1. For each of the following conditions, decide if there is a non-constant holomorphic function defined on the whole complex plane with the given property.
 (a) \(\text{Re} f(z) > 0 \) for all \(z \).
 (b) \(|f(z)| \leq (1 + |z|) / \log(1 + |z|) \) for all \(z \).
 (c) The function \(f \) has 0 and \(\infty \) as its only asymptotic values. (The extended complex number \(\alpha \) is an asymptotic value of \(f \) if there is an unbounded path \(\gamma \) such that \(\lim_{z \to \infty, z \in \gamma} f(z) = \alpha \).

2. Let \(g(z) \) be analytic in the right half-plane \(\{ z \mid \text{Re} z > 0 \} \) with \(|g(z)| < 1 \) for all such \(z \). If \(g(1) = 0 \), how large can \(g(2) \) be?

3. Suppose that \(f(z) \) is a non-constant holomorphic function on a connected open set \(U \subset \mathbb{C} \). Suppose that \(V \) is an open set, that its closure \(\overline{V} \) is a compact subset of \(U \), and that \(|f(z)| \) is constant on the boundary of \(V \). Show that \(f \) has at least one zero in \(V \).

4. Let \(f \) be a complex valued function in the open unit disk \(D \), of the complex plane, such that the functions \(g = f^2 \) and \(h = f^3 \) are both analytic. Prove that \(f \) is analytic in \(D \).

5. Let \(f, g_1, g_2, \ldots \) be entire functions. Assume that the \(k \)th derivatives at 0 satisfy
 (a) \(|g_n^{(k)}(0)| \leq |f^{(k)}(0)| \) for all \(n \) and \(k \).
 (b) \(\lim_{n \to \infty} g_n^{(k)}(0) \) exists for all \(k \).
 Prove that the sequence \(\{g_n\} \) converges uniformly on compact subsets and that its limit is an entire function.

6. Suppose that \(f(z) \) is analytic and satisfies \(f(1/z) = f(z) \) for all \(z \in \mathbb{C} \setminus \{0\} \).
 (a) Write down the general Laurent expansion for \(f \).
 (b) Show that the coefficients of this expansion are all real if this \(f \) has real values on the unit circle, \(|z| = 1 \).