + 1) \in S \), i.e. we must show that the formula holds for \(n + 1 \), assuming that we already know the formula holds for \(n \).

\(^2\)You can think of this as a discrete hexagonal version of finding the “circumference of a circle.”

\(^3\)The heptagons in question are all congruent to one another, although they don’t look like it in the Poincaré disk model for the hyperbolic plane as depicted below.

\(^4\)In particular, \(b_n \) grows exponentially, rather than linearly, as a function of \(n \). Later in the course, we’ll show analogously that the circumference of a circle in the hyperbolic plane grows exponentially as a function of its radius (see page 496 in the text).
6. Imagine a tiling of a “plane” by regular pentagons, meeting three to a vertex. As in the previous problems, fix a pentagon, and let c_n be the number of pentagons at distance n from it. Compute c_n for $n \leq 4$.

Does your answer make sense? Could there really be a tiling of a “plane” by regular pentagons meeting three at a vertex? How about at tiling of a “plane” by squares meeting three at a vertex?

Extra credit

7. (a) Find (with proof) an explicit formula for the b_n of problem 5.

[Hint: for $n \geq 2$, there are two different combinatorial “types” of heptagons at distance n from the chosen one. Set $b_n = x_n + y_n$ based on the two types, find a recurrence for x_n and y_n that can be written in the form

$$
\begin{bmatrix}
x_{n+1} \\
y_{n+1}
\end{bmatrix} =
\begin{bmatrix}
m_{11} & m_{12} \\
m_{21} & m_{22}
\end{bmatrix}
\begin{bmatrix}
x_n \\
y_n
\end{bmatrix},
$$

and diagonalize the matrix M.]

(b) More generally, for a tiling by regular p-gons, meeting three at a vertex, find a formula for the number of p-gons at distance n from a fixed one. [What happens differently when $p = 6$?]

(c) What does your formula say in the cases $p = 3, 4, 5$? Explain.