1. Problem #7 (page 201). Check your answers with MATLAB and pplane, and attach at least two plots obtained with pplane.

2. Problem #8 (a,b) (page 202).

3. Consider the following love affair situation:

 Romeo: \(x' = -6x + 3y \), Juliet: \(y' = -4x + y \).

 Sketch the phase-plane portrait and describe the long-term behavior of this relationship. Any conclusions?

4. Consider the compartmental model described on pages 149–151.
 (a) Verify and explain equations (85a,b) and (86a,b).
 (b) Assume a bolus injection (all at time \(t = 0 \)) with \(m_1(0) = 2 \), \(m_2(0) = 0 \), \(u_1 = u_2 = 0 \). Suppose that the solution of the linear system \((86a,b) \) is given by

 \[
 \begin{pmatrix}
 x_1(t) \\
 x_2(t)
 \end{pmatrix}
 =
 \begin{pmatrix}
 10e^{-2t} + 5e^{-t} \\
 -4e^{-2t} + 4e^{-t}
 \end{pmatrix}.
 \]

 Find the volume \(V_1 \) and then, assuming \(V_2 = 10 \) find the parameters \(L_{12}, L_{21}, D_1, D_2 \).