HW#15 §3.9 #2, 6, 12, 24, 28, 38, 52, 60

In Problems 1 through 4, first find the derivative \(\frac{dy}{dx} \) by implicit differentiation. Then solve the original equation for \(y \) explicitly in terms of \(x \) and differentiate to find \(\frac{dy}{dx} \). Finally verify that your two results are the same by substitution of the explicit expression for \(y(x) \) in the implicit form of the derivative.

2) \(xy=1 \)

Differentiating implicitly \(y + x \frac{dy}{dx} = 0 \) or \(\frac{dy}{dx} = -\frac{y}{x} \). Solving for \(y \) gives \(y = \frac{1}{x} \) and therefore \(\frac{dy}{dx} = -\frac{1}{x^2} \). Plugging \(y = \frac{1}{x} \) into the implicit formula gives \(\frac{dy}{dx} = -\frac{y}{x} = -\frac{1}{x^2} \).

In Problems 5 through 14, find \(\frac{dy}{dx} \) by implicit differentiation.

6) \(x^4 + x^2 y^2 + y^4 = 48 \)

Implicit differentiation gives \(4x^3 + 2x y^2 + 2x^2 y \frac{dy}{dx} + 4y^3 \frac{dy}{dx} = 0 \) or \(\frac{dy}{dx} = -\frac{4x^3 + 2x y^2}{2x^2 y + 4y^3} \).

12) \(\cos(x+y) = \sin x \sin y \)

Implicit differentiation gives \(-\sin(x+y) \left(1 + \frac{dy}{dx} \right) = \cos x \sin y + \sin x \cos y \frac{dy}{dx} \) or \(\frac{dy}{dx} = -\frac{\sin(x+y) + \cos x \sin y}{\sin(x+y) + \sin x \cos y} \).

In Problems 15 through 28, use implicit differentiation to find an equation of the tangent line to the given curve at the given point.

24) \(xy = 6 e^{2x-3y} \), \((3,2) \)

Implicit differentiation gives \(y + x \frac{dy}{dx} = 6 e^{2x-3y} \left(2 - 3 \frac{dy}{dx} \right) \) or \(\frac{dy}{dx} = \frac{12 e^{2x-3y} - y}{18e^{2x-3y} + x} \).

Therefore \(\frac{dy}{dx}_{(3,2)} = \frac{12 - 2}{18 + 3} = \frac{10}{21} \). Since the tangent line passes through \((3,2) \) its equation is \((y-2) = \frac{10}{21}(x-3) \) or \(y = \frac{10}{21}x + \frac{4}{7} \).
Implicit differentiation gives \[2y \frac{dy}{dx} = 3x^2 + 14x \] or \[\frac{dy}{dx} = \frac{3x^2 + 14x}{2y}. \] Hence at \(x = -3 \) and \(y = 6 \) we get \[\frac{dy}{dx} = -\frac{5}{4}. \] Thus the equation is \((y-6) = -\frac{5}{4}(x+3) \) or \(y = -\frac{5}{4}x + \frac{9}{4}. \)

38) Suppose that water is being emptied from a spherical tank of radius 10 ft. If the depth of the water in the tank is 5 ft and is decreasing at the rate of 3 ft/sec, at what rate is the radius of the top surface of the water decreasing?

Let \(y \) be the height of the water in feet and \(r \) the radius of the top surface in feet. We are told \(\frac{dy}{dt} = -3 \) and we are asked for \(\frac{dr}{dt} \). Since there is a right triangle with sides \(10 - y \) and \(r \) and hypotenuse 10, we have \((10- y)^2 + r^2 = 100 \). Differentiating gives \(-2(10-y) \frac{dy}{dt} + 2r \frac{dr}{dt} = 0 \) or \(\frac{dr}{dt} = \frac{10-y}{r} \frac{dy}{dt} \). When \(y = 5 \), \(5^2 + r^2 = 100 \) or \(r = 5 \sqrt{3} \), thus \(\frac{dr}{dt}_{y=5} = \frac{10 - 5}{5 \sqrt{3}} \cdot (-3) = -\sqrt{3} \). Thus the radius is decreasing at \(\sqrt{3} \) ft/sec.

52) The base of a rectangle is increasing at 4 cm/s while its height is decreasing at 3 cm/s. At what rate is its area changing when its base is 20 cm and its height is 12 cm?

Let \(b \) be the length of the base in cm and \(h \) the height in cm. We are told that \(\frac{db}{dt} = 4 \) and \(\frac{dh}{dt} = -3 \). Since the area is given by \(A = bh \), when \(b = 20 \) and \(h = 12 \) we have

\[
\frac{dA}{dt} = h \frac{db}{dt} + b \frac{dh}{dt} = (12)(4) + (20)(-3) = 48 - 60 = -12.
\]

Therefore the area is decreasing by 12 cm²/sec.
A ship with a long anchor chain is anchored in 11 fathoms of water. The anchor chain is being wound in at a rate of 10 fathoms/min, causing the ship to move toward the spot directly above the anchor resting on the seabed. The hawsehole—the point of contact between the ship and chain—is located 1 fathom above the water line. At what speed is the ship moving when there are exactly 13 fathoms of chain still out.

Let \(L \) be the length of chain out (in fathoms) and let \(x \) be the horizontal distance from the ship to spot directly above the anchor (also in fathoms). Let \(t \) be time measured in minutes. Then we are told that \(\frac{dL}{dt} = -10 \) and we are asked to find \(\frac{dx}{dt} \).

Because the anchor chain forms the hypotenuse of a right triangle with one (horizontal) side \(x \) and the other (vertical) side \(11 + 1 = 12 \), we see that

\[
L^2 = x^2 + 12^2 = x^2 + 144.
\]

Differentiating with respect to \(t \) gives

\[
2L \frac{dL}{dt} = 2x \frac{dx}{dt}
\]

or

\[
\frac{dx}{dt} = \frac{L}{x} \frac{dL}{dt}.
\]

At the time when \(L = 13 \), \(13^2 = x^2 + 144 \) hence \(x^2 = 25 \) or \(x = 5 \). Thus at this time \(\frac{dx}{dt} = \frac{13}{5}(-10) = -26 \). Thus the ship is moving toward the spot directly above the anchor at 26 fathoms/min.